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Abbreviations 
 
Network terms 
TF  transcription factor 
 
Cellular condition terms 
cc cell cycle 
sp sporulation 
ds  diauxic shift 
dd DNA damage 
sr stress response 
 
Network motif terms 
SIM  single input motif 
MIM  multiple input motif 
FFL feed-forward loop 
 
Methodological terms 
TBA trace-back algorithm  
SANDY  statistical analysis of network dynamics 
 
 

1. Supplementary website 
Additional material accompanying the paper is available online at 
http://sandy.topnet.gersteinlab.org. 
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2. Datasets 

2.1 Transcriptional regulatory network data 

2.1.1 Compilation of dataset 
We compiled the transcriptional regulatory data in Saccharomyces cerevisiae from the 
results of genetic, biochemical and ChIp-chip experiments (1-4). 
 
We removed non-DNA-binding TFs that do not regulate through promoter binding. This 
was done by a sequence search of 156 known DNA-binding motifs from Pfam (current as 
of June 2004) (5) against the protein sequences of the TFs in the dataset. TFs without 
significant matches were removed. 
 

2.1.2 Contents of dataset 
The final dataset used in the paper contained the following: 
 

network component number 
TFs 142 

non-TF targets 3,420 
regulatory interactions 7,074 

 
 
Regulatory interactions exist between TFs and non-TF targets, and among TFs 
themselves. 
 

2.2 Gene expression data 

2.2.1 Compilation of dataset 
We compiled the gene expression data from 240 published microarray experiments for 
five cellular conditions: cell cycle (6), sporulation (7), diauxic shift (8), DNA damage (9), 
and stress response (10).  
 
We obtained lists of genes displaying significant gene expression changes during each 
condition from the original publications. Genes can be up- or down-regulated, but we do 
not differentiate between the two here. 
 

2.2.2 Classification of endogenous and exogenous conditions 
We classified cellular conditions as being endogenous (cell cycle, sporulation) or 
exogenous (diauxic shift, DNA damage, stress response). These are defined by whether 
conditions have an internal, multi-stage program of regulation (endogenous), or a binary, 
large-scale turnover of genes triggered by external stimuli (exogenous). Although 
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sporulation is initiated by an environmental stimulus (ie nitrogen depletion), we have 
classified it as endogenous because of its multi-stage transcriptional program. 
 

2.2.3 Contents of dataset 
The dataset used in the paper contained the following numbers of differentially expressed 
genes: 
 

classification condition 
number of 

differentially 
expressed genes 

reference 

cell cycle 455 (6) endogenous sporulation 477 (7) 
diauxic shift 1,823 (8) 

DNA damage 1,718 (9) exogenous 
stress response 866 (10) 

 

2.3 Availability 
A partial dataset of the transcriptional regulatory network (excluding licensed data) is 
available from the Supplementary Website. The original gene expression data are only 
available from the respective websites accompanying the original publications, however 
we provide lists of differentially expressed genes for each condition on the 
Supplementary Website.  
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3. Trace-back algorithm to identify active sub-networks 
of cellular conditions  

3.1 Outline of algorithm 
We traced paths in the regulatory network that are active during each cellular condition 
using a trace-back algorithm (TBA). The method assumes that genes displaying 
differential expression are regulated by TFs linked to them in the regulatory network. The 
full procedure involved the steps outlined below. 
 

3.2 Defining differentially expressed genes 
The description of how we defined differentially expressed genes is in §2.2.1. 
 

3.3 Identifying present TFs 
We identified TFs in the static regulatory network that can potentially participate in 
regulating a condition by determining their presence or absence in the cell from their 
expression levels. 
 
We define a starting expression level for each TF using a reference dataset describing 
their protein and mRNA abundance (11); this dataset scales many mRNA and protein 
measurements over the cell cycle. From these data, we grouped TFs into those showing 
high, medium or low abundance: 
 

relative cell cycle abundance number of TFs 
High 17 

Medium 62 
Low 63 

 
 
For each condition, we then determine the presence or absence of each TF by assessing 
expression level changes relative to the starting abundance. This is a reasonable 
assumption as the original microarray experiments for all cellular conditions were 
conducted with the cell cycle as the start point.  
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We determined the presence or absence of TFs using the following rules: 
   

relative cell cycle 
abundance  

expression level change 
during condition present or absent 

up present 
constant present high 

down present 
 

up present 
constant present medium 

down absent 
 

up present 
constant absent low 

down absent 
 
 
The numbers of present TFs in each condition are as follows: 
 

cellular condition number of present TFs 
cell cycle 88 

sporulation 85 
diauxic shift 76 

DNA damage 75 
diauxic shift 85 

 

3.4 Tracing a condition-specific sub-network 
We traced the active regions of the regulatory network for each cellular condition as 
follows: (i) We flagged differentially expressed genes that appear in the regulatory 
network. (ii) We marked as active the regulatory interactions between present TFs and 
differentially expressed genes. (iii) We searched for any other present TFs that are linked 
to a TF with interactions that are already active, and made this connection active. (iv) We 
repeated step (iii) until no more interactions were made active. (v) The collection of all 
active interactions and inter-connected TFs and target genes comprise the condition-
specific sub-network. 
 

3.5 Availability 
Lists of present TFs, a Perl script for the TBA and data files describing the condition-
specific sub-networks are available from the Supplementary Website.  
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4. Statistical Analysis of Network Dynamics (SANDY) 
 
Although it is clear that distinct regions of the regulatory network are used under 
different cellular conditions, it is difficult to discern the differences between them 
visually.  
 
SANDY provides a framework to quantify the topological changes that condition-specific 
sub-networks undergo. The analysis is broadly separated into three parts: 
 
i. Well-known statistics (global topological measures, local network motifs). 
ii. Newly-derived follow-on statistics (hub usage, interchange index, TF usage). 
iii. Statistical validation with randomly simulated networks. 
 

4.1 Well-known statistics 

4.1.1 Global topological measures 
Global topological measures quantify the large-scale structural architecture of the 
network (12,13). The measures we calculated are listed on the following page. 
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topological 
measure symbol schematic description 

in-degree kin 

 The number of direct incoming edges 
per node (ie number of TFs per target 
gene). Its average is the mean across 
all nodes in the network 

out-degree kout 

 The number of direct outgoing edges 
per node (ie number of target genes 
per TF). Its average is the mean across 
all TFs in the network. 

degree 
distribution 
exponents 

β,γ 

 The most suitable distributions for the 
in- and out-degrees was found by 
calculating the best-fitting exponential 
(Pk ~ e-βk) and power-law (Pk ~ k-γ) 
distributions, where Pk is the 
probability that a randomly picked 
node has k interactions. We found the 
best-fitting distribution by minimising 
the root mean squared difference 
between the actual and fitted 
distributions. In all networks, the in-
degree showed exponential and the 
out-degree power-law behaviours. 

path length l 

 The shortest distance (in number of 
intermediate nodes) between two 
nodes. Here, it is calculated as the 
shortest distance between each TF and 
its terminating target genes. Its 
average is the mean across all paths in 
the network. 

diameter d  The maximum path length in the 
network. 

clustering 
coefficient c 

 The ratio of the number of edges 
between a node’s neighbours and the 
maximum number of possible edges; 
ci for a node i is calculated 

as
)1(

2
−ii

i

kk
E . Here, values of c are 

calculated using only the TF nodes in 
the network and the directionality of 
edges is ignored. Its average is the 
mean across all TFs in the network. 
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4.1.2 Local network motifs 
Local network motifs are precise patterns of inter-connections between a small number of 
TFs and target genes (14). We search for three of the most common motifs described 
below. 
 
In order to identify the motifs, we constructed a pair of affinity matrices A and B. Matrix 
A contained binary entries Aij where a 1 indicated a regulatory interaction from TF j to 
target gene i. Matrix B was a sub-matrix of A, containing only the rows corresponding to 
target genes that are TFs themselves. Nodes and edges can be part of more than one motif. 
 

network 
motif abbreviation schematic description 

single input 
motif SIM 

  
We identify the subset of rows in B, 
such that the sum of each row is 1. 
For each TF column, we then find 
non-zero entries. 
 

multiple input 
motif MIM 

  
We identify the subset of rows in A 
so that the sum of each row is 
greater than 1. Then for each row, 
we identify other rows regulated by 
the same set of TFs. The collection 
of rows represents a motif. 
 

feed-forward 
loop FFL 

  
For each primary TF we identify 
non-zero entries in B, which 
correspond to regulated secondary 
TFs. For each primary and 
secondary TF pair, we then identify 
all rows in A regulated by both TFs. 
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4.2 Follow-on statistics 

4.2.1 TF hub usage 
Hubs were defined as TFs in the top 30%, by number of targets, in at least one of the five 
cellular conditions.  
 

