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Abstract: This chapter describes the challenges involved in the integration of databases 
storing diverse but related types of life sciences data. A major challenge in this 
regard is the syntactic and semantic heterogeneity of life sciences databases. 
There is a strong need for standardizing the syntactic and semantic data 
representations. We discuss how to address this by using the emerging 
Semantic Web technologies based on the Resource Description Framework 
(RDF) standard. This chapter presents two use cases, namely YeastHub and 
LinkHub, which demonstrate how to use the latest RDF database technology 
to build data warehouses that facilitate integration of genomic/proteomic data 
and identifiers. 
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INTRODUCTION 

The success of the Human Genome Project (HGP) [1] together with the 
popularity of the Web (or World Wide Web) [2] has made a large quantity of 
biological data available to the scientific community through the Internet. 
Since the inception of HGP, a multitude of Web accessible biological 
databases have emerged. These databases differ in the types of biological 
data they provide, ranging from sequence databases (e.g., NCBI's GenBank 
[3]), microarray gene expression databases (e.g., SMD [4] and GEO [5]), 



12 Revolutionizing Knowledge Discovery in the Life Sciences 

pathway databases (e.g., BIND [6], HPRD [7], and Reactome [8]), and 
proteomic databases (e.g., UPD [9] and PeptideAtlas [10]). While some of 
these databases are organism-specific (e.g., SGD [11] and MGD [12]), 
others like (e.g.. Gene Ontology [13] and UniProt [14]) are relevant, 
irrespective of taxonomic origin. In addition to data diversity, databases vary 
in scale ranging from large global databases (e.g., UniProt [14]), medium 
boutique databases (e.g., Pfam [15]) to small local databases (e.g., PhenoDB 
[16]). Some of these databases (especially the local databases) may be 
network-inaccessible and may involve proprietary data formats. 
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Figure 1-1. Number of databases published in the NAR Database Issues between 1999 and 2006. 

Figure 1-1 indicates the rate of growth in the number of Web-accessible 
molecular biology databases, which were published in the annual Database 
Issue of Nucleic Acids Research (NAR) between 1999 and 2006. These 
databases only represent a small portion of all biological databases in 
existence today. With the sustained increase in the number of biological 
databases, the desire for integrating and querying combined databases grows. 
Information needed for analysis and interpretation of experimental results is 
frequently scattered over multiple databases. For example, some microarray 
gene expression studies may require integrating different databases to 
biologically validate or interpret gene clusters generated by cluster analysis 
[17]. 

For validation, the gene identifiers within a cluster may be used to 
retrieve sequence information (e.g., fi*om GenBank) and functional 
information (e.g., from Gene Ontology) to determine whether the clustered 
genes share the same motif patterns or biological fiinctions. For 
interpretation, such gene expression data may be integrated with pathway 
data provided by different pathway databases to elucidate relationships 
between gene expression and pathway control or regulation. 
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Database integration is of the key problems that Semantic Web aims to 
address. As stated in the introduction of World Wide Web Consortium's 
Semantic Web page (http://www.w3.org/2001/sw/): ''The Semantic Web is 
about two things. It is about common formats for interchange of data, where 
on the original Web we only had interchange of documents. Also it is about 
language for recording how the data relates to real world objects. That 
allows a person, or a machine, to start off in one database, and then move 
through an unending set of databases which are connected not by wires but 
by being about the same thing. " 

Below we review the challenges faced when integrating information from 
multiple databases. 
• Locating Resources. Automated identification of Websites that contain 

relevant and interoperable data poses a challenge. There is a lack of 
widely-accepted standards for describing Websites and their contents. 
Although the HTML meta tag 
(http://www.htmlhelp.com/reference/html40/head/meta.html) can be 
used to annotate a Web page through the use of keywords, such tags are 
problematic in terms of sensitivity and specificity. Furthermore, these 
approaches are neither supported nor used widely by existing Web 
search engines. Most Web search engines rely on using their own 
algorithms to index individual Websites based on their contents. 

• Data Formats. Different Web resources provide their data in 
heterogeneous formats. For example, while some data are represented in 
the HTML format, interpretable by the Web browser, other data formats 
including the text format (e.g., delimited text files) and binary format 
(e.g., images) are commonplace. Such heterogeneity in data formats 
makes universal interoperability difficult if not impossible. 

• Synonyms. There are many synonyms for the same underlying 
biological entity as a consequence of researchers independently naming 
entities for use in their own datasets or because of legacy common 
names (such as the famous "sonic hedgehog" gene name) arbitrarily 
given to biological entities before large-scale databases were created. 
Some such names have managed to remain in common use by 
researchers. An example of this problem is the many synonymous 
protein identifiers, assigned by laboratories to match their own lab-
specific protein identifiers. There can also be lexical variants of the same 
underlying identifier (e.g., GO:0008150 vs. GO0008150 vs. GO-8150). 

