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ABSTRACT

Motivation: Proteomics researchers need to be able to quickly

retrieve relevant information from the web and the biomedical

literature. To improve information retrieval, we leverage the structure

of the semantic web, developing an approach for joining it with the

largely opposing paradigm of unsupervised web search.

Results: Our approach uses a Resource-Description-Framework

(RDF) graph that inter-relates documents through their associated

biological identifiers (e.g., protein ID). A search begins with a simple

query term (UniProt identifier), which is expanded with terms

extracted from documents in the RDF graph surrounding the query

(‘‘the subgraph’’). We re-rank documents in the full corpus (e.g. all

PubMed) by their cosine-similarity scores against a composite word-

weight vector created from the subgraph. This vector is a weighted

sum of individual word-weight vectors for documents at each node

of the subgraph, taking into account the types of relationships

between the central query identifier and the nodes connected to it.

The computation also uses inverse document frequency (IDF) in a

novel way to rescale the local word frequencies in the query’s

subgraph relative to that in other subgraphs. Applying our procedure

to PubMed, we optimize weights for various relationships in the

subgraph and benchmark overall performance in detail. Using a

subgraph containing family relationships (from PFAM) results in a

significant improvement in accuracy (as compared to not consider-

ing the subgraph in the search) when assessed against known

relationships in the yeast literature. Moreover, we achieve this

accuracy using only relatively simple and computationally efficient

methods.

Contact: mark.gerstein@yale.edu

Supplementary information: http://hub.gersteinlab.org/ir-supp/

1 INTRODUCTION

1.1 Domain-specific information retrieval for proteomics

Biological research is producing vast amounts of data and

information (e.g. from high-throughput experiments such as

sequencing projects, microarray experiments and structural

genomics) at a prodigious rate. Most of this is made freely

available to the public, and this has created a large and growing

number of distributed, heterogeneously structured internet and

web-accessible biological data and information resources. Some

of this is structured or semi-structured, e.g. UniProt (Bairoch

et al., 2005), but unstructured data and information, most

notably the biomedical literature (PubMed), forms a large

and significant source of biological knowledge. Fast, flexible

and highly accurate information retrieval from unstructured

information sources is an important problem in the life

sciences, and in this work we address this in the proteomics

context. While general purpose search engines provide basic

keyword-based access to such information sources, we believe

that much higher accuracy retrieval can be obtained by

considering particular domains and leveraging domain-specific

knowledge from them. In this work, we extract proteomics

domain-specific knowledge from a system we have built called

LinkHub (Smith et al., 2007) and use it to perform higher

accuracy information retrieval.

Resource Description Framework or RDF (http://

www.w3.org/RDF/) is the core technology of the semantic

web (Shadbolt et al., 2006) and it models data as a directed

labeled graph where the graph’s nodes and edges are named by

URIs (http://www.w3.org/Addressing/). Our LinkHub system

models and stores instance data for a high-level structuring

principal or ‘scaffold’ for biological data, namely biological

identifiers (e.g. for proteins, genes, etc.) and the various

relationships among them, as a large RDF graph, providing

access through web interactive and query interfaces. The nodes

of the LinkHub graph represent biological identifiers

(e.g. ‘P26364’, ‘GO:0009435’, ‘PF06052’, etc.) and the edges

encode relationships among identifiers (e.g. ‘protein family

member’, ‘functional annotation’, etc.). In addition, a small

number of known related web document hyperlinks are

attached to the identifier nodes (e.g. for a yeast UniProt

protein there would be a hyperlink to its protein entry page at

UniProt, its specific page at SGD, etc.), or equivalently these

known related documents can be said to be annotated by

identifier nodes from the RDF graph.*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://hub.gersteinlab.org/ir-supp/
http://
http://www.w3.org/Addressing/
http://creativecommons.org/licenses/


1.2 Summary

In this work, we address the problem of automated information

retrieval of biomedical literature or web documents related to

biological identifiers, specifically focusing on UniProt proteo-

mics identifiers for exposition and as a practical use case.

The simplest approach for this would be to simply use

a search engine (e.g. at PubMed) and do a search using the

identifier itself as the search term. However, because of

conflated senses of the identifier text, identifier synonyms,

and in general a need to consider and query for the key related

concepts of the identifier, this will likely not return good results.