We normalized the number of target genes of each TF hub using
∑∑
∑

∑
=

i j
ij

j
ij

i
ij

ij
ij n

n

n
n

P , 

where Pij is the propensity that a given TF i regulates n genes in condition j relative to the 
total number of genes it regulates under all conditions. This provides a measure of the 
relative influence of a TF as a regulatory hub in a particular cellular condition.  
 
Hubs were clustered according to their propensity values using a k-means clustering 
algorithm (15) with k = 6, where k is the pre-defined number of clusters. The value of k 
was chosen so as to group the five cellular conditions separately (transient hubs), and also 
provide an additional cluster for the permanent hubs. Tests using k = 4 – 8 resulted in 
similar clusters with a few outlying TFs.  
 

4.2.2 Interaction interchange index 
The interchange index (I) measures the degree to which TFs maintain or replace 

regulatory interactions between cellular conditions. It is calculated as 100×=
∑

N

n
I i

i

% 

where ni is the number of regulatory interactions unique to condition i and N is the total 
number of regulatory interactions active in all conditions. It effectively measures the 
fraction of regulatory interactions that are unique to a particular condition. Values of I 
range from 0% to 100%; lower values indicate greater proportions of interactions being 
maintained across multiple conditions, and high values indicate that most interactions are 
interchanged, so are unique to particular conditions. 
 

4.2.3 TF usage across multiple conditions 
Individual TF usage counts the number of TFs that are used in single conditions or across 
multiple conditions. Pair-wise TF combination usage counts the number of TF pairs that 
target the same gene together in single conditions or across multiple conditions.  
 
For the paper, we count only the usage of individual TFs and pair-wise combinations 
targeting genes that are uniquely expressed in a single condition. This allows us to 
examine the source of regulatory specificity for each condition. 
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4.3 Statistical validation with randomly simulated networks 

4.3.1 Glossary of mathematical notations 
Here we describe the statistical tests that we employed to determine whether the 
observations that we make for the condition-specific sub-networks are significant, when 
compared to random expectation. 
 
Below we provide a glossary of the mathematical notations that we use in describing the 
tests. 
 

notation description 

o Observed value (typically for condition-specific sub-networks). 
e Expected value (typically from random simulations). 

m,n Networks of a given size typically corresponding to a particular 
cellular condition. 

k Subscript of a single network from the set of simulated networks of 
a given size. 

T Collection of all global topological measures (ie kin, kout, l and c). 
t A single global topological measure (ie kin, kout, l or c). 
F Collection of all local network motifs (ie SIMs, MIMs and FFLs). 
f A single local network motif (ie SIMs, MIMs or FFLs). 
N Occurrence of local network motifs in a network. 

d Difference between two networks of the means of a single global 
topological measure (<t>). 

Z 
Normalised difference between two networks of: 

• the means of a single global topological measure (<t>). 
• the occurrence of all local network motifs (F). 

S Compiled difference between two networks of the means of all 
global topological measures (<T>). 

R Pooled difference between endogenous and exogenous sub-
networks of the means of a single global topological measure (<t>). 

Q 

Overall difference between endogenous and exogenous sub-
networks: 

• the means of all global topological measures (<T>). 
• the occurrence of all local network motifs (F). 

 
 



 14

4.3.2 Randomly simulated networks 
We generated 1,000 simulated networks as controls for each cellular condition. For each 
simulated network, we: 
 
i. Sampled the same number of “differentially expressed” genes out of all yeast genes 

for the given condition. 
ii. Sampled the same number of “present” TFs from the list of all TFs. 
iii. Traced through the static network using the sampled genes and TFs. 
 
The randomly simulated networks range in size between 232 and 746 nodes. For each 
network we calculated both the well-known and follow-on statistics to quantify the 
topologies of the random controls.  
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4.3.3 Comparison between two observed condition-specific sub-
networks 
We used the following methods to determine if topological differences observed between 
two (or more) condition-specific sub-networks are statistically significant. The resulting 
statistics are discussed in §6.3.1 (we do not quote these in the main paper). 
 

network 
statistic significance test 

global 
topological 
measures 

 
1. Significance test between two observed condition-specific sub-networks.  

For a single topological measure, we calculated the statistical significance of 
the difference between a pair of observed condition-specific sub-networks.  
i. We performed a Mann-Whitney U-test to compare the distributions of 

each topological measure t (kin, kout, l, c) separately between two sub-
networks m and n (eg cell cycle and sporulation). 

ii. We rejected the null hypothesis H0 (that the distributions of the 
topological measure in the two observed sub-networks originate from 
the same population) if p ≤ 0.01. 

 
2. Pooled significance test between observed endogenous and exogenous sub-

networks 
For a single topological measure, we calculated the pooled statistical 
significance of the difference between the observed endogenous and 
exogenous categories of condition-specific sub-networks. 
i. In order to group the observed condition-specific sub-networks that 

display similar topologies, we examined the pair-wise p-values 
between them (calculated above). We “linked” sub-networks if their 
pair-wise p > 0.01 (ie the difference in the topological measure is non-
significant). We then clustered all of the sub-networks based on these 
links using complete linkage clustering (ie every member of a cluster 
must be linked together). In practise for every topological measure, 
this grouped the two endogenous conditions (cell cycle, sporulation) 
and three exogenous conditions (diauxic shift, DNA damage, stress 
response). 

ii. Within each cluster (ie endogenous, exogenous), we pooled (ie 
concatenated) the distributions of the topological measure t from the 
member sub-networks. We then performed a Mann-Whitney U-test (in 
a similar fashion to above) to compare the pooled distributions of the 
topological measure in the observed endogenous and exogenous sub-
networks.  

iii. We rejected the null hypothesis H0 (that the distributions of 
topological measures in the observed endogenous and exogenous sub-
networks originate from the same population) if p ≤ 0.01. 
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local network 
motifs 

 
1. Significance test between two observed condition-specific sub-networks.  

We calculated the statistical significance of the difference in motif usage (ie 
number of SIMs, MIMs, FFLs) between a pair of condition-specific sub-
networks. 
i. For two observed sub-networks, we produced a contingency table 

(three rows for motifs; two columns for sub-networks) in which each 
cell contained the observed occurrence ( o

fmN ) of motif f in sub-
network m. We produced another table containing the expected motif 
distribution for the two sub-networks; the expected occurrence ( e

fmN ) 

of motif f in sub-network m was calculated as
∑

∑∑
=

fm

fo
m

m

o
m

f

fo

fe
m N

NN
N . 

ii. We performed a χ2-test with two degrees of freedom between the 
distributions of observed and expected motif occurrences.  

iii. We rejected the null hypothesis H0 (that the motif usage in the two 
observed sub-networks originate from the same population) if p ≤ 
0.01. 

 
2. Pooled significance test between observed endogenous and exogenous sub-

networks. 
We calculated the pooled statistical significance of the difference in motif 
usage between the endogenous and exogenous categories of condition-
specific sub-networks. 
i. We clustered the observed condition-specific sub-networks by 

examining their pair-wise p-values from above (in a similar fashion to 
above). In practise this grouped the two endogenous conditions and 
three exogenous conditions together. 

ii. Within each cluster, we summed the occurrences of each motif type 
from the member sub-networks. We produced contingency tables 
describing the observed and expected motif occurrences (in a similar 
to above) for the pooled endogenous and exogenous sub-networks. 

iii. We performed a χ2-test with two degrees of freedom (in a similar 
fashion to above).  

iv. We rejected the null hypothesis H0 (that the motif usage in the 
observed endogenous and exogenous sub-networks originate from the 
same population) if p ≤ 0.01. 
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hub usage 

 
1. Overlap in hubs between two observed condition-specific sub-networks.  

We calculated the percentage overlap in TFs that are classified as hubs 
between each pair of observed condition-specific sub-networks.  