• Ambiguity. Besides synonyms, the same term (e.g., insulin) can be used 
to represent different concepts (e.g., gene, protein, drug, etc). This 
problem can also occur at the level of data modeling. For example, the 
concept 'experiment' in one microarray database (e.g., SMD [4]) may 
refer to a series of samples (corresponding to different experimental 
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conditions) hybridized to different arrays. In another microarray 
database (e.g., RAD [18]), an experiment may refer to a single 
hybridization. 

• Relations. There are many kinds of relationships between database 
entries including one-to-one and one-to-many relationships. For 
example, a single Gene Ontology identifier can be related with many 
UniProt identifiers (i.e. they all share the same functional annotation). 
An important structuring principle for genes and proteins, which leads to 
one-to-many relationships, is the notion of families based on 
evolutionary origin. A given protein or gene can be composed of one or 
more family specific units, called domains. For example, a UniProt 
entity may be composed of two different Pfam domains. In general a 
given Pfam domain [15] will be related to many UniProt proteins by this 
family association, and the UniProt proteins can in turn be related to 
other entities through various kinds of relationships (and similarly for 
GO). A transitive closure in such a relationship graph, even a few levels 
deep, can identify relationships with a great number of other entities. It 
is important to note, however, that there are certain relationship types for 
which following them in the wrong way can lead to incorrect inferences, 
with the family relationship being a key one. 

• Granularity. Different biological databases may provide information at 
different levels of granularity. For example, information about the 
human brain can be modeled at different granular levels. In one 
database, the human brain may be divided into different anatomical 
regions (e.g., hippocampus and neocortex), another database may store 
information about the different types of neurons (e.g., Purkinje cells) at 
different brain regions (e.g., ventral paraflocculus). For an even finer 
level of granularity, some neuroscience databases store information 
about the membrane properties at different compartments of the neuron. 

2. APPROACHES TO DATABASE INTEGRATION 

There are two general approaches to database integration, namely, the 
data warehouse approach and the federated database approach. The data 
warehouse approach emphasizes data translation, whereas the federated 
approach emphasizes query translation [19]. The warehouse approach 
involves translating data from different sources into a local data warehouse, 
and executing all queries on the warehouse rather than on the distributed 
sources of that data. This approach eliminates various problems including 
network bottlenecks, slow response times, and the occasional unavailability 
of sources. In addition, creating a warehouse allows for an improved query 
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efficiency or optimization since it can be performed locally [20]. Another 
benefit in this approach is that it allows values (e.g., filtering, validation, 
correction, and annotation) to be added to the data collected from individual 
sources. This is a desirable feature in the domain of biosciences. The 
approach, however, suffers from the maintenance problem in light of 
evolution of the source database (both in structure and content). The 
warehouse needs to be periodically updated to reflect the modifications of 
the source databases. Some representative examples of biological data 
warehouse include Bio Warehouse [21], Biozon [22], and DataFoundry [23]. 

The federated database approach concentrates on query translation [24]. 
It involves a mediator, which is a middleware responsible for translating, at 
runtime, a query composed by a user on a single federated schema into 
queries on the local schemas of the underlying data sources. A mapping is 
required between the federated schema and the source schemas to allow 
query translation between the federated schema and the source schemas. 
While the federated database approach ensures data is concurrent / 
synchronized and is easier to maintain (when new databases are added), it 
generally has a poorer query performance than the warehouse integration 
approach. Some representative examples of the federated database include 
BioKleisli [25], Discoverylink [26], and QIS [27]. 

2,1 Semantic Web Approach to Data Integration 

Traditional approaches (including the data warehouse and federated 
database) to data integration involve mapping the component data models 
(e.g., relational data model) to a common data model (e.g., object-oriented 
data model). To go beyond a data model, the Semantic Web approach [28] 
relies on using a standard ontology to integrate different databases. Unlike 
data models, the fundamental asset of ontologies is their relative 
independence of particular applications. That is, an ontology consists of 
relatively generic knowledge that can be reused by different kinds of 
applications. In the Semantic Web, several ontological languages 
(implemented based on the extensible Markup Language or XML) have 
been proposed to encode ontologies. 

2.1.1 RDF vs. XML 

While the HyperText Markup Language (HTML) is used for providing a 
human-friendly data display, it is not machine-friendly. In other words, 
computer applications do not know the meaning of the data when parsing the 
HTML tags, since they only indicate how data should be displayed. To 
address this problem, the extensible Markup Language (XML) was 



16 Revolutionizing Knowledge Discovery in the Life Sciences 

introduced, to associate meaningful tags with data values. In addition, a 
hierarchical (element/sub-element) structure can be created using these tags. 
With such descriptive and hierarchically-structured labels, computer 
applications are given better semantic information to parse data in a 
meaningful way. 