Note that citations searchable at PubMed rarely contain gene

or protein identifiers and PubMed provides no automated

retrieval of literature citations relevant to such identifiers

(although a small number of citations are manually annotated

with such identifiers and can be retrieved by them); Google’s

Scholar search interface to the scientific literature (http://

scholar.google.com) also does not provide effective access as

example searches with gene or protein identifiers can

demonstrate.
Searching the biomedical literature for biological identifier-

related citations using related words and concepts is thus

necessary to achieve good results. In this work, we demonstrate

how this can be done with high accuracy using related key

words extracted from the LinkHub graph. Our general

approach is thus to leverage our limited amount of known,

semi-structured information about biological identifiers stored

in an associated RDF graph (LinkHub) to retrieve relevant

documents from the much larger universe of the unstructured

biomedical literature or web. The key idea is that the local

subgraph radiating out from a given query identifier node (i.e.

node corresponding to a UniProt identifier about which it is

desired to retrieve additional relevant documents) and the

known documents linked to the identifier nodes in that

subgraph provide copious information about the query that

can be used to improve document retrieval for it. The

documents linked to the identifier nodes in the subgraph are

considered to be a ‘gold standard’ training set for what the

additional relevant documents should be like, and they are used

to construct a function for scoring new documents for how well

they match the training set (and hence the query).

The rest of the article is organized as follows. The following

section gives the details of our procedure, followed by a section

covering the results of an empirical performance assessment of

it using a curated yeast bibliography. The article then discusses

the results and compares our method with important related

works before concluding.

2 METHODS

2.1 Basic procedure for document ranking

Our procedure for document relevance ranking uses basic techniques

from information retrieval (Salton and McGill, 1986) and text

categorization (Sebastiani, 2002; Williams and Calvo, 2002). We

represent documents in the standard vector space model as word

weight vectors where the weights are obtained from TF–IDF weighting,

and we use the standard cosine similarity metric to measure similarity of

documents and/or queries so represented. Term frequency (TF) simply

measures the number of occurrences of a word in a document. The

inverse document frequency (IDF) weighting factor for a word is log

(N/D) where, in the corpus searched, D is the total number of

documents and N of them contain that word; the IDF term up-weights

infrequent, discriminating words in the corpus and down-weights

frequent, less discriminating words.

We first extract the local subgraph surrounding the query identifier

from the graph (e.g. 1 level deep in the examples below). We then obtain

all the known related documents linked to identifier nodes in this

subgraph. We turn each of these documents into word weight vectors

and multiply them by their node’s weight (which is determined as

described below). The pre-IDF step (also described below) can

optionally be applied to some or all of these individual word weight

vectors. We then form the sum of these individual vectors and call this

the combined word weight vector. Finally, the combined word weight

vector is re-weighted by a standard IDF step using document frequency

statistics for the corpus to be searched (e.g. the PubMed or the web).

Some percentage of the lower weighted terms in the combined word

weight vector can be optionally eliminated for efficiency. Figure 1

shows a high-level overview of our method. The Supplementary

Material gives the formal equations and details for how we construct

the combined word weight vector and has examples. To score a new

document for relevance, we compute the cosine similarity metric

between the word weight vector representation of it and the combined

word weight vector.

Finally, it is necessary to perform a retrieval step and obtain

documents potentially relevant to the query identifier. A search engine

can be used essentially as a keyword-to-document hash [implemented

in the internals of the search engine as a so-called inverted index

(Witten et al., 1999)] to efficiently obtain such documents. Multiple

searches are performed using as search terms all the identifiers for nodes

in the subgraph, as well as some number of the top weighted terms

from the combined word weight vector; and the top results for each

such search are retrieved (e.g. top 50). For the final output, we rank

(sort) all the results of these multiple searches together descending

based on their computed cosine similarity values against the combined

word weight vector.