 
2. Correlation of numbers of target genes between two observed condition-specific 

sub-networks.  
For TF hubs that overlap between observed sub-networks, we calculated the 
Pearson correlation coefficients of the number of genes that they target.  
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4.3.4 Comparison between one observed condition-specific sub-
network and the randomly simulated networks 
We used the following methods to determine if the topologies of the observed condition-
specific sub-networks differ from those of randomly simulated networks of similar sizes. 
The resulting statistics are discussed in §6.3.2 (we do not quote these in the main paper). 
 

network 
statistic significance test 

global 
topological 
measures 

 
• Significance test between one observed condition-specific sub-network and the 

corresponding randomly simulated networks.  
For a single topological measure, we calculated the statistical significance of 
the difference in the observed mean for a condition-specific sub-network 
compared with the expected (ie random) means in simulated networks of 
similar size. 
i. We calculated an expected distribution of the mean topological 

measure ( >< )(kt e
m ) using the set of simulated networks of size m. 

Simulated networks are indicated by the subscript k which typically 
runs from 1 to 1,000 (ie 1,000 simulated networks of size m).  

ii. We counted the number of these expected means ( >< )(kt e
m ) that are 

greater than the observed mean >< o
mt  in the corresponding 

condition-specific sub-network (ie >< )(kt e
m   > >< o

mt ). 
iii. We calculated a p-value as the fraction of these expected means that 

satisfied this requirement with respect to the total number of 
comparisons (ie 1,000 comparisons). 

iv. We rejected the null hypothesis H0 (that the topological measure in an 
observed condition-specific sub-network originates from the same 
population as that of the simulated networks) if p ≤ 0.01 or p  ≥ 0.99. 

 
 
 
 
 
 

 
local network 

motifs 
 
 
 
 
 
 

 
• Significance test between one observed condition-specific sub-network and the 

corresponding randomly simulated networks.  
For a single motif type, we calculated the statistical significance of the 
difference in motif usage observed for a condition-specific sub-network 
compared with the expected usage in simulated networks of similar size (in a 
similar fashion to above). 
i. We calculated an expected distribution of the occurrence of motif f 

( )(kN fe
m ) using the set of simulated networks of size m (in a similar 

fashion to above).  
ii. We counted the number of these expected motif occurrences ( )(kN fe

m ) 
that are greater than the observed occurrence ( fo

mN ) in the 
corresponding condition-specific sub-network (ie fo

m
fe

m NkN >)( ). 
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local network 

motifs 

iii. We calculated a p-value as the fraction of these expected occurrences 
that satisfied this requirement with respect to the total number of 
comparisons (ie 1,000 comparisons). 

iv. We rejected the null hypothesis H0 (that the occurrence of a motif type 
in an observed condition-specific sub-network originates from the 
same population as that of the simulated networks) if p ≤ 0.01 or p  ≥ 
0.99. 
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4.3.5 Comparisons between two observed condition-specific sub-
networks with respect to expectations from random simulations 
We used the following methods to determine whether the topological differences of two 
(or more) observed condition-specific sub-networks: (a) represent a real shift in network 
topologies between the endogenous and exogenous conditions, or (b) can be simply 
explained by the differences in sub-network sizes. We calculated if the observed 
differences between two condition-specific sub-networks are larger than the differences 
between the corresponding sets randomly simulated networks. The resulting statistics are 
discussed in §6.3.3 and we quote some of the major p-values in the main paper. 
 

network 
statistic significance test 

 
 
 
 
 
 
 
 
 
 
 
 

global 
topological 
measures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1. Difference between two observed condition-specific networks. 

For a single topological measure, we calculated the difference between a pair of 
observed condition-specific sub-networks. 
i. We calculated the observed difference ( ><−>=< o

n
o
m

to
mn ttd ) in mean 

values between a pair of condition-specific sub-networks m and n. 
>< o

mt  is the mean of the topological measure in an observed sub-
network m. 

ii. We could have easily quantified the difference between sub-networks 
using a U-statistic (in a similar fashion to §4.3.3). However the difference 
d provides an intuitive measure that is computationally inexpensive. 

 
2. Difference between two sets of randomly simulated networks. 

For a single topological measure, we calculated the difference between two sets 
of simulated networks that are of similar sizes as the pair of observed condition-
specific sub-networks above. 
i. We calculated the expected differences )(kd te

mn  between matching pairs 
of simulated networks of size m and n. The pairs of networks are 
indicated by the subscript k. This provides an expected distribution of 
1,000 differences d. 

ii. We normalised these expected differences by calculating a difference Z-

score ( te
mn

te
mn

te
mnte

mn
dkd

kZ
σ

><−
=

)(
)( ), where >< te

mnd  and te
mnσ are the mean 

and standard deviation of the expected distribution of d. This provides an 
expected distribution of 1,000 Z-scores (in a similar fashion to above). 
Note the Z-score normalises the differences d between every pair of 
network sizes and for all topological measures. The importance of doing 
this will become apparent below. 

iii. We also used the mean and standard deviation (of the expected 
distribution of difference d) to calculate a Z-score for the observed d 
between the corresponding pair of condition-specific sub-networks.  
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global 

topological 
measures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3. Significance test between two observed condition-specific sub-networks for a single 

topological measure. 
For a single topological measure, we calculated the statistical significance of the 
difference in topologies between the two observed condition-specific sub-
networks. We compared this with the expected difference between the 
corresponding simulated networks. 
i. We counted the number of these expected difference Z-scores that are 

greater than the observed Z-score for the pair of condition-specific sub-
networks (ie to

mn
te
mn ZkZ >)( ). 

ii. We calculated a p-value as the fraction of these expected Z-scores that 
satisfied this requirement with respect to the total number of comparisons 
(ie 1,000 Z-score comparisons). 

iii. We rejected the null hypothesis H0 (that the difference in the topological 
measure between the two observed condition-specific sub-networks is as 
expected from random simulations) if p ≤ 0.01 or p  ≥ 0.99. 

 
4. Combined significance test between two observed condition-specific sub-networks 

across all topological measures. 
We calculated the combined statistical significance for the difference across all 
topological measures between two observed condition-specific sub-networks. 
We compared this with the expected difference between the corresponding 
simulated networks. 
i. We calculated a combined difference score S that sums the squares of Z-

scores (from above) across every topological measure ( ∑=
t

to
mn

To
mn ZS 2)( ). 

Each topological measure has equal weighting as the difference Z-scores 
are normalised. Note that this step is similar in spirit to calculating a χ2-
score.  

ii. Likewise, we calculated the expected S-score from matching pairs, k, of 
simulated networks (in a similar fashion to the observed score; 
ie ∑=

t

te
mn

Te
mn kZkS 2)()( ). This provided an expected score distribution for 

S. 
iii. We counted the number of these expected S-scores that are greater than 

the observed S-score. 
iv. We calculated a combined p-value as the fraction of expected S-scores 

that satisfied this requirement with respect to the total number of 
comparisons (ie 1,000 S-score comparisons). 

v. We rejected the null hypothesis H0 (that the difference of all topological 
measures between the two observed condition-specific sub-networks is as 
expected from random simulation) if p ≤ 0.01 or p  ≥ 0.99. 
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5. Pooled significance test between observed endogenous and exogenous sub-networks 

for a single topological measure. 
For a single topological measure, we calculated the statistical significance of the 
difference in topologies between the observed endogenous and exogenous sub-
networks. We compared this with the expected difference between the 
corresponding simulated networks. 
i. We clustered the observed and simulated networks based on the pair-wise 

p-values of the condition-specific sub-networks from above. As before 
(in a similar fashion to §4.3.3), this grouped the two endogenous and 
three exogenous conditions. 

ii. We calculated a pooled difference score R between the observed 
endogenous and exogenous conditions by summing the squares of Z-
scores across all pairs of condition-specific sub-networks (n and m), 
where n and m belong to separate endogenous and exogenous categories 
(ie 2

,
2

,
2

,
2

,
2

,
2

, )()()()()()( to
srsp

to
ddsp

to
dssp

to
srcc

to
ddcc

to
dscc

to ZZZZZZR +++++= ). 
iii. Likewise, we calculated the expected pooled R-score from matching pairs 

of simulated networks (in a similar fashion to the observed score; 
ie 2

,
2

,
2

, )(...)()( kZkZkZR te
srsp

te
ddcc

te
dscc

te ++= ). This provided an expected 
score distribution for R. 

iv. We counted the number of these expected R-scores that are greater than 
the observed R-score. 

v. We calculated a pooled p-value as the fraction of expected R-scores that 
satisfied this requirement with respect to the total number of comparisons 
(ie 1,000 R-score comparisons). 

vi. We rejected the null hypothesis H0 (that the difference in the topological 
measure between the observed endogenous and exogenous sub-networks 
is as expected from random simulation) if p ≤ 0.01 or p  ≥ 0.99. 

