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Networks provide a universal
language to describe
disparate systems

Jonat class simlry

Protein interactions

Social interactions

1. Global topological measures

Indicate the gross topological structure of the network
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Comprehensive regulatory dataset in YEAST

Dataset Authors URL # of genes
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142 transcription factors
3,420 target genes
7,074 regulatory interactions

[Yu, Luscombe et al (2003), Trends Genet, 19: 422]

Comprehensive Yeast TF network

Transcription Factors

e Very complex network

* But we can simplify with
standard graph-theoretic
statistics:

— Global topological measures
— Local network motifs

Target Genes

[Barabasi, Alon]

1. Global topological measures

Number of incoming and outgoing connections

Incoming degree = 2.1
\l / -each gene is regulated by ~2 TFs

v
7T Outgoing degree = 49.8

-each TF targets ~50 genes

Degree

[Barabasi]




Scale-free distribution of outgoing degree
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Number TFs

Number outgoing connections Regulatory hUbS
>100 target genes

Dictate structure of network

e Most TFs have few target genes
e Few TFs have many target genes

[Barabasi]

1. Global topological measures

Ratio of existing links to maximum number of links for neighbouring nodes

4 neighbours V
Measure how inter-connected :
the network is 1 existing link ' 4= 3
v B 4
Average coefficient = 0.11 L
6 possible links
Clustering coefficient
=1/6 =0.17
[Barabasi]

SIM = Single input motifs

1. Global topological measures
Number of intermediate TFs until final target

\ 4 Starting TF

Indicate how immediate 1
a regulatory response is v«— 1 intermediate TF

6 Final target

Path length= 1

Average path length = 4.7

[Barabasi]
2. Local network motifs
Regulatory modules within the network
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

MIM = Multiple input motifs
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]




FFL = Feed-forward loops
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

Comprehensive Yeast TF network

Transcription Factors

e Very complex network

¢ But we can simplify with
graph-theoretic statistics:
— Global topological measures
— Local network motifs

Target Genes

[Barabasi, Alon]

FBL = Feed-back loops

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

Dynamic Yeast TF network

Transcription Factors

¢ Analyzed network as a
static entity

e But network is dynamic

— Different sections of the
network are active
under different cellular
conditions

« Integrate gene
expression data

Target Genes

[Luscombe et al, Nature (In press)]

Gene expression data

¢ Genes that are differentially expressed under five
cellular conditions

Cellular condition No. genes
Cell cycle 437
Sporulation 876
Diauxic shift 1,876
DNA damage 1,715
Stress response 1,385

¢ Assume these genes undergo transcription regulation

[Luscombe et al, Nature (In press)]
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Backtracking to find active sub-network

[Luscombe et al, NMature (In press)]




Network usage under different conditions

static

[Luscombe et al, Nature (In press)]

Network usage under different conditions

cell cycle

[Luscombe et al, NMature (In press)]

Network usage under different conditions

sporulation

[Luscombe et al, Nature (In press)]

Network usage under different conditions

diauxic shift

[Luscombe et al, Nature (In press)]

Network usage under different conditions
DNA damage

[Luscombe et al, Nature (In press)]

Network usage under different conditions

stress response

[Luscombe et al, NMature (In press)]




Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

How do the networks change?

[Luscombe et al, Nature (In press)]

Methodology for analyzing network dynamics
Need a name!

Dynamic Network Analy@ o ){

G(h)enomic Analysis of Network D(i)namics

Statistical Analysis of Network Dynamics
—>» SANDY

Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

1. Standard graph-theoretic statistics:
- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage
- Interaction rewiring

3. Statistical validation of results

[Luscombe et al, Nature (In press)]

1. Standard graph-theoretic statistics:
- Global topological measures

- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage
- Interaction rewiring

3. Statistical validation of results

[Luscombe et al, Nature (In press)]

1. Standard statistics - global topological measures
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[Barabasi]

Our expectation

o Literature: Network topologies are perceived to be invariant
— [Barabasi]
— Scale-free, small-world, and clustered
— Different molecular biological networks
— Different genomes

¢ Random expectation: Sample different size sub-networks
from complete network and calculate topological measures

incoming degree path length clustering coefficient outgoing degree
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random network size