2.2 Traversing the graph to determine weights

The known documents linked to nodes in the subgraph are not all

considered equally important in forming the combined word

weight vector, but rather are weighted to reflect their relative

importance. In fact, we compute weights for the nodes in the subgraph,

and a document’s weight is then simply the same as the weight of

the node to which it is linked. The central query identifier’s node is

given the highest importance (weight 1.0), while the other subgraph

nodes’ weights are scaled down based on their distance from and

the types of relationship links connecting them to the query (but

synonym links do not incur downscaling). Relationship links

(e.g. ‘family member’ for relationships like ‘UniProt ! PFAM’ or

‘functional annotation’ for ‘UniProt ! GO’) are specified in LinkHub

and we assign numerical weights to them. A node’s weight is determined

by summing all the weights of nodes linking to it, each multiplied by the

weight for the relationship type. This weight calculation for the

subgraph starts at the query node (which has weight 1.0) and

propagates out to its connected nodes, then their connected nodes,

etc. The principled way of setting the relationship weights is through an

optimization procedure where we determine the weights that lead to

optimal accuracy in retrieving new identifier-related documents.

Later we demonstrate this and show how the weights for identifier

relationships ‘UniProt ! PFAM’ and ‘UniProt ! GO’ can be

empirically optimized.
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2.3 IDF word weighting based on the graph

We use IDF in a novel way to leverage document-type information

from the LinkHub RDF graph for re-weighting individual document’s

word weight vectors (before summing them to create the combined

word weight vector). Documents of the same type (e.g. UniProt protein

entry pages) will all use similar general terminology and have the same

words from ‘template patterns’ for the pages. In essence, we want to

create word weight vectors for all pages of a type that are maximally

different from one another while at the same time each being as

specifically relevant and discriminating as possible; we achieve this

through IDF. The idea is to do IDF weighting twice, ultimately as usual

for the combined word weight vector against the corpus (e.g. PubMed)

you are interested in searching but also first for individual documents

against document frequencies computed for all (or a random sample of)

documents of their same type. We call the first use of IDF the pre-IDF

step (because it occurs before the traditional IDF re-weighting against

document frequency statistics for the corpus to be searched). Thus,

e.g. UniProt (or PFAM, GO, etc.) has many individual, identifier-

specific pages which can together be considered a corpus. We compute

document frequency statistics for this corpus to use for IDF

re-weighting of individual UniProt (or PFAM, GO, etc.) pages. The

pre-IDF step has the effect of down-weighting less discriminating words

which occur frequently (e.g. protein or sequence in UniProt pages) while

up-weighting words that occur infrequently (e.g. kinase in UniProt

pages) which are intuitively more discriminating.

2.4 Implementation

We have implemented our procedure in Perl for both the web and the

scientific literature (PubMed), although we focus in this article on the

literature. To conduct the multiple conventional keyword searches for

the scientific literature, we obtained the full PubMed distribution

(current up to the end of 2005 and consisting of about 500 XML files of

over 15 000 000 total citations) which we indexed and keyword-searched

using the open source Swish-e (swish-e.org) application.

Our procedure works well for both web and scientific literature

searching, and in the Supplementary Material we give concrete

examples (i.e. ranked result lists, example word weight vectors, etc.)

of the use of our procedure for the web and PubMed for specific

UniProt identifiers and argue for our procedure’s better performance

compared to the results of conventional techniques (e.g. PubMed’s
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Fig. 1. A high-level overview of our procedure. Note that relationship link thickness is proportional to relationship weight, which we determine

through an optimization procedure.
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limited number of manual annotations for them). We also provide the

Perl code of our implementation. For PubMed, we provide our code to

index and keyword-search it through Swish-e, as well as code to parse

returned PubMed XML records. We also provide common code

implementing the information retrieval aspects discussed above and for

interfacing with the LinkHub system (e.g. LinkHub graph traversal,

subgraph extraction, etc.). See the Supplementary Material for details

of our procedure’s implementation for the web. Finally, we provide the

full code for our LinkHub system, as well as a paper and documenta-

tion about it.