 
6. Overall significance test between observed endogenous and exogenous sub-networks 

across all topological measures. 
We calculated the overall statistical significance of the difference across all 
topological measures between the observed endogenous and exogenous sub-
networks. We compared this with the expected difference between the 
corresponding simulated networks. The overall p-value provided a single statistic 
that measures the significance of the global topological difference between all 
the observed condition-specific sub-networks. 
i. We clustered the observed and simulated networks into the endogenous 

and exogenous categories as above.  
ii. We calculated an overall difference score Q between the observed 

endogenous and exogenous conditions by summing toR across all 
topological measures ( ∑=

t

toTo RQ ). This provided a single Q-score to 

measure the difference between the endogenous and exogenous sub-
networks while taking into account all of the topological measures. 
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iii. Likewise, we calculated the expected overall Q-score from matching 
pairs of simulated networks (in a similar fashion to above; 
ie ∑=

t

teTe RQ ).  This provided an expected score distribution for Q. 

iv. We counted the number of these expected Q-scores that are greater than 
the observed Q-score. 

v. We calculated an overall p-value as the fraction of expected Q-scores that 
satisfied this requirement with respect to the total number of comparisons 
(ie 1,000 Q-score comparisons).  

vi. We rejected the null hypothesis H0 (that the difference in overall 
topology between the observed endogenous and exogenous sub-networks 
is as expected from random simulation) if p ≤ 0.01 or p  ≥ 0.99. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

local 
network 
motifs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1. Difference between two observed condition-specific sub-networks. 

We calculated the difference in overall motif usage between a pair of observed 
condition-specific sub-networks. 
• We calculated a χ2-score Fo

mn][ 2χ to measure the difference in overall 
motif (F) occurrences between a pair of observed condition-specific sub-
networks m and n (in a similar fashion to §4.3.3).  

 
2. Difference between two sets of randomly simulated networks. 

Similarly, we calculated the difference in overall motif usage between two sets 
of randomly simulated networks that are of similar sizes as the pair of observed 
condition-specific sub-networks above. 
i. We calculated the expected χ2-scores )(][ 2 kFe

mnχ  between matching 
simulated networks to provide an expected score distribution (in a similar 
fashion to above).  

ii. We normalised the expected χ2-scores by calculating a difference Z-score 

( Fe
mn

Fe
mn

Fe
mnFe

mn
k

kZ
σ

χχ ><−
=

2222 ][)(][
)( ) where >< Fe

mn][ 2χ  and Fe
mnσ are the 

mean and standard deviation of the expected χ2-distribution (in a similar 
fashion to above). This provided an expected score distribution for Z. 

iii. Likewise, we calculated a difference Z-score Fo
mnZ between the 

corresponding condition-specific sub-networks.  
 

3. Significance test between two observed condition-specific sub-networks across all 
motif occurrences. 

We calculated the statistical significance of the difference in overall motif usage 
between the two observed condition-specific sub-networks. We compared this 
with the expected difference between the corresponding simulated networks. 
i. We counted the number of these expected Z-scores that are greater than 

the observed Z-score. 
ii. We calculated a p-value as the fraction of expected Z-scores that satisfied 
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this requirement with respect to the total number of comparisons (ie 
1,000 Z-score comparisons). 

iii. We rejected the null hypothesis H0 (that the difference in overall motif 
usage between the two observed condition-specific sub-networks is as 
expected from random simulations) if p ≤ 0.01 or p  ≥ 0.99. 

 
4. Overall significance test between observed endogenous and exogenous sub-networks 

across all motif occurrences. 
We calculated the statistical significance of the difference in motif usage 
between the observed endogenous and exogenous sub-networks. We compared 
this with the expected difference between the corresponding simulated networks. 
The overall p-value provided a single statistic that measures the significance of 
the difference in overall motif usage between all the observed condition-specific 
sub-networks. 
i. We clustered the observed and simulated networks into the endogenous 

and exogenous categories using the pair-wise p-values above. 
ii. We calculated an overall difference score Q between the observed 

endogenous and exogenous conditions by summing the squares of Z-
scores across all pairs of condition-specific sub-networks belonging to 
separate categories (ie 2

,
2

,
2

, )(...)()( Fo
srsp

Fo
ddcc

Fo
dscc

Fo ZZZQ ++= ). Note here 
we do not need to calculate the S- and R- scores (as with topological 
measures) as the occurrence of different motif types are already 
combined when calculating the χ2- and Z-scores. 

iii. Likewise, we calculated the expected Q-score from matching pairs of 
simulated networks to (in a similar fashion to the observed score; 
ie 2

,
2

,
2

, )(...)()( kZkZkZQ Fe
srsp

Fe
ddcc

Fe
dscc

Fe ++= ). This provides an expected 
score distribution for Q. 

iv. We counted the number of these expected Q-scores that are greater than 
the observed Q-score. 

v. We calculated an overall p-value as the fraction of expected Q-scores that 
satisfied this requirement with respect to the total number of comparisons 
(ie 1,000 Q-score comparisons).  

vi. We rejected the null hypothesis H0 (that the difference in overall motif 
usage between the observed endogenous and exogenous sub-networks is 
as expected from random simulation) if p ≤ 0.01 or p  ≥ 0.99. 
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hub usage 

 
1. Overlap in hub usage between two randomly simulated networks.  

We compared the usage of TF hubs in the observed condition-specific sub-
networks compared with the expected usage in randomly simulated networks. 
i. We calculated the percentage overlap in TFs being classified as hubs 

between matching pairs of simulated networks of size m and n (in a 
similar fashion to above).  

ii. We compared the overlap between the observed condition-specific sub-
networks and the mean expected overlap between simulated networks of 
corresponding sizes. 

 
2. Correlation of numbers of target genes between two randomly simulated networks.  

We compared the correlation in numbers of target genes of TF hubs in the 
observed condition-specific sub-networks compared with the expected 
correlation in randomly simulated networks. 
i. For TF hubs that overlap between matching pairs of simulated networks 

of size m and n, we calculated the Pearson correlation coefficients of the 
number of genes that they target (in a similar fashion to above). 

ii. We compared the level of correlation between observed condition-
specific sub-networks and the average correlation between randomly 
simulated networks of corresponding sizes (in a similar fashion to 
above). 
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4.3.6 Sensitivity analysis 
We test the robustness of the observations for the condition-specific sub-networks by 
conducting a sensitivity analysis.  
 

i. We generated 1,000 static networks containing error-rates of 10%, 20% 
and 30%. The errors we introduced include random addition, deletion and 
exchange of regulatory interactions. 

ii. For each condition, we traced through each erroneous network using the 
correct list differentially expressed genes and present TFs. This provides 
1,000 sub-networks containing random errors for each condition. 

iii. We calculate the topological measures and motif occurrence for each 
error-containing sub-network. 

 
We used the following methods to determine if there are topological differences between 
condition-specific sub-networks and error-containing sub-networks. The resulting 
statistics are discussed in §6.3.4. 
 

network 
statistic significance test 

global 
topological 
measures 

 
• Significance test between one observed condition-specific sub-network and the 

corresponding simulated error-containing networks.  
For a single topological measure, we calculated the statistical significance 
of the difference in the observed mean for a condition-specific sub-network 
compared with the expected (ie random) means in the error-containing 
networks of similar size. 
v. We calculated an expected distribution of the mean topological 

measure ( >< )(kt e
m ) using the set of simulated networks of size m.  

vi. We counted the number of these expected means ( >< )(kt e
m ) that 

are greater than the observed mean >< o
mt  in the corresponding 

condition-specific sub-network (ie >< )(kt e
m   > >< o

mt ). 
vii. We calculated a p-value as the fraction of these expected means that 

satisfied this requirement with respect to the total number of 
comparisons (ie 1,000 comparisons). 

viii. We rejected the null hypothesis H0 (that the topological measure in 
an observed condition-specific sub-network originates from the 
same population as that of the simulated error-containing networks) 
if p ≤ 0.01 or p  ≥ 0.99. 