Measures should remain constant

[Luscombe et al, NMature (In press)]
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« “Binary conditions”
1 -+smaller connectivity
—less complex TF combinations

* “Multi-stage conditions”
—larger connectivity

= 8 2 ' -more complex TF combination
3 s ®F
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Multi-stage Binary

[Luscombe et al, NMature (In press)]
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Multi-stage: Binary:
Controlled, ticking Quick, large-scale
over of genes turnover of genes
at different stages
[Luscombe et al, Nature (In press)]
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55 ¢ "Binary conditions”

& - shorter path-length
g - “faster”, direct action
g
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- longer path-length
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[Luscombe et al, Nature (In press)]

Clustering coefficient

Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

1. Standard graph-theoretic statistics:
- Global topological measures

- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage
- Interaction rewiring

3. Statistical validation of results

[Luscombe et al, Nature (In press)]
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Multi-stage Binary
[Luscombe et al, Nature (In press)]
Our expectation
o Literature: motif usage is well conserved for
regulatory networks across different organisms [Alon]
e Random expectation: sample sub-networks and
calculate motif occurrence
_ single input motif _ multiple input motif _ feed-forward loop
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random network size

Motif usage should remain constant

[Luscombe et al, NMature (In press)]




1. Standard statistics — local network motifs

Motifs Cell cycle | Sporulat | Diauxic DNA Stress
ion shift damage | response
SIM /v\ 32.0% 38.9% | 57.4% 55.7% 59.1%
o © I
MIM I><I 23.7% 16.6% | 23.6% 27.3% 20.2%
o ©
FFL 44.3% | 44.5% | 19.0% 17.0% 20.7%
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[Luscombe et al, Nature (In press)]

1. Standard statlstlcs summary

» more target genes

e shorter path lengths

e less inter-regulation
between TFs

[Luscombe et al, NMature (In press)]

« fewer target genes

e longer path lengths

* more inter-regulation
between TFs

Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

SANDY:
1. Standard graph-theoretic statistics:
- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage
- Interaction rewiring

3. Statistical validation of results

[Luscombe et al, Nature (In press)]

1. Follow-on statistics — network hubs
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Regulatory hubs
>100 target genes
Dictate structure of network

¢ Most TFs have few target genes
e Few TFs have many target genes

[Barabasi]

An aside: Essentiality of regulatory hubs

* Hubs dictate the overall structure of the network

* Represent vulnerable points
+ How important are hubs for viability?

« Integrate gene essentiality data

Humbaer TFs

Humber outgoing connections

[Yu et al (2004), Trends Genet, 20: 227

Essentiality of regulatory hubs

» Essential genes are /ethal if deleted from genome
* 1,105 yeast genes are essential
* Which TFs are essential?

hubs
(<100 targets)

non-hubs

All TFs (<100 targets)

%o TFs that are essential

Hubs tend to be more essential/than non-hubs

[Yu et al (2004), Trends Genet, 20: 227




Derived statistics 1 — network hubs
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Regulatory hubs

Do hubs stay the same or do they change over between conditions?
Do different TFs become important?

[Luscombe et al, Nature (In press)]

Our expectation

o Literature:

— Hubs are permanent features of the network regardless of condition

e Random expectation: sample sub-networks
from complete regulatory network

— Random networks converge on same TFs
— 76-97% overlap in TFs classified as hubs
— Jehubs are permanent

[Luscombe et al, Nature (In press)]
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cell cycle

Some permanent hubs
DesRIReRIRg ynstions

Most are transient hubs
— Different TFs become
key regulators in the
network

sporulation

diauxic shift #

DNA damage

sn2, Msn4
¢ Implications for
condition-dependent
vulnerability of network

stress response

permanent hubs

[Luscombe et al, Nature (In press)]

Derived statistics 1 — network hubs

sporulation

=2
e otl
=0

DNA
damage

Network shifts its weight between centres

[Luscombe et al, Nature (In press)]

Derived statistics 2 — TF usage

e 95/142 TFs are used in > 1 condition
e 31 TFs are used in 5 conditions

o Overlap ing/ndlividual TF usaae:

dna N\ g stress
damage ~—____#- response

Excgencufcondibons

Great overlap in individual TF usage
Little regulatory specificity
[*4]

Derived statistics 2 — TF usage

« BUT: Overlap in combinatorial TF usage:

