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Network analysis has been applied widely, providing a unifying language to describe 
disparate systems ranging from social interactions to power-grids. It has recently 
been used in molecular biology, but so far the resulting networks have only been 
analyzed statically 1-8. Here we present the dynamics of a biological network on a 
genomic scale, by integrating transcriptional regulatory information 9-11 and gene-
expression data 12-16 for multiple conditions in Saccharomyces cerevisiae. We develop 
an approach for the Statistical Analysis of Network Dynamics (SANDY), combining 
well-known global topological measures, local motifs and newly derived statistics. 
We uncover large changes in underlying network architecture that are unexpected 
given current viewpoints and random simulations. In response to diverse stimuli, 
transcription factors (TFs) alter their interactions to varying degrees, thereby 
rewiring the network. A few TFs serve as permanent hubs, whilst most act 
transiently only during certain conditions. Looking at sub-network structures, we 
show environmental responses facilitate fast signal propagation (eg with short 
regulatory cascades), whereas the cell cycle and sporulation direct temporal 
progression through multiple stages (eg with highly inter-connected TFs). Indeed, to 
drive the latter processes forward, phase-specific TFs inter-regulate serially, and 
ubiquitously active TFs layer above them in a two-tiered hierarchy. We anticipate 
many of the concepts presented here – particularly large-scale topological changes 
and hub transience – will apply to other biological networks, including complex sub-
systems in higher eukaryotes. 
 
We begin by assembling a static representation of known regulatory interactions from the 
results of genetic, biochemical and ChIP-chip experiments. Figure 1 illustrates the 
complexity of the resultant network, which contains 7,074 regulatory interactions 
between 142 TFs and 3,420 target genes (interactions can be between TFs and non-TF 
targets, or two TFs). To get a dynamic perspective, we integrate gene-expression data for 
five conditions: cell cycle 13, sporulation14, diauxic shift12, DNA damage16, and stress 
response15. From these data, we trace paths in the regulatory network that are active in 
each condition using a back-tracking algorithm (see Methods).   
 
Figure 1b presents the sub-networks active under different cellular conditions, and gross 
changes are apparent in the distinct sections of the network that are highlighted. Recent 
functional genomics studies have analyzed the dynamics of a few TFs 17,18; however, 
Figure 1 represents the first dynamic view of a genome-scale network. 
 
Half of the targets are uniquely expressed in only one condition; in contrast, most TFs are 
used across multiple processes. The active sub-networks maintain or rewire regulatory 
interactions, and over half of the active interactions (1,476 of 2,476 total) are completely 
supplanted by new ones between conditions. Just 66 interactions are retained across four 
or more conditions; these comprise hot links 6 that are "always on" (compared with the 
rest of the network) and mostly regulate house-keeping functions.  
 
The large number of changing interactions makes rigorous comparison of active sub-
networks impossible visually. Consequently, we introduce an approach called SANDY 
that combines: standard measures of network connectivity (involving global topological 
statistics 6 and local network motifs 4), newly derived follow-on statistics and 
comparisons against simulated controls to assess the significance of each observation.  
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Overall, our calculations divide the five condition-specific sub-networks into two 
categories: endogenous and exogenous (Figure 1). This allows us to rationalize the 
different sub-network structures in terms of the biological requirements of each 
condition. Endogenous processes (cell cycle and sporulation) are multi-stage and operate 
with an internal transcriptional program, whereas exogenous states (diauxic shift, DNA 
damage and stress response) constitute binary events that react to external stimuli with a 
rapid turnover of expressed genes.   
 
We begin SANDY by examining global topological measures that quantify network 
architecture (Figure 1c) 6. The view from recent studies is that these statistics are 
remarkably constant across many biological networks (including regulatory 
systems)1,5,6,19,20. Moreover, most of them remain invariant between randomly simulated 
sub-graphs of different sizes (Methods).  
 
In fact, we show that topological measures change considerably in the endogenous and 
exogenous sub-networks. (Furthermore, most of the observed measurements differ 
significantly from random expectation and are insensitive to addition of noise in the 
underlying network; Methods). The in-degree (kin) is the number of incoming edges per 
node (ie the number of TFs regulating a target). Its average across each sub-network 
decreases by 20% from endogenous to exogenous conditions. (The probability p that 
these values originate from the same population is <3×10-4; Supplementary Material). 
The out-degree (kout) represents the number of outgoing edges per node (ie the number of 
target genes for each TF). Average values double from endogenous to exogenous 
conditions (p<2×10-3). The path length (l) is the shortest distance between two nodes (ie 
here, it is the number of intermediate regulators between a TF and a terminating target 
gene). Its average halves from endogenous to exogenous conditions (p<10-10). Finally, the 
clustering coefficient (c) gauges the level of inter-connectivity around a node (ie the level 
of TF inter-regulation). Values range from 0 for totally dispersed nodes to 1 for fully 
connected ones. Average coefficients nearly halve from endogenous to exogenous 
conditions (p<0.01).  
 