 

local network 
motifs 

 
• Significance test between one observed condition-specific sub-network and the 

corresponding simulated error-containing networks.  
For a single motif type, we calculated the statistical significance of the 
difference in motif usage observed for a condition-specific sub-network 
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compared with the expected usage in the error-containing networks of 
similar size (in a similar fashion to above). 
i. We calculated an expected distribution of the occurrence of motif f 

( )(kN fe
m ) using the set of simulated networks of size m (in a similar 

fashion to above).  
ii. We counted the number of these expected motif occurrences 

( )(kN fe
m ) that are greater than the observed occurrence ( fo

mN ) in the 
corresponding condition-specific sub-network (ie fo

m
fe

m NkN >)( ). 
iii. We calculated a p-value as the fraction of these expected 

occurrences that satisfied this requirement with respect to the total 
number of comparisons (ie 1,000 comparisons). 

iv. We rejected the null hypothesis H0 (that the occurrence of a motif 
type in an observed condition-specific sub-network originates from 
the same population as that of the simulated error-containing 
networks) if p ≤ 0.01 or p  ≥ 0.99. 

 
 

4.4 Availability 
Perl scripts implementing SANDY, data files containing the randomly simulated 
networks and their topological statistics are available from the Supplementary Website.  
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5. Identifying active sub-networks of endogenous 
condition times-courses 
 
We examined the dynamics of the regulatory network during the time-course of the 
endogenous conditions. We identified the active regulatory sub-networks for each phase 
of the cell cycle and sporulation using a similar procedure as described in §3. 

5.1 Defining differentially expressed genes during endogenous 
condition phases 
The studies of Cho et al. (6) and Chu et al. (7) measured gene expression during 
successive phases of the cell cycle and sporulation through a time-course. The two 
studies classified differentially expressed genes into the phases during which they 
displayed peak expression. We used these data to examine the dynamics of the regulatory 
network during the time-course of these conditions.  
 
The datasets contained the following numbers of differentially expressed genes during 
each phase. 
 

condition phase 
number of 

differentially 
expressed genes 

reference 

early G1 75 
late G1 143 

S 97 
G2 69 

cell cycle 

M 105 

(6) 

 
metabolic 52 

early I 61 
early II 45 

early-mid 95 
middle 158 

mid-late 61 

sporulation 

late 5 

(7) 

 

5.2 Identifying present TFs 
We used the same list of present TFs for the cell cycle and sporulation as described in 
§3.3. 
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5.3 Tracing phase-specific sub-networks 
We defined the phase-specific sub-networks for the cell cycle and sporulation by 
applying the TBA to each set of phase-specific differentially expressed genes. 
 

5.4 Clustering time-dependent TF usage 
We clustered TFs that are actively used during the time-courses with a similar procedure 
we used to cluster TF hubs (§4.2.1); we calculated propensity values for all active TFs in 
the cell cycle and sporulation, and then clustered TFs using k = 6 for the cell cycle (five 
phase-specific and one ubiquitous cluster), and k = 7 for sporulation (six phase-specific 
and one ubiquitous). 
 

5.4 Availability 
Data files containing lists of differentially-expressed genes, the phase-specific sub-
networks and TF clusters are available from the Supplementary Website. 
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6. SANDY reveals large topological changes  

6.1 Well-known statistics 

6.1.1 Global topological measures 
Below we list all of the global topological measures that we calculated for the static and 
condition-specific networks. In addition to those published in the main paper, we show 
three additional measures that were excluded: 
 
i. In-degree exponential distribution exponent (β).  
ii. Out-degree power-law distribution exponent (γ). 
iii. Network diameter (d). 
 

cellular conditions 

endogenous exogenous topological measure 
static 

cell cycle sporulation diauxic shift DNA 
damage 

stress 
response 

# TFs 142 70 74 71 72 63 

# target genes 3,420 280 257 748 678 362 

# interactions 7,074 550 481 1,217 1,082 566 

in-degree (<kin>) 2.1 2.0 1.9 1.6 1.6 1.6 
in-degree exponential 
exponent (β) 0.8 0.7 0.8 1.2 1.2 1.2 

out-degree (<kout>) 49.8 7.9 6.5 15.0 15.0 9.0 
out-degree power-law 
exponent (γ) 0.6 1.5 1.5 0.8 0.8 0.9 

path length (l) 4.7 4.5 3.4 2.0 2.0 2.2 

diameter (d) 12 12 10 6 6 7 

Clustering coefficient (c) 0.11 0.15 0.14 0.09 0.09 0.08 
 
 
As discussed in §6, the p-values resulting from comparisons with randomly simulated 
networks indicate that: (i) endogenous and exogenous sub-networks display statistically 
significant differences in topological measures, and (ii) individual sub-networks have 
topologies that diverge significantly from random expectation. 
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Descriptions and interpretations of the major topological measures are provided in the 
main paper. Below we describe the observations for the three measures that were 
excluded. 
 

topological 
measure observation interpretation 

in-degree 
exponential 
distribution 
exponent (β) 

 
The distribution of incoming interactions 
per target gene is characterised by an 
exponential behaviour (probability for a 
given gene to be regulated by k TFs 
decreases proportionally to e-βk); the 
exponent, β, is 0.8 in the static network. 
 
Though exponential behaviour is 
maintained in all conditions, exponents 
are larger in the exogenous conditions 
signifying a faster drop-off. 
 

 
The exponential behaviour indicates a 
sharp decay in the in-degree 
distribution, and presumably reflects the 
molecular constraints on the number of 
TFs that can co-regulate at the same 
promoter (16). 
 
Along with the average in-degrees 
(<kin>), the changes in exponents 
suggest that TF combination usage is 
simpler in the exogenous conditions, 
which reflects the more direct-acting 
nature of these cellular states. 
 

out-degree 
power-law 
distribution 
exponent (γ) 

 
The distribution of outgoing interactions 
follows a power-law behaviour 
(probability that a given TF regulates k 
genes decreases proportionally to k-γ); the 
exponent γ is 0.6 in the static network. 
 
Power-law behaviour is maintained in all 
conditions; however exponents double 
from 0.8 to 1.5 between the exogenous 
and endogenous sub-networks. 
 

 
The power-law behaviour signifies a 
broader decay profile than the in-degree 
distribution and it is indicative of a hub-
containing network structure. The 
exponent is less than what is observed 
for other molecular biological networks, 
signifying the distribution is not as 
polarized, or “hubby”. 
 
The changes in exponents between 
conditions suggest that the exogenous 
sub-networks contain fewer TF hubs.  
 

diameter (d) 

 
The diameter is 12 in the static network, 
showing that the longest path has 12 
intermediate TFs. Diameters double from 
the exogenous (d = 6-7) to endogenous 
conditions (d = 10-12). 

 
As with path lengths (l), the diameter 
measures the distance between a TF and 
its final target; it gauges the immediacy 
of a regulatory signal. Shorter distances 
in the exogenous sub-networks suggest 
that external stimuli propagate to the 
required targets quickly. Longer 
distances in endogenous conditions are 
due to formation of regulatory cascades. 
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6.1.2 Local network motifs 
Below we provide the numbers of regulatory interactions participating in network motifs 
(SIMs, MIMs, FFLs). Percentages are calculated as a fraction of the total number of 
interactions in motifs for each condition. 
 

cellular conditions 

endogenous exogenous network motif 
static 

cell cycle sporulation diauxic shift DNA 
damage 

stress 
response 

SIMs 1,748 
(37.6%) 

130 
(32.0%) 

117 
(38.9%) 

438 
(57.4%) 

462 
(55.7%) 

228 
(59.1%) 

MIMs 325 
(7.0%) 

96 
(23.7%) 

50 
(16.6%) 

180 
(23.6%) 

226 
(27.3%) 

78 
(20.2%) 

FFLs 2,581 
(55.5%) 

180 
(44.3%) 

134 
(44.5%) 

145 
(19.0%) 

141 
(17.0%) 

80 
(20.7%) 

Total 4,654 406 301 763 829 386 

 
 
As discussed in the main paper, there are large differences in motif occurrences between 
the endogenous and exogenous conditions. As discussed in §6, the p-values resulting 
from comparisons with randomly simulated networks indicate that: (i) endogenous and 
exogenous sub-networks display statistically significant differences in motif usage, and 
(ii) individual sub-networks have motif occurrences that diverge significantly from 
random expectation. 
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Studies have ascribed particular information processing tasks to motifs (14). Here we 
describe two example motifs found in the conditions-specific sub-networks. 
 

network motif description example 

SIM 
MIM 

 
Simultaneous regulation of multiple genes 
such as those involved in the same 
pathway or macromolecular complex. 
They appear suited for controlling large-
scale turnover of genes observed in 
exogenous conditions. 
 

 
DNA damage. Rpn2 regulates three 
proteosomal subunits Rpt2, Rpt4, and 
Rpt6. 