2.5 Empirical assessment protocol

Here, our important focus is to empirically evaluate our procedure’s

performance against PubMed which is a crucial unstructured knowl-

edge source for scientists. We use the same evaluation methodology,

based on ROCs and AUC statistics, as Aphinyanaphongs et al. (2006)

work (discussed in more detail below). We base the evaluation on the

file gene_literature.tab from the SGD (http://www.yeastgenome.org)

FTP site, which provides a large number of relevant citations for yeast

proteins. We also form an unrelated group of PubMed citations likely

to be completely irrelevant to proteomics by sampling random citations

from PubMed which do not appear in gene_literature.tab or as

a citation in any UniProt (SwissProt or TrEMBL) entry. For a given

yeast protein, its associated citations from gene_literature.tab are called

its in group, and the citations associated with all other yeast proteins

plus the unrelated PubMed citations are its out group. We can then

reasonably assert that for any given yeast protein the correct relevance

ranking of its in and out groups is: in—out; to concretely measure the

deviation of the word weight vector ranking of the in and out citations

from this assumed correct ranking we use the area under the curve

(AUC) of the receiver operating curve (ROC) (Witten and Frank,

2005). The ROC shows us the trade-off in rate of true positive citations

(in set) versus the rate of false positive citations (out set) at each point as

the ranked list of citations is scanned from top to bottom. The ROC is

beneficial because it can measure performance of a classifier without

regard to class distribution or error costs, neither of which we know.

The AUC is a single number summary of the ROC with best, maximum

value of 1. The quality of search results at the top is very important (e.g.

users likely would not look past about the top 100). We thus also

separately measure the AUC up to a 5% false positive rate (i.e. the 0.05

AUC with best, maximum value of 0.05) to assess this performance at

the top; note that we refer to the normal AUC as the 1.0 AUC to

distinguish it from the 0.05 AUC.

2.6 Parameter optimization

We perform experiments separately on random samples of Swiss-Prot

and TrEMBL UniProt identifiers. Swiss-Prot is the much smaller part

of UniProt, but is of higher quality, having been manually curated.

TrEMBL is much larger than Swiss-Prot and is of lower quality due to

its being generated by automated processes. For SwissProt and

TrEMBL, separately, we pick a random set of identifiers such that

each identifier has GO and PFAM annotations and at least 20 citations

in gene_literature.tab. We are thus not looking at the full subgraphs for

UniProt proteins, but only the subset of the one level deep subgraph

containing directly related PFAM and GO identifier nodes (and their

associated GO and PFAM identifier-specific pages). As will be shown

this was sufficient to obtain very high accuracy, so additional nodes and

depth are likely not needed in this case.

We are optimizing the values of four parameters: (1) PW—related

PFAM documents’ weight; (2) GW—related GO documents’ weight;

(3) WK—percentage of top weighted words kept in the combined word

weight vector and (4) PI—binary value specifying whether pre-IDF is

applied or not for all the UniProt, PFAM and GO pages which will

together form the combined word weight vectors. We perform a simple

grid search optimization procedure at a granularity of 0.1 for all

numerical variables being optimized (and 1 or 0 for PI). UniProt entry

pages are always weighted 1.0. We might hypothesize that PFAM and

GO pages would be more likely to improve information retrieval

performance for TrEMBL pages, given that TrEMBL pages have less

information since they are not manually curated; also, PFAM and GO

pages might not improve (or not significantly improve) performance for

SwissProt pages since they are already of high quality, being manually

curated, and thus are likely to be fairly complete statements about the

proteins they describe. The experimental results, described in the next

section, answer these questions.

Finally, we would also like to know if all the tried optimizations lead

to statistically significant improvements in performance (as measured

by AUC values). In other words even if the optimizations lead to an

increase in mean AUC, is this increase significant or likely just due to

chance? To assess this we run tests for many UniProt proteins, each

multiple times for different combinations of optimizations (i.e. do or

not do pre-IDF, different weights for PFAM and GO pages, and

percentage of words to keep in the combined word weight vector). We

can thus pair the proteins and use the paired Student’s t-test (Dalgaard,

2002) for statistical significance tests.

3 RESULTS

The Supplementary Material contains a fuller discussion of

results and has the complete tables giving the mean .05 and 1.0

AUC values for the randomly sampled TrEMBL and Swiss-

Prot proteins, for different trials with different values for the

four parameters GW, PW, WK and PI. Table 1 (sorted

descending by AUC value) reproduces the important result

rows and here we summarize the key results. For both

TrEMBL and Swiss-Prot, WK did not seem to make any

difference (different values for this made no or negligible

change to AUC values) and we thus just show results for the

middle value 0.5 of this parameter. Note that this can be taken

advantage of for computational efficiency since keeping fewer

features requires less computation time of the cosine similarity

metric (which increases linearly with the number of features,

i.e. length of the word weight vectors). Interestingly, for both

TrEMBL and Swiss-Prot, the addition of related GO pages

(parameter GW) also did not improve performance (see the

Supplementary Material for a discussion of why this may be).