Despite its machine readability, as indicated by Wang et al. [29], the 
nature of XML is syntactic and document-centric. This limits its ability to 
achieve the level of semantic interoperability required by the highly dynamic 
and integrated bioinformatics applications. In addition, there is a problem 
with both the proliferation and redundancy of XML formats in the life 
science domain. Overlapping XML formats (e.g., SBML [30] and PSI MI 
[31]) have been developed to represent the same type of biological data (e.g., 
pathway data). 

The introduction of the Semantic Web [28] has taken the usage of XML 
to a new level of ontology-based standardization. In the Semantic Web 
realm, XML is used as an ontological language to implement machine-
readable ontologies built upon standard knowledge representation 
techniques. The Resource Description Framework (RDF) 
(http://www.w3.org/RDF/) is an important first step in this direction. It 
offers a simple but useful semantic model based on the directed acyclic 
graph structure. In essence, RDF is a modeling language for defining 
statements about resources and relationships among them. Such resources 
and relationships are identified using the system of Uniform Resource 
Identifiers (URIs). Each RDF statement is a triplet with a subject, property 
(or predicate), and property value (or object). For example, 
< "http://en. wikipedia. org/wiki/Protein# '\ ''http://en. wikipedia. org/wiki/Nam 
e#'\ "http://en.wikipedia.Org/wiki/P53#"> is a triple statement expressing 
that the subject Protein has P53 as the value of its Name property. The 
objects appearing in triples may comprehend pointers to other objects in 
such a way as to create a nested structure. RDF also provides a means of 
defining classes of resources and properties. These classes are used to build 
statements that assert facts about resources. RDF uses its own syntax (RDF 
Schema or RDFS) for writing a schema for a resource. RDFS is more 
expressive than RDF and it includes subclass/superclass relationships as well 
as the option to impose constraints on the statements that can be made in a 
document conforming to the schema. 

Some biomedical datasets such as the Gene Ontology [13], UniProt 
(http://expasy3.isb-sib.ch/-ejain//rdf/), and the NCI thesaurus [32] have been 
made available in RDF format. In addition, applications that demonstrate 
how to make use of such datasets have been developed (e.g.,[33, 34]). 
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2.1.2 OWL vs. RDF 

While RDF and RDFS are commonly-used Semantic Web standards, 
neither is expressive enough to support formal knowledge representation that 
is intended for processing by computers. Such a representation consists of 
expUcit objects (e.g., the class of all proteins, or P53 a certain individual), 
and of assertions or claims about them (e.g., "EGFR is an enzyme", or "all 
enzymes are proteins"). Representing knowledge in such explicit form 
enables computers to draw conclusions from knowledge already encoded in 
the machine-readable form. More sophisticated XML-based knowledge 
representation languages such as the Web Ontology Language [35] have 
been developed. OWL is based on description logics (DL) [36], which are a 
family of class-based (concept-based) knowledge representation 
formalisms [36]. They are characterized by the use of various constructors 
to build complex classes from simpler ones, an emphasis on the decid­
ability of key reasoning problems, and by the provision of sound, complete 
and (empirically) tractable reasoning services. Description Logics, and 
insights from DL research, had a strong influence on the design of OWL, 
particularly on the formalization of the semantics, the choice of language 
constructors, and the integration of data types and data values. For an in-
depth overview of OWL, the reader can refer to the chapter entitled: "OWL 
for the Novice: A Logical Perspective". 

In the life science domain, the pathway exchange standard called 
BioPAX (http://www.biopax.org/) has been deployed in OWL to standardize 
the ontological representation of pathway data [37]. Increasingly, pathway 
databases including HumanCyc [38] and Reactome [8] have exported data 
in the OWL-based BioPAX format. As another example, the FungalWeb 
Project [39] has integrated a variety of distributed resources in the domain of 
fungal enzymology into a single OWL DL ontology which serves as an 
instantiated knowledgebase allowing complex domain specific A-box 
queries using DL based reasoning tools. In contrast [40] have translated a 
single large scale taxonomy of human anatomy from a frame-based format 
into OWL which supports reasoning tasks. 

3. USE CASES 

This section presents two use cases, namely YeastHub [33] and 
LinkHub (http://hub.gersteinlab.org/), which demonstrate how to use the 
RDF approach to integrate heterogeneous genomic data. Both of these use 
cases involve using a native RDF database system called Sesame 
(http://www.openrdf.org) to implement a warehouse or hub for integrating or 
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interlinking diverse types of genomic/proteomic data. Sesame allows a RDF 
repository to be created on top of main memory, relational database (e.g., 
MySQL and Oracle), and native RDF files. For small or moderate size 
datasets, the main memory approach provides the fastest query speed. For 
large amounts of data. Sesame utilizes the efficient data storage and indexing 
facilities provided by the relational database engine (e.g., MySQL and 
Oracle). Finally, the native file-based approach eliminates the need of using 
a database and its associated overhead at the cost of performance if the data 
files involved are large. 