FFL 

 
Regulatory buffer that respond only to 
persistent input signals from the primary 
TF, and allows for rapid shutdown when 
signal ceases. It appears suited for 
endogenous conditions as cells will only 
enter a new phase once the regulatory 
signal from the previous one has 
stabilised. The signal will also terminate 
quickly once the cell has entered a new 
phase. 
 

 
Sporulation. Rim1 acts as the primary 
and Ime1 as the secondary TF to 
regulate Ime2 in the early phase. Ime2 is 
a kinase that stimulates about 20 further 
TFs in the middle and late phases; it 
ensures a quick shutdown of the 
regulatory cascade through 
phosphorylation of Ime1.  
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6.2 Follow-on statistics 

6.2.1 TF hub usage 
The power-law behaviour of the out-going degree distribution indicates the presence of 
TF hubs that target a disproportionately large number of genes. We identify a total of 51 
TF hubs that separate into two main groups that we describe below: 
 

hub type observation example 

permanent 

 
There are 11 hubs that are permanent 
features of the regulatory network 
regardless of cellular condition. These 
mainly comprise TFs that regulate house-
keeping functions or multiple functions. 
 

 
Multifunctional regulator. Abf1 is a 
general transcriptional activator; it has 
291 target genes in the static network 
and regulates an average on 55.2 genes 
across all condition-specific sub-
networks. 
 
House-keeping regulator. Mig1 and 
Mig2 are TFs involved regulation of 
glucose metabolism.  
 

 
 
 
 
 
 
 
 
 

 
 

transient 
 
 
 
 
 
 
 
 
 
 
 
 

 
There are 40 transient hubs, which are 
influential in one cellular condition, but 
much less so in others. The hubs group in 
five sub-clusters representing each 
cellular condition.  
 
TF hubs with direct functional 
associations. 
 
Half of the hubs are important for the 
particular condition; it is harder to make 
direct functional associations for the 
remaining TFs as they have less complete 
annotations.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
TF hubs with direct functional 
associations. 
 
Cell cycle. 10 out of 11 hubs are known 
cell cycle TFs, including the Swi4 and 
Mbp1 G1/S regulators (17-19). 
 
Sporulation. Includes Ime1, a key 
inducer of early meiotic genes (20-22), 
and Ume6 a co-activator (21-24). 
Ndt80, an important regulator of the 
middle stages of sporulation (21,22,25) 
is absent as it currently has only one 
assigned target gene in the dataset. 
 

Diauxic shift 
Includes Hap2 and Hap4 global 
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transient 

 
 
 
 
 
 

 
 
 
 
 
 
TF hubs with unclear functional 
associations. 
 
Of great interest are TFs that are very 
sparsely annotated. As hubs, they are 
obviously important in the cellular state 
under consideration. We can augment 
these annotations by predicting key 
regulatory roles in their respective 
conditions, and this should provide a 
useful starting point for further 
experimental characterization. Such 
functional predictions are not trivial to do, 
and it is only through integrating gene 
expression data with the regulatory 
network that we are able to do this.  
 

regulators of respiratory gene expression 
and activator of cytochrome C (26-28). 
 
Stress response. Includes the Msn2 and 
Msn4 stress response regulators. 
 
TF hubs with unclear functional 
associations. 
 
Sporulation. There are three regulators 
of nitrogen utilization (YIR023W, 
YPL038W, YNL103W); these appear to 
be surprising inclusions, but as 
sporulation is initiated by nitrogen 
depletion, their inclusion is biologically 
meaningful. 
 
There are two poorly annotated TF hubs 
(YMR021C, YIL113W). 
 
Diauxic shift. Poorly annotated TF hubs 
(YHR206W). 
 
Stress response. Poorly annotated TF 
hubs (YDR259C, YDR501W, 
YGL096W, YLR403W, YIR018W). 
 
Permanent hubs. Poorly annotated 
hubs (YKL043W, YLR013W). 
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6.2.2 Interaction interchange index 
The interchange index (I) addresses the dynamic nature of the regulatory interactions 
between TFs and target genes. It quantifies the extent to which each TF contributes to the 
rewiring of the regulatory network.  
 
i. Hot links 
Just 66 interactions are retained across four or more conditions and we consider these to 
represent hot links (29,30) that are “always on” compared with the rest of the network. 
Many interactions originate from two types of TFs: metabolic regulators (eg Mig1 and 
Mig2), and general transcriptional regulators (eg Abf1 and Reb1). Therefore we associate 
hot links with the continual regulation of house-keeping functions in the cell. Many of the 
TFs making these links also comprise permanent hubs. 
 
ii. Interchange index values 
1,476 out of a total 2,479 regulatory interactions are unique to a particular condition, and 
the remainder is common to two or more. Thus over half of the interactions are 
exchanged completely between conditions, resulting in specific regulation of the 
respective cellular states. 
 
Indices calculated for all TFs display a uni-modal distribution with two extreme outliers: 
 

interchange index (I) # TFs example TF 
I ≤ 10% 12 Rgt1 

10% < I < 90% 73 Sin3, Abf1, Yox1 
I ≥ 90% 27 Swi4 

 
 
iii. Example TFs 
Below we provide descriptions of example TFs that have different index values. These 
examples are depicted in the main paper. An interesting observation is that TFs 
exchanging regulatory interactions between conditions also shift their regulatory role. 
 

example TF interchange 
index (I) description 

Swi4 100% 

 
The TF makes a total of 43 regulatory interactions. It has an extremely 
high interchange index; in fact it only targets genes during the cell 
cycle and none during other conditions. It is a regulator of the G1/S 
transition and predominantly targets genes involved in DNA synthesis 
and cell wall synthesis. 
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Yox1 84% 

 
The TF makes a total of 120 regulatory interactions. It has a fairly 
high index and shows little overlap of interactions across cellular 
conditions.  
 
The TF has so far been implicated in control of the cell cycle, and 
DNA synthesis and repair, but information about its full range of 
regulatory functions is currently limited (31,32).  
 
Consistent with its role in DNA synthesis, it makes 21 regulatory 
interactions during the cell cycle and 30 during sporulation. 
Surprisingly, it produces the most interactions – 91 – during diauxic 
shift, which suggests a previously unreported role in this process. The 
interchange of regulatory interactions brings about a dramatic shift in 
the function of Yox1; it is focused on controlling cell growth during 
the cell cycle and sporulation, whereas it redirects it attention to 
protein synthesis during diauxic shift. 
 

Abf1 51% 

 
The TF makes a total of 160 regulatory interactions. It has an 
intermediate exchange index and among its many cited functions as 
general transcriptional activator are the regulation of meiosis (33), 
metabolic activities (34), translation (35,36) and gene silencing (37)  
 
It preserves 79 interactions across multiple conditions, which 
corresponds to the consistent regulation of a core set of cellular 
functions such as glycolytic pathways, translation and cell biogenesis.  
 
The other half of interactions – 81 – is exchanged, and this results in a 
shift of regulatory focus on top of its core functions. In the cell cycle 
and sporulation Abf1 regulates cell growth, whereas in stress response 
it controls intracellular transport. 
 

Sin3 25% 

 
The TF makes a total of 20 regulatory interactions. It has a fairly low 
index indicating a high overlap in regulatory interactions between 
cellular conditions. It is a silencing component of the Rpd3-containing 
histone deacetylase complex (38), and many of its target genes are 
involved in metabolic processes and cell growth. The few condition-
specific interactions are made during sporulation or DNA damage. 
 

Rgt1 0% 

 
The TF makes a total of six regulatory interactions. It has an 
extremely low index, and maintains all of its interactions across 
multiple cellular conditions. It is a house-keeping regulator controlling 
glucose metabolism and glucose import. 
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6.2.3 TF usage across multiple conditions 
We discuss that there is large overlap in individual TF usage but small overlap in TF pair 
usage; therefore regulatory specificity is achieved through combinatorial TF use (39).  
 
i. Individual TF usage 
There is large overlap in the use of individual TFs. 95 TFs are used in more than one 
condition. Between the endogenous conditions 53 out of 92 TFs overlap and between 
exogenous conditions 44 out of 100 TFs are used in all three states.  
 
Below we show the overlap in individual TF usage between all the cellular conditions. 
 

cellular conditions 

 cell cycle sporulation diauxic 
shift 

DNA 
damage 

stress 
response 

cell cycle 70 53 52 56 37 

sporulation  75 62 62 45 

diauxic shift   79 70 49 

DNA 
damage    81 45 ce

llu
la

r 
co

nd
iti

on
s 

stress 
response     63 

 
 
ii. Pair-wise TF usage 
There is small overlap in the use of pair-wise TF combinations between conditions. The 
static network has an average in-degree of 2.1, meaning that genes are typically regulated 
by pairs of TFs. In-degrees are larger in the endogenous sub-networks, combinatorial TF 
regulation is more prevalent in these conditions.  
 