In biological terms, the small in-degrees for exogenous conditions indicate TFs regulating 
in simpler combinations, and the large out-degrees signify that each TF has greater 
regulatory influence by targeting more genes simultaneously. The short paths imply faster 
propagation of the regulatory signal. Conversely, long paths in the multi-stage, 
endogenous conditions suggest slower action arising from the formation of regulatory 
chains to control intermediate phases. Finally, high clustering coefficients in endogenous 
conditions signify greater inter-regulation between TFs. In summary, sub-networks have 
evolved to produce rapid, large-scale responses in exogenous states, and carefully 
coordinated processes in endogenous conditions (Figure 1a). 
 
SANDY also examines sub-networks locally by calculating the occurrence of network 
motifs 4, which are compact, specific patterns of inter-connection between TFs and 
targets. We show the occurrence of the most common in Figure 1c: single-input, 
multiple-input, and feed-forward-loop motifs (SIMs, MIMs, and FFLs). In SIMs a single 
TF targets many genes; in MIMs multiple TFs co-regulate sets of genes; and in FFLs a 
primary TF regulates a secondary one, and both target a final gene. Motifs appear at 
similar relative frequencies across regulatory networks of diverse organisms (though 
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individual motifs are not conserved) 3,7, and this is also true for the randomly simulated 
sub-graphs. Therefore, constancy in motif-usage is expected across conditions.  
 
However, Figure 1c shows that the relative occurrence of motifs varies considerably 
between endogenous and exogenous conditions (p<10-9). SIMs are favoured in 
exogenous sub-networks where they comprise >55% of regulatory interactions in motifs. 
But the frequency drops to ~35% in endogenous processes. Instead, these states favour 
FFLs (~44%). (MIMs do not significantly change their usage).  
 
Previous studies defined precise regulatory properties and information processing tasks 
for motifs 4. SIMs and MIMs are implicated in conferring similar regulation over groups 
of genes, so they are ideal for directing the large-scale gene activation found in 
exogenous conditions. FFLs are buffers that respond only to persistent input signals. 
They are suited for endogenous conditions, as cells cannot initiate a new stage until the 
previous one has stabilized. (FFLs are used sparingly in exogenous processes but may be 
important in filtering spurious external stimuli).  
 
Having quantified global and local changes with standard topological measures, we now 
move to the follow-on statistics in SANDY (Figure 2). Like many large-scale networks, 
the regulatory system displays scale-free characteristics (the probability Pk that a TF 
targets k genes is proportional to k-γ for constant γ). This behaviour (maintained across all 
active sub-networks) signifies the presence of regulatory hubs targeting 
disproportionately large numbers of genes. Hubs are of general interest as they represent 
the most influential components of a network6 and accordingly, tend to be essential21. 
They are considered to target a broad spectrum of gene functions4,11,22, and are commonly 
located upstream in the network2 to expand their influence via secondary TFs23. These 
observations suggest that hubs would be invariant features of the network across 
conditions, and this expectation is supported by the random simulations that converge on 
similar sets of TF hubs.  
 
Figure 2a shows the observed regulatory hubs in each of the five conditions (Methods). 
They divide into two groups. The smaller one represents permanent hubs, which in line 
with expectation, are important regardless of cellular state. They mainly comprise multi-
functional TFs (eg Abf1) and house-keeping regulators (eg Mig1/2), and are responsible 
for maintaining hot links. However contrary to expectation, most hubs (78%) are 
transient; they are influential in one condition, but less so in others. Exogenous 
conditions have fewer hubs, suggesting a more centralized command structure. (This is 
reflected in different γ; Supplementary Material). About half of the transient hubs are 
known to be important for their respective conditions (eg Swi4 in the cell cycle; 
Methods). For the remainder with sparse annotations, their "transient-hub" status in a 
particular condition considerably augments their functional annotation (eg Sok2 in the 
cell cycle). Intriguingly, these hubs may also relate to condition-dependent lethality, and 
this has clear implications for identifying specific drug targets.  
 