Also note that the baseline method against which performance

improvements are assessed and stated is where only the UniProt

entry page for a query UniProt identifier is used (no related

PFAM or GO pages are added) and turned into a word weight

vector to which the pre-IDF step is not applied.

3.1 TrEMBL results

The pre-IDF step (parameter PI) gave the largest performance

gain, increasing the important 0.05 AUC �75% and the normal

1.0 AUC 8.4%. In addition, the percentage increases in AUC

are greater the farther you go to the left (i.e. as false positive

rate decreases) in the ROC; e.g. the 0.01 AUC (not shown)

increases over 92%. The AUC increase is thus concentrated

in the left portion of the ROC, which is what is desired.

The addition of PFAM pages at small weight (parameter PW)

gave an additional performance enhancement of �5% for the

0.05 AUC and 1.2% for the 1.0 AUC. Without the pre-IDF
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step, the addition of PFAM pages is optimal at larger

weight and gives a larger performance increase of almost

15% for 0.05 AUC and 1.3% for 1.0 AUC. The statistical

paired t-tests (details in the Supplementary Material) all

returned highly significant P-values, with the largest being

0.003 which is still much smaller than the commonly accepted

0.05 level of significance. Thus, we can conclude that the

addition of PFAM pages appropriately weighted and the use of

the pre-IDF step both significantly increase information

retrieval performance as measured by 0.05 and 1.0 AUC

values for UniProt TrEMBL identifiers.

3.2 Swiss-Prot results

The pre-IDF step again gave the largest performance gain,

increasing the important 0.05 AUC �43% and the normal 1.0

AUC 6%. The percentage increases for Swiss-Prot, while still

substantial, are not as large as for TrEMBL and this is

consistent with the fact that Swiss-Prot, being manually

curated, is of higher quality and thus there is less need or

room for improvement compared to TrEMBL. However,

TrEMBL is much larger than Swiss-Prot and generated by

automated processes, and it is thus practically very useful that

TrEMBL can be improved more, reaching close to parity with

Swiss-Prot. The improvements in both mean 0.05 and 1.0 AUC

from the pre-IDF step are also both statistically significant

(details in the Supplementary Material). As was conjectured

above, the addition of PFAM pages does not help improve

performance for Swiss-Prot as much as for TrEMBL. The
addition of PFAM pages at small weight very slightly increases
mean 0.05 and 1.0 AUC for all cases compared, however, all

but one (pre-IDF not applied case) of these increases are not
statistically significant (details in the Supplementary Material).
Thus, the addition of PFAM pages cannot be said to

significantly improve performance.

4 DISCUSSION

4.1 Possible yeast bias

Overall, for a small PFAM page weight and performing the

pre-IDF step we achieve 0.05 AUC and 1.0 AUC scores of
0.03227 and 0.9274, respectively for TrEMBL and 0.03571 and
0.9505, respectively for Swiss-Prot, where the maximum

possible values are 0.05 and 1.0 for these. Our procedure thus
achieves near perfect accuracy and is competitive with state of
the art recent methods as we will show below.

Since yeast has been so well studied, using SGD’s gene_
literature.tab for our empirical evaluation might seem to bias

our results. In general, algorithms that learn from data, such as
ours, will suffer from ‘garbage in, garbage out’ and will degrade
in performance as training data quantity or quality goes down.

However, we have positively shown that given good training
data our procedure achieves excellent accuracy. In addition,
based on our excellent results for TrEMBL, which is of lower

quality than SwissProt and thus likely a good proxy for
less well-studied proteins, we can expect our procedure’s

performance to degrade gracefully with less or lower quality
training data.