There are 360 distinct pair-wise TF combinations across the five conditions; of these 309 
are unique to a single condition. Between endogenous conditions, just 3 out of 149 pairs 
overlap, and between exogenous conditions just 3 out of 233 pairs overlap.  
 
Abf1 provides a nice example of combinatorial TF specificity. During sporulation, it 
combines with Ime1 to regulate Hop1, which is involved in chromosomal segregation. 
During diauxic shift, it acts in conjunction with the Hap2-Hap4 heteromeric complex to 
regulate the Aac2 major mitochondrial ADP/ATP carrier. 
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 Below we show the overlap in pair-wise TF usage between all the cellular conditions. 
 

cellular conditions 

 cell cycle sporulation diauxic 
shift 

DNA 
damage 

stress 
response 

cell cycle 82 3 2 3 0 

sporulation  70 6 12 1 

diauxic shift   127 28 3 

DNA 
damage    125 3 ce

llu
la

r 
co

nd
iti

on
s 

stress 
response     12 
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6.3 Statistical validation with randomly simulated networks 

6.3.1 Comparison between two observed condition-specific sub-
networks 
We provide a full list of p-values obtained from this analysis on the Supplementary 
Website. See §4.3.3 for precise definitions and calculations of p-values. 
 
i. Global topological measures and local network motifs 
Briefly, the p-values indicate that the distribution of topological measures and occurrence 
of network motifs are similar within the endogenous and exogenous categories (ie 
differences are non-significant), whereas they are different between the two types of 
conditions (ie differences are significant). 
 
We favour the p-values discussed in §6.3.3 as they consider the dependence of topology 
on network sizes, and so allow us to identify the topological changes that really 
differentiate between the endogenous and exogenous conditions. 
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ii. Hub usage 
Below we show the percentage overlap in TFs that act as hubs in different cellular 
conditions. 
 

cellular conditions 

 cell cycle sporulation diauxic 
shift 

DNA 
damage 

stress 
response 

cell cycle  61.9% 47.6% 42.9% 38.1% 

sporulation   45.5% 50.0% 36.4% 

diauxic shift    66.7% 66.7% 

DNA 
damage     61.9% ce

llu
la

r 
co

nd
iti

on
s 

stress 
response      

 
 
Below we show the Pearson correlation coefficients for the numbers of genes targeted by 
the overlapping TF hubs. 
 

cellular conditions 

 cell cycle sporulation diauxic 
shift 

DNA 
damage 

stress 
response 

cell cycle  0.58 0.30 0.33 0.22 

sporulation   0.59 0.60 0.47 

diauxic shift    0.62 0.72 

DNA 
damage     0.74 ce

llu
la

r 
co

nd
iti

on
s 

stress 
response      
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6.3.2 Comparison between one observed condition-specific sub-
network and the randomly simulated networks 
We provide a full list of p-values obtained from this analysis on the Supplementary 
Website. See §4.3.4 for precise definitions and calculations of p-values. 
 
• Global topological measures and local network motifs 
Briefly, the p-values indicate that many of the topological measures and motif 
occurrences are significantly different to that expected from the randomly simulated 
networks. The most prominent differences are apparent for the features that stand out for 
the endogenous and exogenous sub-networks.  For example, clustering coefficients are 
high compared with the simulated networks for cell cycle (p < 0.004) and sporulation (p 
<.0.011).  
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6.3.3 Comparisons between two observed condition-specific sub-
networks with respect to expectations from random simulations 
The p-values listed here indicate the significance of the difference in the topologies and 
motif usage between distinct condition-specific sub-networks. The statistics are 
calculated taking into account the dependence of topology on network size, and therefore 
help identify the topological changes that really differentiate between the endogenous and 
exogenous conditions. 
 
We provide a full list of p-values obtained from this analysis on the Supplementary 
Website. See §4.3.5 for precise definitions and calculations. 
 
i. Global topological measures 
Below we show the overall* and pooled+ p-values indicating the significance of the 
difference in global topologies between endogenous and exogenous sub-networks across 
all* (ie combined) and individual+ topological measures. 
 

exogenous conditions 

 
all in-degree out-degree path 

length 
clustering 
coefficient 

en
do

ge
no

us
 

co
nd

iti
on

s 

<0.001* <0.005+ <0.338+ <0.001+ <0.001+ 

 
 
The overall p-value for all topological measures demonstrates that the global topologies 
of endogenous and exogenous conditions differ to a greater extent than expected from the 
random simulations. Therefore, the topological changes represent a real shift in sub-
network structures between the endogenous and exogenous conditions, and are not only 
due to differences in sub-network sizes. 
 
The combined p-values for the individual topological measures are also significant, 
indicating that they change more than expected from the random simulations. The only 
exception is the out-degree whose p-value is non-significant. This is because as the 
average out-degree depends greatly on the size of the simulated network (where mean 
values increase with network size). This is not surprising as a relatively small pool of TFs 
(which are the only nodes with outgoing connectivities) must be shared among a large 
number of target genes. 
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Below we show the combined p-values indicating the significance of the difference in 
topologies between pairs of individual conditions. P-values calculated for the overall 
changes across all topological measures (ie kin, kout, l, c). 
 

cellular conditions 

 endogenous exogenous 

 cell cycle sporulation diauxic 
shift 

DNA 
damage 

stress 
response 

cell cycle  <0.170 <0.001 <0.001 <0.001 

sporulation   <0.004 <0.027 <0.021 

diauxic shift    <0.391 <0.442 
DNA 

damage     <0.559 ce
llu

la
r 

co
nd

iti
on

s 

stress 
response      

 
 
The overall global topologies of sub-networks within the endogenous (cell cycle, 
sporulation) and exogenous (diauxic shift, DNA damage, stress response) categories of 
conditions are similar.  
 
In contrast the overall topologies between the endogenous and exogenous sub-networks 
are significantly different. There are a few individual exceptions where p-values indicate 
a non-significant difference (eg sporulation and DNA damage). However the overall and 
pooled p-values shown above clearly emphasises that there are topological differences 
between the endogenous and exogenous sub-networks. (See also Supplementary Website 
for more p-values). 
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ii. Local network motifs  
Below we show the overall p-value indicating the significance of the difference in motif 
usage between endogenous and exogenous sub-networks. P-values are calculated for the 
overall occurrence all motif types (ie MIMs, SIMs, FFLs). 
 

 exogenous conditions 
en

do
ge

no
us

 
co

nd
iti

on
s 

<0.001 

 
The p-value clearly shows that the occurrences of network motifs in the endogenous and 
exogenous conditions are significantly different. This difference is greater than the 
expectations calculated from the randomly simulated networks. Therefore, the changes in 
motif usage represent a real shift in sub-network structures between the endogenous and 
exogenous conditions, and are not only due to differences in sub-network sizes. 
 
Below we show the p-value indicated the significance of the difference in overall motif 
occurrences between pairs of individual conditions. 
 

cellular conditions 

 endogenous exogenous 

 cell cycle sporulation diauxic 
shift 

DNA 
damage 

stress 
response 

cell cycle  <0.485 <0.013 <0.001 <0.001 

sporulation   <0.032 <0.001 <0.016 

diauxic shift    <0.691 <0.955 
DNA 

damage     <0.740 ce
llu

la
r 

co
nd

iti
on

s 

stress 
response      

 
 
The overall motif occurrences of sub-networks within the endogenous (cell cycle, 
sporulation) and exogenous (diauxic shift, DNA damage, stress response) categories of 
conditions are similar.  
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In contrast motif usages between endogenous and exogenous conditions are significantly 
different. There are a few individual exceptions where p-values indicate a non-significant 
difference (eg sporulation and diauxic shift). However the overall and pooled p-values 
shown above clearly emphasises that there are topological differences between the 
endogenous and exogenous sub-networks. (See also Supplementary Website for more p-
values). 
 
iii. Hub usage 
Below we show the mean percentage overlap in TFs that are defined as hubs in the 
simulated networks. 
 

cellular conditions 

 cell cycle sporulation diauxic 
shift 

DNA 
damage 

stress 
response 

cell cycle  87.2% 78.7% 78.7% 95.7% 

sporulation   89.4% 89.4% 83.0% 

diauxic shift    100% 76.6% 

DNA 
damage     76.6% ce

llu
la

r 
co

nd
iti

on
s 

stress 
response      

 
 
Below we show the mean Pearson correlation coefficients for the numbers of genes 
targeted by overlapping TF hubs in the simulated networks. 
 

cellular conditions 

 cell cycle sporulation diauxic 
shift 

DNA 
damage 

stress 
response 

cell cycle  0.97 0.95 0.95 0.99 

sporulation   0.99 0.99 0.93 

diauxic shift    1.0 0.91 

DNA 
damage     0.91 ce
llu

la
r 

co
nd

iti
on

s 

stress 
response      
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The percentage overlap and correlation coefficients are much higher for the randomly 
simulated networks than for the corresponding condition-specific sub-networks. 
Therefore randomly simulated networks have more uniform hub usage compared with 
what is observed in the condition-specific sub-networks. This indicates that random 
expectation is for different size networks to converge on the same set of TF hubs 
regardless of the regions of the network being used.  
 