The defining feature of transient hubs is their capacity to change interactions between 
conditions. We attempt to quantify this rewiring more broadly for every TF in the 
network with the interchange index, I. This is defined so that higher values associate with 
TFs replacing a larger fraction of their interactions. Its histogram reveals a uni-modal 
central distribution with two groups of extreme outliers (Figure 2b). At one extreme 
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(I≤10%), 12 TFs retain all interactions across multiple states. At the other end (I≥90%), 
27 TFs replace all interactions in switching conditions. Many of these are so extreme that 
they only regulate genes in a single condition and are inactive otherwise. These include 
six transient hubs of known importance for the cell cycle and stress response. Most TFs 
interchange only part of their interactions (10%<I<90%). This group comprises most of 
the hubs; somewhat surprisingly, permanent hubs interchange interactions as often as 
transient ones, but over a larger number of conditions. Furthermore, TFs in this group 
often regulate genes of distinct functions in different conditions, so shifting regulatory 
roles. For example, the permanent hub Abf1 regulates cell growth during endogenous 
conditions, but refocuses to intracellular transport in stress response (in addition to its 
maintained core functions).  
 
The rewiring highlighted by the interchange index allows TFs to be active in many 
conditions. Indeed, 95 of the 142 TFs are used in more than one process (Figure 1b). 
Specifically, within endogenous conditions 53 of 92 TFs overlap between cell cycle and 
sporulation (Figure 2c), and there is a similar overlap for exogenous conditions 
(Supplementary Material). With so much intersection in the repertoire of active TFs, the 
precise regulation of a condition cannot arise from the specificity of individual TFs. As 
others have observed 24, combinatorial TF usage appears to be the key. We calculate that 
there are 360 unique pair-wise TF combinations (ie two TFs regulating the same target) 
used in at least one condition. In contrast to individual TFs, only a minor proportion of 
pairs (51 of 360) participate in multiple processes and just 3 of 149 pairs overlap between 
endogenous conditions (Figure 2b).  
 
Thus far we have focused on the large dynamic changes occurring between different 
cellular conditions. However, dynamic transitions also take place within individual 
processes. Earlier, SANDY defined endogenous sub-networks by their long paths and high 
clustering. We can study the source of these observations by looking at the full scope of 
inter-regulation between TFs during the cell cycle (Figure 3). This is possible as Cho et 
al. 13 provide expression-level measurements throughout the cell cycle and assign 
differentially expressed genes to one of five phases (early G1, late G1, S, G2, M). We 
then back-tracked from the classified genes to identify active sub-networks during each 
phase (Methods). 
 
A cluster diagram (Figure 3a) shows that most TFs active in the cell cycle operate only in 
a particular phase (eg Swi4 in late G1). Additionally, a sizeable minority of TFs is 
ubiquitously active throughout the whole cycle. We uncover two major forms of TF inter-
regulation. In serial inter-regulation 25 (Figure 3b), the phase-specific TFs regulate each 
other in a sequential manner to drive the cell cycle forward. In fact, we detect complete 
loops of interactions within the complex circuitry, and the resulting regulatory cascades 
undoubtedly create the long paths. We also introduce the concept of parallel inter-
regulation (Figure 3c), where the ubiquitous TFs control the phase-specific ones in a two-
tiered system. This effectively provides a stable signal to aid the transition between 
phases. Furthermore, as about a third of ubiquitous TFs comprise permanent hubs, they 
may provide a channel of communication to relate the cell-cycle progression with house-
keeping functions. Similar observations apply to sporulation (Supplementary Material). 
 
In summary, SANDY presents an approach to examine biological network dynamics. In 
applying it to the yeast regulatory system, it becomes apparent that many observations 
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made in the static state are not applicable to the condition-specific sub-networks. 
However in refocusing to a dynamic perspective, we uncover substantial topological 
changes in network structure, and we capture the essence of the transcriptional regulatory 
data in a new way. Because of limitations in current datasets, we can examine this only 
through integrating gene-expression information. However we anticipate future 
experiments to determine condition-specific interactions directly. Given the robustness of 
the observations to large perturbations (Methods), we expect our approach and findings 
to remain valid for these new datasets. Furthermore, we anticipate that many of the 
concepts we introduce could be readily transferred to other types of biological networks, 
and complex sub-systems in multi-cellular organisms such as those directing the 
circadian cycle 26 and cellular development. 
 
Methods 
 
Detailed descriptions of the methods are in the Supplementary Material and at 
http://sandy.topnet.gersteinlab.org. 
 