4.2 General related work

Our procedure can be considered a kind of method for query

expansion (Mitra et al., 1998; Qiu and Frei, 1993; Salton and
Buckley, 1990). Here the basic idea is to take an initial query
and reformulate it, interactively or by automated means, to

improve retrieval performance. Example techniques for doing
this include searching also for synonyms of query terms, fixing

spelling errors and reweighting original query terms. In our
case, we take an initial query (for a UniProt identifier) and
greatly expand it, using the background data in LinkHub, into

a precise word weight vector containing important keywords
related to and descriptive of the identifier. Our work also
extends systems like PubMed’s ‘Related Articles’ links

(PubMed) to using multiple, weighted documents combined
(i.e. from the LinkHub relational subgraph) and demonstrates

empirically that this can improve information retrieval
accuracy over just using single documents as queries.
In the Supplementary Material, we discuss possible

extensions and further uses of our pre-IDF step. For example,
we discuss how we could construct a coarse-to-fine cascade of
classifiers and consider a pre-IDF step of log relative document

frequencies between different levels of the cascade.
Interestingly, another recent related work (Suomela and

Andrade, 2005) uses a similar but simpler idea, ranking
PubMed citations for their similarity to a domain of interest
(stem cells in their paper) based on the presence of key words in

the title or abstract which are overrepresented in a known

Table 1. Important mean AUC results for randomly sampled TrEMBL

(top) and Swiss-Prot (bottom) proteins

PW PI 100*AUC

0.05 AUC TrEMBL results

0.2 1 3.227

0.0 1 3.131

0.6 0 2.053

0.0 0 1.791

1.0 AUC TrEMBL results

0.1 1 92.742

0.0 1 92.026

0.4 0 86.013

0.0 0 84.931

0.05 AUC SwissProt results

0.1 1 3.571

0.0 1 3.567

0.2 0 2.525

0.0 0 2.492

1.0 AUC SwissProt results

0.1 1 95.054

0.0 1 95.025

0.1 0 89.738

0.0 0 89.710

Note that we do not show GW and WK since they did not affect the results

(i.e. the optimal value for GW was 0.0 in all cases and changing WK did not

appreciably change results). Also, AUC values have been multiplied by 100.
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relevant training set (e.g. PubMed citations annotated

with stem cell-related MeSH terms) compared to PubMed as

a whole.

4.3 Machine-learning classifier approach

A recent related paper to ours showed the high performance of

support vector machine (SVM) classifiers trained on gold

standard, manually curated bibliographies for specialized

information retrieval tasks (Aphinyanaphongs et al., 2006)

(hereafter referred to as Aphinyanaphongs et al.). The

Aphinyanaphongs et al. work highlighted the need for

specialized filters for finding relevant documents in the huge

and ever expanding scientific literature. A prominent example

of such filters is the manually constructed PubMed Clinical

Queries (http://www.ncbi.nlm.nih.gov/entrez/query/static/clinical.

shtml). Such a manual approach does not scale well, and in fact

Aphinyanaphongs et al. demonstrated that superior perfor-

mance can be achieved automatically by machine-learning

SVM classifiers.
In Aphinyanaphongs et al. state of the art SVM classifiers

were trained on relatively large, manually curated and respected

bibliographies of articles in various clinical medicine disciplines,

using text from the article title, abstract, journal name and

MeSH terms for features. In contrast, the experiments in our

work only used the abstract text for features, used only relatively

small training sets (i.e. the single UniProt page plus a few GO

and PFAM pages), and, in comparison to SVMs, used only a

fairly basic classifier model (i.e. word weight vectors compared

with the cosine similarity measure). Nevertheless, it is notable

that our procedure achieved average AUC scores of 0.9274 and

0.9505 for TrEMBL and Swiss-Prot, respectively, in ranking

PubMed documents for their relevance to UniProt proteins

which is better than or negligibly smaller than the

Aphinyanaphongs et al. study which achieved AUC scores of

0.893, 0.932 and 0.966 on three clinical medicine bibliographies.

Note that while this is not an exact ‘apples to apples’ comparison

it is still reasonable.We both use the same objective metric, AUC

and achieve comparable, near perfect results (thus not leaving

much room for improvement) on the same kind of task (ranking

PubMed citations), although not on the exact same tasks.
Another noteworthy result of the Aphinyanaphongs et al.