6.3.4 Sensitivity analysis 
We provide the p-values obtained from this analysis on the Supplementary Website. See 
§4.3.6 for precise definitions and calculations of p-values. 
 
• Global topological measures and local network motifs 
Briefly, the p-values indicate that many of observed topological measurements and motif 
occurrences are maintained even when random errors are introduced into the data. All of 
the trends that we observe in the comparisons between condition-specific sub-networks 
remain at all error rates (10%, 20%, 30%). Therefore, the results we report are robust 
against substantial errors in the underlying data. 
 
At 10% and 20% error rates, most changes in topologies are non-significant. At 30% 
error rates, some observations are affected to a significant level; the most affected include 
the mean clustering coefficients, and the occurrence of MIMs and FFLs for each sub-
network. This is perhaps unsurprising as these particular observations depend on precise 
or tight interactions between nodes; the simulations introduce errors by dispersing these 
interactions so lowering the level of clustering and occurrence of MIMs and FFLs. 
Nevertheless, we continue to observe the same trends when we compare their values and 
occurrences across different conditions. 
 

6.4 Availability 
Data generated by SANDY are available from the Supplementary Website. These include 
the global topological measures and local motif occurrence in condition-specific and 
simulated networks, TF hub propensity values and clustering, interchange indices for all 
TFs, TF usage overlap between conditions, and full list of p-values from the statistical 
analyses. 
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7. Network dynamics during the time-courses of 
endogenous conditions 

7.1 Phase-specific and ubiquitous TFs 
TFs used to regulate the cell cycle and sporulation group into two main clusters 
depending on their time-dependent activity: 
 
i. Phase-specific TFs 
Most TFs operate during a particular phase, which is highlighted by their phase-specific 
targeting of genes. 
 

cellular 
condition # TFs description 

cell cycle 54 

 
Activity of major cell cycle regulators is in line with previous 
observations, so emphasizing the validity of the methods we use in the 
paper (40). TFs group into five distinct sub-clusters representing some 
of the major phases during the cell cycle. Swi4 and Mbp1 are clustered 
in the late G1 phase (19), Fkh1 is found in G2 (41-44), Mcm1 is in M 
(41-44), and Ace2 and Swi5 are in the early G1 phase (45,46). 
 

sporulation 51 

 
TFs group into six distinct sub-clusters that correspond to some of the 
phases during sporulation. Major meiotic regulators are shown to be 
active in previously reported phases. Rim1, Ime1 and Ume6 are 
clustered in the early phases and Ndt80 in the middle phase. 
 

 
 
ii. Ubiquitous TFs  
A sizeable minority of TFs is ubiquitously active throughout the cell cycle. These TFs 
regulate genes indiscriminately of the cellular phase. About a third of ubiquitous TFs 
comprise permanent hubs. 
 

cellular 
condition # TFs description 

cell cycle 16 

 
TFs form a single cluster and there are no cell cycle-specific TFs present 
in this group. About a third of TFs comprises permanent hubs and 
includes the Abf1 general transcriptional regulator. 
 

sporulation 23 
TFs form a single cluster and there are no sporulation-specific TFs 
present in this group. Again about a third of TFs consists of permanent 
hubs and includes the Abf1 general transcriptional regulator. 
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7.2 Serial and parallel inter-regulation between TFs 
Of interest is the pattern of inter-regulation between TFs to control the temporal 
progression of the cell cycle and sporulation. We uncover two types of inter-regulation: 
 
i. Serial inter-regulation 
Phase-specific TFs in one phase of the condition regulate further TFs in subsequent 
phases. This serves to drive the condition forward (47). 
 

cellular 
condition description 

cell cycle 

 
TFs in the G1 and S phases target TFs in G2 and M. These in turn, target TFs in the 
G1 phase in preparation for the next cycle.  
 
We can identify complete loops of regulatory interactions among the complex 
circuitry. . Swi4 and Mbp1 in late G1 target TFs in the G2 and M phases. Fkh1 and 
Mcm1 in these phases in turn regulate Swi5 and Ace2 in early G1 of the next cell 
cycle. Finally Mcm1 loops back to regulate Swi4, the original TF.  
 
There is also limited back-regulation of TFs in the previous phase, such as that of 
Swi4 targeting Hap1. Presumably, these comprise inhibitory interactions turning off 
the activity of TFs, but we cannot be certain of this without detailed knowledge of 
the regulatory signal (ie activating or repressing) of the TF-target relationships. 
Unfortunately this information is rarely available currently.  
 

sporulation 

 
TFs in the metabolic and early phases target those in the middle to late phases. TFs 
in the later phases on the other hand, appear to back-regulate those in the earlier 
phases. As sporulation is not a cyclic cellular condition, we anticipate that these 
latter interactions are repressive and shutdown the early-phase TFs. 
 
The metabolic phase was previously identified as a stage during which many 
metabolic processes are repressed in preparation for sporulation (7). The phase 
appears to provide much of the forward regulation between TFs also. For example, 
Mig2, a glucose repressor targets two TFs in the mid-late phase. Rap1 is a multi-
functional regulator implicated in meiotic facilitation (48,49), and targets many TFs 
in the early to late phases.  
 
There is only limited TF inter-regulation involving the major meiotic TFs, Ime1, 
Ume6 and Ndt80; only Rpn1 from the early phase forms a FFL motif with Ime1. 
The main reason for this is that Ime1 and Ume6 target Ime2, a major meiotic kinase, 
which in turn regulates further TFs in the middle to late phases of the condition. 
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ii. Parallel inter-regulation 
Ubiquitously active TFs inter-regulate with phase-specific TFs in a two-tier hierarchy. 
This method of regulation allows ubiquitously active TFs to be involved in the regulation 
of multiple cellular functions and aid the smooth transition between different phases. 
Interestingly, as many TFs are permanent hubs, parallel inter-regulation may provide a 
channel of communication between progression of the cellular conditions and control of 
the house-keeping processes. 
 

cellular 
condition description 

cell cycle 

 
In parallel inter-regulation, ubiquitously active TFs inter-regulate with the phase-
specific TFs from all five stages of the cell cycle. Most of the regulation is from the 
ubiquitous to phase-specific TFs, but there is also some reciprocal regulation.  
 
Abf1 is an example of a ubiquitously active TF, which targets five TFs in the early 
G1 to M phases. As described elsewhere, regulatory specificity is achieved through 
the combinatorial use of regulatory partners. In early G1 it combines with Mac1, 
Sin3 and Rox1 to regulate Ume6 (acting as a mitotic repressor (50)). In the M phase 
it acts alone to regulate Pho2, a co-regulator of Swi5 for homothallic switching (51).  
 

sporulation 

 
Again, ubiquitously active TFs inter-regulate with the phase-specific TFs in all 
stages of sporulation. Similarly to the cell cycle, most of the regulation is from the 
ubiquitous to phase-specific TFs, although there is some reciprocal regulation. 
 
Abf1 is again used as a ubiquitous TF, and targets four TFs in the early to middle 
stages. Regulatory specificity is again achieved by combinatorial use of regulatory 
partners. During early phase, it combines with Sin3 to regulate Ume6, and with Hap4 
to target HmlAlpha2.  
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7.3 Network diagram of endogenous condition time-courses 
Below we show a schematic of TF inter-regulation during the cell cycle time-course. 
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Below we show a schematic of TF inter-regulation during the sporulation time-course. 
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7.4 Availability 
Data files containing the phase-specific sub-networks, details of TF clustering and the 
figures are available from the Supplementary Website. 
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