Sausic sl

it

n 9/
= ,/mz",

Exngercus condtions

Little overlap in combinatorial TF usage
Great regulatory specificity
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2. Follow-on statistics — interaction interchange

¢ Network undergoes substantial rewiring between
conditions

e TFs must be replacing interactions with new ones
between conditions

¢ Interchange Index = proportion of interactions that
are maintained between conditions

[Luscombe et al, Nature (In press)]

2. Follow-on statistics — interaction interchange

maintained
interchanged A/ interactions
mteractlons\ cell cycle
interactions

maintained~~" Uni-modal distribution with two extremes
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interaction interchange index
maintain interchange
interactions — interactions
« TFs maintain/interchange interactions by differing amounts
« Regulatory functions shift as new interactions are made

[Luscombe et al, Nature (In press)]

Regulatory circuitry of cell cycle time-course

(#] _.Q Multi-stage conditions have:
™~ v « longer path lengths

l>v/ \ ¢ more inter-regulation between TFs

v * How do these properties actually look?
CS v ¢ examine TF inter-regulation
' during the cell cycle

[Luscombe et al, Nature (In press)]

Regulatory circuitry of cell cycle time-course

phase specific

early G1 late G1 s G2
P —— § r

a

Phase-specific TFs show
serial inter-regulation

—» drive cell cycle forward
through time-course

[Luscombe et al, Nature (In press)]

Regulatory circuitry of cell cycle time-course

phase specific

2, parallel inter-regulation

Ubiquitous and phase-specific TFs show
parallel inter-regulation

Many ubiquitous TFs are permanent Aubs
— Channel of communication between

house-keeping functions and cell cycle
progression

[Luscombe et al, Nature (In press)]

Network dynamics in FANTOM 3?

* SANDY framework is generally applicable to many types of
networks

¢ Example applications:
— Tissue-specific regulatory sub-networks
— Sub-network time-courses during development
— Conservation of networks and sub-networks in mouse and human
— Prediction of TF hubs

— Human disease loci, and vulnerability of network (eg hubs and
lethality)

- Irgt§grated molecular network (protein-protein, protein-DNA, RNA-RNA
etc

¢ Current challenges:
— How do we get to a network using current data?
— Networks are obviously more complex than in yeast eg alternative TSS




"They say they built the train tracks over the Alps
between Vienna and Venice before there was a
train that could make the trip.

They built it anyway.

They knew one day a train would come.”

Movie - Under the Tuscan Sun

Mark Gerstein
Haiyuan Yu

Sarah Teichmann
Madan Babu

Summary 1

» Incorporation-of many data sources to build a
comprehensive network of regulatory interactions
- 142 TFs
— 3,420 target genes
— 7,074 regulatory interactions

* Very complex network of inter-regulation

Summary 2

¢ Dynamic usage of the regulatory network

« Different sections of the network are used in
different cellular conditions

* How do we measure the changes?
- SANDY

* Expectation is for networks to be constant

Summary 3

Standard statistics:

Topological measures indicate global network structure
— Multi-stage: fewer targets, long path lengths, high clustering
— Binary: many targets, short path lengths, low clustering

Network motifs measure local network structure
— Multi-stage: indirect-acting motifs - SIMS
— Binary: direct-acting motifs — MIMS

Aside: gene expression profiles
— Targets are co-expressed
— TF and target are often time-shifted

_ _Summary 4
Derived statistics:

Hubs:

— Hubs tend to be essential
— Some hubs are permanent
— Most hubs are transient

TF usage:
— Individual TF usage has large overlap
— Combinatorial TF usage has small overlap -> regulatory specificity

Interactions interchange:

— TFs maintain or interchange interactions between conditions to
different degrees

— Highly interchanging TFs shift regulatory functions

10



Summary 5

* Multi-stage conditions have:
— Much inter-regulation and long path lengths

* Examine regulatory time-course of cell cycle
— Serial inter-regulation between phase-specific TFs drive cell cycle

— Parallel inter-regulation between ubiquitous and phase-specific TFs
allow communication between cell cycle and house-keeping

functions

Summary 6

o Data integration

* Bayesian methods to uniformly & optimally combine
evidence
(in application to integration of protein interaction data)
¢ Predicting interactions in yeast de novo from non-
interaction data sources (with verification)

el1