work is its evaluation of relevance metrics based on citations,

such as citation count, journal impact factor and Google’s

PageRank algorithm. Google’s great success was due in large

part, at least initially, to its PageRank algorithm (Brin and Page,

1998) which provided an effective solution to the difficult

problem of relevance ranking of huge result sets. It would thus

seem reasonable to expect that algorithms based on citation

information such as PageRank would also prove very effective

for information retrieval of the scientific literature, but the

Aphinyanaphongs et al. work finds this to not be the case,

finding their SVM classifiers superior to all citation-based

metrics and that adding citation metrics as features only

marginally or not at all improved performance. In fact, the

Aphinyanaphongs et al. work did not directly compare to

PageRank, but they cite a previous study (Bernstam et al., 2006)

that showed citation count superior to PageRank, and since
their study directly showed machine-learning classifiers to
outperform citation count they conclude by transitivity that

machine-learning classifiers are very likely superior to
PageRank. Because of favorable performance on the same
kind of task compared to the Aphinyanaphongs et al.’s work,

we can indirectly compare our method to relevance metrics
based on citations and infer that our procedure likely would

outperform them.

4.4 The Semantic web and search engines: structured

versus unstructured search

Search engines and the semantic web can be viewed as two

opposing paradigms for information retrieval on the internet,
with search engines allowing maximal flexibility of information

expression (free text HTML pages) but providing low precision
of retrieval (albeit vast, close to complete web coverage). The
semantic web requires more rigidity of data expression by

prescribing web data to be expressed in fine-grained structured
ways but has the benefit of supporting very precise, cross-
resource information requests. The drawback of the semantic

web is that, to achieve such fine-grained information modeling,
people must change the way they create their content to

conform to very precise structures, and this is a hindrance to
widespread dissemination of semantic web content.
Our work here can be viewed as taking a proactive approach

by trying to leverage available semantic web data to enhance
knowledge acquisition from and information requests against
unstructured sources such as the biomedical literature and the

standard web, i.e. information retrieval or web search. We have
previously sketched out this basic idea (Smith and Gerstein

2006) and here we attempted to concretely implement it.
The high-level idea is that the semantic web provides detailed

information about standardized terms and their interrelation-

ships, and, importantly, unstructured documents can be
annotated with those terms as metadata. The terms, their
relationships, and the documents that they annotate provide

copious information to perform precise information retrieval or
web search for free-text documents relevant to those terms (and
related terms). We explored this idea here concretely in the

proteomics context. Since searching is widely perceived to be a
crucial web application, the semantic web’s potential to

improve it could be of high practical value and an important
driving force to help more fully realize the vision of the
semantic web.

4.5 Computational complexity

There are important differences of our work compared to

Aphinyanaphongs et al. First, while we both take a machine-
learning filter approach our work demonstrates how specialized

filters can be constructed automatically and easily at very large
scale (i.e. for the millions of proteomics identifiers present in
the RDF graph) using only a relatively small amount of

information (i.e. the small number of known documents linked
to relational subgraphs’ identifier nodes versus a relatively
large number of documents in manually created medical

A.Smith et al.
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bibliographies). In addition, our method uses relatively simple
and computationally efficient methods: IDF plus combined
word weight vectors, which to create will have linear time
complexity in the number of words. In contrast,

Aphinyanaphongs et al. use state of the art SVM classifiers
which are considerably more computationally intensive and
require the solution of a constrained convex quadratic

programming optimization problem which has quadratic
complexity in memory usage and cubic time complexity in
number of training examples (Tsang et al., 2005). In spite of

this, our method achieves very high accuracy, on par with or
better than the SVM-based methods. Users expect text search
to be fast and interactive, and thus the simplicity and

computational efficiency of our method, and the relatively
small amount of information needed for its training, while still
achieving competitive, high accuracy is important. Despite
these noted differences, the Aphinyanaphongs et al. work is

consistent with and supports the general approach taken in our
work of creating specialized machine-learning filters (in the
form of word weight vectors in our case) for retrieval of

documents specific to particular proteomics identifiers, and
demonstrates the approach’s effectiveness.

5 CONCLUSION

In this work, we addressed the important problem of
information retrieval for proteomics-related documents, partic-
ularly related to UniProt identifiers, and demonstrated several

ways to leverage domain-specific data in an RDF graph of
biological identifier relationships for this. We empirically
demonstrated our procedure’s high accuracy against PubMed
using a curated bibliography of yeast protein-specific citations.

Our procedure’s accuracy compares favorably with similar
recent related work but is advantageous in using only relatively
simple and computationally efficient methods, and a relatively

small amount of information that can be leveraged automati-
cally and at large-scale from the RDF graph.
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