Datasets. (i) The transcriptional regulatory network is assembled from the results of 
genetic, biochemical and ChIP-chip experiments, with non-DNA-binding factors 
removed 9-11. (ii) The gene-expression data are compiled from 240 microarray 
experiments for five conditions12-16. We identify the following numbers of genes with 
differential expression: cell cycle, 455; sporulation, 477; diauxic shift, 1,823; DNA 
damage, 1,718; and stress response, 866.  
 
Back-tracking algorithm. This defines sections of the regulatory network used in each 
condition: (i) We identify TFs present in a condition as those with sufficiently high 
expression levels. (ii) We flag differentially expressed genes that appear in the regulatory 
network. (iii) We mark as active the regulatory links between present TFs and 
differentially expressed genes. (iv) We then search for any other present TFs that are 
linked to a TF with an already active link and make this connection active. The last step 
is repeated until no more links are made active. The same procedure identifies sub-
networks active in particular phases of cell cycle and sporulation. 
 
SANDY. This extends the methodology used by the TopNet software tool 27 and it 
evaluates each sub-network with the following. (i) Standard statistics including global 
measures of topology (kin, kout, l, c) 6 and local motif occurrence (SIM, MIM, FFL) 4. (ii) 
Follow-on statistics including: (a) permanent and transient hub identification, (b) 
interchange index (I), (c) counting the overlap in TF usage (individual and pairs) across 
multiple conditions. (Hubs are TFs in the top 30%, by number of target genes, in at least 
one condition. The number of target genes is normalized to measure the relative influence 
of a TF hub in a particular process). In all cases, regulatory functions are obtained from 
SGD 28 and are current as of June 2004. (iii) We compare observations with random 
expectation by simulating sub-graphs that are similar in size to each sub-network, and 
calculating statistics (i) and (ii) for them. Simulated sub-graphs sample the same number 
of “differentially expressed” genes and back-track through the static network. We also 
test the sensitivity of our observations to noise by randomly perturbing the static 
networks by 30% (random addition, deletion and replacement of interactions), back-
tracking from the original differentially expressed genes, and then recalculating the 
statistics.  
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Figures 
 
Figure 1. Dynamic representation of the transcriptional regulatory network and 
standard statistics. (a) Schematics and summary of properties for the endogenous and 
exogenous sub-networks. (b) Graphs of the static and condition-specific networks. TFs 
and target genes are shown as nodes in the upper and lower sections of each graph 
respectively, and regulatory interactions are drawn as edges; they are coloured by the 
number of conditions in which they are active. Different conditions use distinct sections 
of the network. (c) Standard statistics (global topological measures and local network 
motifs) describing network structures. These vary between endogenous and exogenous 
conditions; those that are high compared with other conditions are shaded. (Note, the 
graph for the static state displays only sections that are active in at least one condition, 
but the table provides statistics for the entire network including inactive regions). 
 
Figure 2. Derived "follow-on" statistics for network structures. (a) TF hub usage in 
different cellular conditions. The cluster diagram shades cells by the normalized number 
of genes targeted by TF hubs in each condition. One cluster represents permanent hubs 
and the others condition-specific transient hubs. Genes are labelled with four-letter names 
when they have an obvious functional role in the condition, and seven-letter ORF names 
when there is no obvious role. Of the latter, gene names are red and italicised when 
annotation is sparse. Starred hubs show extreme interchange index values, I = 1. (b) 
Interaction interchange (I) of TFs between conditions. A histogram of I for all active TFs 
shows a uni-modal distribution with two extremes. Pie charts show five example TFs 
with different proportions of interchanged interactions. We list the main functions of the 
distinct target genes regulated by each example TF. Note how the TFs’ regulatory 
functions change between conditions.  (c) Overlap in TF usage between conditions. Venn 
diagrams show the numbers of individual TFs (large intersection) and pair-wise TF 
combinations (small intersection) that overlap between the two endogenous conditions. 
 
Figure 3. TF inter-regulation during the cell cycle. (a) The 70 TFs active in the cell 
cycle. The diagram shades each cell by the normalized number of genes targeted by each 
TF in a phase. Five clusters represent phase-specific TFs and one cluster is for 
ubiquitously active TFs. TF names are given in Supplementary Material. (b) Serial inter-
regulation between phase-specific TFs. Network diagrams show that TFs active in one 
phase regulate TFs in subsequent phases. In the late phases, TFs appear to regulate those 
in the next cycle. (c) Parallel inter-regulation between phase-specific and ubiquitous TFs 
in a two-tiered hierarchy. Serial and parallel inter-regulation operate in tandem to drive 
the cell cycle while balancing it with basic house-keeping processes. 
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