3.1 YeastHub 

YeastHub features the construction of a RDF-based data warehouse 
(implemented using Sesame) for integrating a variety of yeast genome data. 
This allows yeast researchers to seamlessly access and query multiple related 
data sources to perform integrative data analysis in a much broader context. 
The system consists of the following components: registration, data 
conversion, and data integration. 

3.1.1 Registration 

This component allows the user to register a Web-accessible dataset so 
that it can be used by YeastHub. During the registration process, the user 
needs to enter information (metadata) describing the dataset (e.g., location 
(URL), owner, and data type). Such description is structured based on the 
Dublin Core metadata standard (http://dublincore.org/). To encode the 
metadata in a standard format, the Rich Site Summary (RSS) format was 
used. RSS is an appropriate lightweight application of RDF, since the 
amount of metadata involved is typically small or moderate. The RSS-
encoded description of an individual dataset is called an "RSS feed". Many 
RSS-aware tools (e.g., RSS readers and aggregators) are available in the 
public domain, which allow automatic processing of RSS feeds. Among the 
different versions of RSS, RSS 1.0 was chosen because it supports RDF 
Schema. This allows ontologies to be incorporated into the modeling and 
representation of metadata. Another advantage of using RSS 1.0 is it that 
allows reuse of standard/existing modules as well as the creation of new 
custom modules. The custom modules can be used to expand the RSS 
metadata structure and contents to meet specific user needs. 
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3.1.2 Data conversion 

Registered datasets often originate from different resources in different 
formats, making it necessary to convert these formats into the RDF format. 
A variety of technologies can be used to perform this data conversion. For 
example, we can use XSLT to convert XML datasets into the RDF format. 
For data stored in relational datasets, we can use D2RQ 
(http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/), for example, to map the 
source relational structure and the target RDF structure. In addition, 
YeastHub provides a converter for translating tabular datasets into the RDF 
format. The translation operates on the assumption that each dataset belongs 
to a particular data type or class (e.g., gene, protein, or pathway). One of the 
data columns/fields is chosen by the user to be the unique identifier. Each 
identifier identifies an RDF subject. The rest of the data columns or fields 
represent RDF properties of the subject. The user can choose to use the 
default column/field names as the property names or enter his/her own 
property names. Each data value in the data table corresponds to a property 
value. The system allows some basic filtering or transformation of string 
values (e.g., string substitution) when generating the property values. Once a 
dataset is converted into the RDF format, it can be loaded into the RDF 
repository for storage and queries. Additionally it can be accessed by other 
applications through API. 

3.1.3 Data integration 

Once multiple datasets have been registered and loaded into YeastHub's 
RDF repository, integrated RDF queries can be composed to retrieve related 
data across multiple datasets. YeastHub offers two kinds of query interface, 
allowing command line or form based query. 
1. Ad hoc queries. Users are permitted to compose RDF-based query 

statements and issue them directly to the data repository. Currently the 
user can build queries in the following query languages: RQL, SeRQL, 
and RDQL. The user must be familiar with at least one of these query 
syntaxes as well as the structure of the RDF datasets to be queried. SQL 
users typically find it easy to learn RDF query languages. 

2. Form-based queries. While ad hoc RDF queries are flexible, users who 
do not know RDF query languages often prefer to use supervised 
method to pose queries YeastHub allows users to query the repository 
through Web query forms (although they are not as flexible as the ad hoc 
query approach). To create a query form, YeastHub provides a query 
template generator. First of all, the user selects the datasets and the 
properties of interest. Secondly, the user needs to indicate which 
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properties are to be used for the query output (select clause), search 
Boolean criteria (where clause), and join criteria (property values that 
can be linked between datasets). In addition, the user is given the option 
to create a text field, pull down menu, or select list (in which multiple 
items can be selected) for each search property. Once all the information 
has been entered, the user can go ahead to generate the query form by 
saving it with a name. The user can then use the generated query form to 
perform Boolean queries on the datasets associated with the form. 

3.1.3.1 Example query to correlate essentiality with connectivity 

SELECT DISTINCT n s O o r f , n s O c o n n e c t I v i t y , n s 4 a c c e » s i o n , ns4n««ne , n s 5 g i : o w t h _ c o n d i t l o n , 
n s S c l o n e _ i c i , n s 5 e x p i : e s s i o n _ l e v e l 
FROM 
{ 3 o u r c e 5 8 6 4 0 } n s l : o r f { n s l o r f } , 
{ s o u r c e 5 8 6 3 9 } n s 2 : o c f < n s 2 o r £ > , 
{ s o u r c e 5 8 6 3 8 ) n33 ; DB_Ot) j e c t _ S y n o n y r n { n33I>B_OtoJecc_3ynonyni> , 
{ s o u i : c e 5 8 6 3 8 } n s 3 : G O _ I D { n s 3 G O _ I D ) , 
{ s o u r c ; e 5 8 6 3 6) n s 4 : name { n s l n a w e ) , 
{ s o u r c e 5 8 6 3 6 } n s 4 : a c c e s s i o n ( n s 4 a c c e s s i o n > , 
{ s o u r c e 5 5 3 9 6 } n s 5 : o r f { n s S o r f } , 
{ 30u» : ceS5396} n s S t g r o T J t h _ c o n c l i c l o n { n s S g r o w t h L _ c o n d i c i o n ) , 
{ 3 0 u j : c e 5 5 3 9 6 } n s 5 : e x p r e s s i o n _ i e v e i { n s 5 e x p i : e s 3 i o n _ l e v e i > , 
< s o u r c e 5 5 3 9 6 ) n » 5 : c l o n e _ i c i < n » 5 c l o n e _ i c l ) , 
{ s o u i : c e 5 8 6 4 2 } nsO : c o n n e c t i v i t y < n s O c o n n e c t i v i t y ) , 
{ 3 0 u r c e 5 8 6 1 2 ) n s O i o r f { n s O o r f } 
WHERE 
n s 0 c o n n e c t i v i t y = " 8 0 " 
AND n 3 5 e x p r e 3 s i o n _ l e v e l " " l " ' ^ ' ^ < l i t t p : / / w w w . w3 . o r g / 2 0 0 1 / X M L S c h e m a # l o n g l n t e g e r > 
AND n s 5 c i o n e _ i c i - " V i e 2 B 1 0 " ^ ' ' < h . t t p : / / w w w . w3 . o r o / 2 0 0 1 / X M L S c h e m a # s t i : i n o > 
AND n 3 5 g r o w c h _ c o n d i t l o n ~ " v e g e t a t l v e " ' ^ ' ^ < h t t p : / / w w w . w3 . o r g / 2 0 0 1 / X M L 3 c h e n » a # 3 t r i n g > 
AND n s O o r f - n s l o r f 
AND n s l o r f " n s 2 o r f 
AND n s 2 o r l ! " n 3 3 D B _ O b J e c t _ S y n o n y T n 
AND n s 3 D B _ O t o j e c t _ 3 y n o n y i M - n 3 S o r f 
AND n s 3 G O _ I D - n s 4 a c c e s s i o n 
USING NAMESPACE 
n s 2 " < h t t p : / / m c d b 7 5 0 .rrted. y a l e . e d u / y e a s t h v i t o / s c h e m a / 3 c h e m a 5 8 63 9 . r d f > , 
n s 3 - < h t t p : / /mcd}D750 . rned . y a l e . e d u / y e a s t h u t o / s c h e i n a / s c h e m a 5 8 6 3 8 . r d £ > , 
n s l " < h t t p : / / m c d b 7 S 0 . lined, y a l e . e d u / y e a s th t ; i f c> / schema/schema58 640 . r d f > , 
n s O - < I i t t p : //rticdfc»7S0 . w e d . y a i e . e d u / y e a s t h u b / s c h . e m a / s c h e K i a 5 8 6 4 2 . r d £ > , 
n 3 5 « < h t t p : / / i n c d t o 7 5 0 . n i e d . y a l e . e d u / y e a s t h u b / s c h e m a / s c h e i n a _ t r i p ! e s . r d f #> , 
n 3 4 - ' < h t t p : / / 1 3 9 . 9 1 . 1 8 3 . 3 0 : 9 0 9 0 / R D F / V R P / E x a m p l e s / 3 c h e m a _ g o . r d f > 
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Figure 1-2. SeRQL query statement correlating between gene essentiality and connectivity. 

Figure 1-2 shows a RDF query statement written in SeRQL (Sesame 
implementation of RQL), which simultaneously queries the following yeast 
resources: a) essential gene list obtained from MIPS, b) essential gene list 
obtained from YGDP, c) protein-protein interaction data (Yu et al. 2004), d) 
gene and GO ID association obtained from SOD, e) GO annotation and, f) 
gene expression data obtained from TRIPLES [41]. Datasets (a)- (d) are 
distributed in tab-delimited format. They were converted into our RDF 
format. The GO dataset is in an RDF-like XML format (we made some 
slight modification to it to make it RDF-compliant). TRIPLES is an Oracle 
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database. We used D2RQ to dynamically map a subset of the gene 
expression data stored in TRIPLES to RDF format. 

The example query demonstrates how to correlate between gene 
essentiality and connectivity, based on the interaction data. The hypothesis is 
that the higher its connectivity, the more likely that the gene is essential. The 
example query includes the following Boolean condition: connectivity = 80, 
expressionjevel = 1, growthjoondition = vegetative, and clonejd = 
V182B10. Such Boolean query joins across six resources based on common 
gene names and GO IDs. Figure 1-2 (at the bottom) shows the query output, 
which indicates that the essential gene (YBL092W) has a connectivity equal 
to 80. This gene is found in both the MIPS and YGDP essential gene lists. 
This confirms the gene's essentiality as the two resources might have used 
different methods and sources to identify their essential genes. The query 
output displays the corresponding GO annotation (molecular function, 
biological process, and cellular component) and TRIPLES gene expression 
data. 

3.2 LinkHub 

LinkHub can be seen as a hybrid approach between a data warehouse and 
a federated database. Individual LinkHub instantiations are a kind of mini, 
local data warehouse of commonly grouped data, which can be connected to 
larger major hubs in a federated fashion. Such a connection is established 
through the semantic relationship among biological identifiers provided by 
different databases. 

A key abstraction in representing biological data is the notion of unique 
identifiers for biological entities and relationships (and relationship types) 
among them. For example, each protein sequence in the UniProt database is 
given a unique accession by the UniProt curators (e.g., Q60996). This 
accession uniquely identifies its associated protein sequence and can be used 
as a key to access its sequence record in UniProt. UniProt sequence records 
contain cross-references to related information in other genomics databases. 
For example, Q60996 is cross-linked in UniProt to Gene Ontology identifier 
GO:0005634 and Pfam identifier PF01603, although the kinds of 
relationships, which would here be "functional annotation" and "family 
membership" respectively, are not specified in UniProt. Two identifiers such 
as Q60996 and GO:0005634 and the cross-reference between them can be 
viewed as a single edge between two nodes in a graph, and conceptually then 
an important, large part of biological knowledge can be viewed as a massive 
graph whose nodes are biological entities such as proteins, genes, etc. 
represented by identifiers and the links in the graph are typed and are the 
specific relationships among the biological entities. The problem is that this 
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graph of biological knowledge does not explicitly exist. Parts of it are in 
existence piecemeal (e.g., UniProt's cross references to other databases), 
while other parts do not exist, i.e. the connections between structural 
genomics targets and UniProt identifiers. Figure 1-3 is a conceptual 
illustration of the graph of relationships among biological identifiers, with 
the boxes representing biological identifiers (originating database names 
given inside) and different edge types representing different kinds of 
relationships. For reasons of efficiency, we have implemented this 
relationship graph using MySQL. However, we have converted this 
relational database into its RDF counterpart for exploring the RDF modeling 
and querying capabilities. 
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Figure 1-3. An example relationship graph among biological identifiers. 

3.2.1 LinkHub Web interface 

The primary interactive interface to the MySQL LinkHub database 
(MySQL) is a Web-based interface (implemented using the so-called AJAX 
technologies [13], i.e. DHTML, JavaScript, DOM, CSS, etc.) which presents 
subsets of the graph of relationships in a dynamic expandable / collapsible 
list view. This interface allows viewing and exploring of the transitive 
closure of the relationships stemming from a given identifier interactively 
one layer at a time: direct edges from the given identifier are initially shown 
and the user may then selectively expand fringe nodes an additional layer at 
a time to explore fiirther relationships (computing the full transitive closure 
is prohibitive, and could also cause the user to "drown" in the data, and we 
thus limit it initially, and in each subsequent expansion, to anything one edge 
away, with the user then guiding further extensions based on the 
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relationships chosen for further exploration). Figure 1-4 is a screenshot of 
the interface and provides more detail. It also allows users to query and view 
particular types of path in the graph. 
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Figure 1-4. LinkHub Web Interface 

For example, one might want to view all proteins in some database sharing 
the same Pfam family as a given protein. In LinkHub, Pfam relationships are 
stored for UniProt proteins, so one could view the sibling family members of 
the given protein by specifying to view all proteins, which can be reached by 
following a path of types like the following: 

Given protein in database -> equivalent UniProt protein -^ Pfam family -^ 
UniProt proteins -> other equivalent proteins in database. 

An important use of this "paths query" interface is as a secondary, 
orthogonal interface to other biological databases in order to provide 
different views of their underlying data. For example, the molecular motions 
database MolMovDB [14] provides movie clips of likely 3D motions of 
proteins, and one can access it by PDB [15] identifiers. However, an useful 
alternative would be a "family view" interface where the user queries with a 
PDB identifier and requests to see all available motions for proteins that are 
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in the same family as the query PDB identifier. LinkHub provides this 
interface for MolMovDB (we also provide a similar "family view" interface 
to structural genomics data, e.g. see the NESG's SPINE [16, 17] target pages 
such as http://spine.nesg.org/target.pl?id=WR4 for the "NESG Family 
Viewer" links). 

3.2.2 RDF queries through integration of LinkHub into YeastHub 

To demonstrate the data interaction and exploration capabilities made 
possible by the RDF version of LinkHub, we have loaded the RDF-
formatted LinkHub dataset into YeastHub. We give a demonstration query 
written in SeRQL to show how one can effectively do the kinds of 
interesting exploratory scientific investigation and 'hypothesis testing' 
commonly done at the beginning of research. The query makes use of 
information present in both YeastHub and LinkHub (and thus would be 
impossible without joining the two systems). LinkHub is used as the 'glue' 
to provide both direct and indirect connections between different genomics 
identifiers. 

3.2.2.1 Example query to find "interolog" 

The example query here is to find Worm "Interolog" of Yeast protein 
interactions. With this query we want to consider all the protein interactions 
in yeast (S. cervisiae) and see how many and which of them are possibly 
present between their homologs in worm (C. elegans), i.e. as interologs [20] 
in worm. We thus start with a dataset containing known and predicted yeast 
protein interactions which is already loaded into YeastHub [21]; here the 
interactions are expressed between yeast gene names. For each Yeast gene 
name in the matched interaction set, we can use LinkHub's data as 'glue' to 
determine its homologs (via Pfam) in worm by traversing paths in the 
LinkHub relationship graph of type: 

Yeast gene name -> UniProt Accession -> Pfam accession -^ UniProt 
Accession -> WormBase ID . 

Then, for each pair in the yeast protein interaction dataset, we determine 
if both of its yeast gene names lead to WormBase IDs [22] in this way and 
identify those WormBase IDs as possible protein interactions. The SeRQL 
query statement together with a portion of its corresponding output is shown 
in Figures 1-5 (a) and (b). 
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SELECT DISTINCT Yeast_ProteJn_1, Yeast_Piotein_2, Worm_Protein_1, Woim_Protein_2 
FROM 
{ppi} it:Protein1 {Yeast_Protein_1}, 
{IhYOI} Ihiidanlifieisjcl {Yeast_Protein_1}, 
{IhYOI} lh:identlflers_fyp© {IhYOType}, 
{IhYOI} lh:inappings_type_$ynonym {IhUPIa}. 
{IhUPIa} Ih:ldentifier6_type {IhUPType}. 
{IhUPIa) lh:mapplngs_type_Family_Mapping {IhPFAMI}. 
{IhPFAMI} lh:identifiers_type {IhPFType), 
{IhPFAMI} lh:mappings_type_Famlly_Mapping {IhUPIb). 

WHERE 
Yeast_Protein_1 = "YAL005C" AND 
Yeast_Proteln_2 = "YLR310C" AND 
YEAST_ORF = "YEAST_ORF" AND 
(UNIPROT_KB = "UniProtKB/SwIss-Prot Ace" OR 
UNIPROT_KB • "UniProtKB/TrEMBL Ace") AND 
PFAM_ACC ="PFAM_ACC"AND 
WORMBASE = "WORMBASE" 
USING NAMESPACE 
it=<http://yeasthub2.gersteinlab.org/yeasthub/schema/thd_platlnum_6tandard_for_ppl20060224234451_schema.rdf>, 
lhx<http://yeasthub2.gerstelnlab.org/yeasthub/datasets/manual_upload/linkhub_schema.rdf#> 
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Figure 1-5. (a) SeRQL query statement for retrieving Worm "Interolog" of Yeast protein interactions, (b) 
Ouerv output. 

4. CONCLUSION AND FUTURE DIRECTIONS 

Semantic Web (RDF) database technologies have been maturing over the 
past several years. The two use cases (LinkHub and YeastHub) presented in 
this chapter show that RDF data warehouses can be built to serve some 
practical data integration needs in the life science domain. While the 
relational database is the predominant form of database in use in life 
sciences today, it has the following limitations that can be addressed by the 
RDF database technology. 
• While a relational schema can be exposed to local applications, it is not 

directly visible to Web agents. RDF or RDF schema can act as a 
gateway to allow relational databases to expose their data semantics to 
the World Wide Web. 

• In relational databases, data links are implemented as primary-foreign 
key relationship. The meaning of this link relationship is implicit, and 
the semantics of the relationship cannot be specified as in RDF. 
Furthermore the primary-foreign key relationship cannot be applied to 
linking data items between separate relational databases. In RDF 
databases, link semantics are captured explicitly (through named RDF 
properties). These property-based links can be used to link data 
components between separate RDF graphs. 



26 Revolutionizing Knowledge Discovery in the Life Sciences 

• The relational data model is not the natural approach to modeling 
hierarchical data that is hierarchical in nature. Such a parent-child 
relationship is usually captured in a relational table by adding a parent id 
column. Navigating or retrieving data based on such a hierarchical 
structure is typically done using self-join in a relational query statement 
(SQL). The main limitation of such an approach is that we need one self-
join for every level in the hierarchy, and performance will degrade with 
each level added as the joining grows in complexity. RDF schema 
supports the subclass/superclass relationship and RDF databases are 
more optimized to support this type of parent-child data inference. 

As the number of databases continues to grow, it is also important to 
explore how to build a federated database system based on Semantic Web 
technologies, which allows queries to be mediated across multiple Semantic 
Web databases. Such efforts have begun in the Computer Science research 
community (e.g., [42]). In the life science domain, Stephens et al. have 
demonstrated how to build a federated database using Cerebra 
(http://www.cerebra.com/) for integrating drug safety data [43]. Cerebra 
makes it possible to mediate queries against multiple RDF databases. In 
addition to supporting RDF query, it operates with OWL ontologies and 
OWL-based inferencing rules. However, it does not support standard OWL 
query languages (e.g., OWL-QL). Instead it uses XQuery to process the 
OWL ontologies and their associated data. XQuery is a standard query 
language for XML-structured data, yet it does not take advantage of the rich 
expressiveness provided by OWL. 

To explore the full potential of the Semantic Web in data integration, we 
need to address the following areas. 
• Conversion. There is a wealth of biological data that exists in other 

structured formats (e.g., relational format and XML format). We need to 
provide methods to convert these formats into a Semantic Web format 
(e.g., RDF or OWL). Such a conversion can be divided into syntactic 
and semantic parts. While both are important, semantic conversion 
usually takes a longer time to accomplish, since more effort is required 
to decide on the proper ontological conceptualization. This may be 
overcome in part by the ongoing development and improvement of bio-
ontologies carried out by the biomedical ontology community including 
the National Center for Biomedical Ontology[x]. From a practical 
viewpoint, it might be easier to do the syntactic conversion first and 
followed by a gradual semantic conversion process. Based on the 
common syntax, data integration and semantic conversion can proceed 
in parallel. In addition to converting structured data into Semantic Web 
format, efforts are underway to extract data from the biomedical 
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literature (unstructured text) and structure the extracted results into 
Semantic Web formats. 

• Standard identifiers. The problem with URL's is that they always point 
to a particular Web server (which may not always be in service) and 
worse, that the contents referred to by a URL may change. For 
researchers, the requirement to be able to exactly reproduce any 
observations and experiments based on a data object means that it is 
essential that data be uniquely named and available from many cached 
sources. The Life Science IDentifier or LSID (http://lsid.sourceforge.net) 
is designed to fulfill this requirement. An LSID names and refers to one 
unchanging data object (version numbers can be attached to handle 
updates). Every LSID consists of up to five parts: the Network Identifier 
[44]; the root DNS name of the issuing authority; the namespace chosen 
by the issuing authority; the object id unique in that namespace; and 
finally an optional revision id for storing versioning information. Each 
part is separated by a colon to make LSIDs easy to parse. For example, 
"um:lsid:ncbi.nlm.nig.gov:GenBank:T48601:2" is an LSID with 
"um:lsid" being the NID, "ncbi.nlm.nig.gov" the issuing authority's DNS 
name, "GenBank" the database namespace, "T48601" the object id, and 
"2" the revision id. Unlike URLs, LSIDs are location independent. This 
means that a program or a user can be certain that what they are dealing 
with is exactly the same data if the LSID of any object is the same as the 
LSID of another copy of the object obtained elsewhere. As an example 
of LSID usage, the Entrez LSID Web service 
(http://lsid.biopathways.org/entrez/) uses NCBI's Entrez search interface 
to locate LSIDs within the biological databases hosted by the NCBL The 
LSID system is in essence similar to the role of the Domain Name 
Service (DNS) for converting named Internet locations to IP numbers. 

• Standardization of RDF/OWL Query Languages. One of the reasons 
for the wide acceptance of relational database technology is that it comes 
with a standard and expressive database query language - SQL. Current 
RDF databases provide their own versions of RDF query languages 
(e.g., SeRQL for Sesame, iTQL for Kowari, and Oracle RDF query 
language). These query language variants provide different features. To 
integrate/consolidate these features, SPARQL is an emerging standard 
RDF query language (http://www.w3.org/TR/2004/WD-rdf-sparql-
query-20041012). Even though it is a moving target, SPARQL-
compliant query engines such as ARQ (http://jena.sourceforge.net/ARQ) 
have recently been implemented. For OWL ontologies, more expressive 
query languages are required. OWL-aware query languages (e.g., RDQL 
and nRQL [45]) are supported by specific OWL reasoners including 
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Pellet and Racer [45]. OWL-QL is a candidate standard query language 
for OWL. 

• Support of OWL reasoning. Current RDF databases do not support 
OWL, although they can act as OWL data repositories. It would be 
useful to extend these RDF databases to support OWL querying and 
reasoning. One way of doing this is to create a reasoning layer on top of 
the RDF database. To this end, reasoner plugins such as OWLIM 
(http://www.ontotext.com/owlim/) have recently been made available for 
some RDF databases such as Sesame. Also, more direct and native 
support of OWL by RDF databases is desirable. 
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