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Transcription regulation (in YEAST ): 
a genomic network
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142 transcription factors

3,420 target genes

7,074 regulatory interactions

Comprehensive regulatory dataset in YEAST

# of 
regulations# of genesURLAuthorsDataset

ChIp-chip 
experiments

43582416http://web.wi.mit.edu/young/regulator_network/Lee, T. I., et al. 2002ChIp-chip data by 
Young's lab

21241560http://array.mbb.yale.edu/yeast/transcription/   
download.htmlHorak, C. E., et al. 2002ChIp-chip data by 

Snyder's lab

906477http://www.nature.com/ng/journal/v31/n1/    
suppinfo/ng873_S1.htmlGuelzim, N., et al. 2002Kepes' dataset

356288http://transfac.gbf.de/TRANSFAC/Wingender, E., et al. 2001TRANSFAC
Manual 

collection

[Yu, Luscombe et al (2003), Trends Genet, 19: 422]

Networks provide a universal 
language to describe 

disparate systems
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Social interactions

• Very complex network

• But we can simplify with 
standard graph-theoretic 
statistics:
– Global topological measures
– Local network motifs

Comprehensive Yeast TF network

Target Genes

Transcription Factors

[Barabasi, Alon]

Indicate the gross topological structure of the network

1. Global topological measures

Degree Path length Clustering coefficient

[Barabasi]

1. Global topological measures
Number of incoming and outgoing connections

Degree

Incoming degree = 2.1
each gene is regulated by ~2 TFs

Outgoing degree = 49.8
each TF targets ~50 genes

[Barabasi]
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• Most TFs have few target genes
• Few TFs have many target genes

Scale-free distribution of outgoing degree

Regulatory hubs
>100 target genes

Dictate structure of network

[Barabasi]

Number of intermediate TFs until final target

Path length

Starting TF

Final target

1 intermediate TF

= 1

Indicate how immediate
a regulatory response is

Average path length = 4.7

[Barabasi]

1. Global topological measures

Ratio of existing links to maximum number of links for neighbouring nodes

Clustering coefficient

4 neighbours

1 existing link

6 possible links

= 1/6 = 0.17

Measure how inter-connected 
the network is

Average coefficient = 0.11

[Barabasi]

1. Global topological measures
Regulatory modules within the network

2. Local network motifs

SIM MIM FFLFBL

[Alon]

SIM = Single input motifs

YPR013C

HCM1

SPO1STB1ECM22

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

MIM = Multiple input motifs

SBF

HCM1SPT21

MBF

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]
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FFL = Feed-forward loops

SBF

Yox1

Tos8 Plm2

Pog1

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

FBL = Feed-back loops

MBF

SBF

Tos4

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

• Very complex network

• But we can simplify with 
graph-theoretic statistics:
– Global topological measures
– Local network motifs

Comprehensive Yeast TF network

Target Genes

Transcription Factors

[Barabasi, Alon]

Target Genes

Transcription Factors • Analyzed network as a 
static entity

• But network is dynamic
– Different sections of the 

network are active 
under different cellular 
conditions

• Integrate gene 
expression data

Dynamic Yeast TF network

[Luscombe et al, Nature (In press)]

• Genes that are differentially expressed under five 
cellular conditions

• Assume these genes undergo transcription regulation

Gene expression data

1,385Stress response
1,715DNA damage
1,876Diauxic shift

876Sporulation
437Cell cycle

No. genesCellular condition

[Luscombe et al, Nature (In press)]

Backtracking to find active sub-network

• Define differentially expressed genes

• Identify TFs that regulate these genes

• Identify further TFs that regulate these TFs

Active regulatory sub-network

[Luscombe et al, Nature (In press)]
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Network usage under different conditions
static

[Luscombe et al, Nature (In press)]

Network usage under different conditions
cell cycle

[Luscombe et al, Nature (In press)]

Network usage under different conditions
sporulation

[Luscombe et al, Nature (In press)]

Network usage under different conditions
diauxic shift

[Luscombe et al, Nature (In press)]

Network usage under different conditions
DNA damage

[Luscombe et al, Nature (In press)]

Network usage under different conditions
stress response

[Luscombe et al, Nature (In press)]
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Network usage under different conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

How do the networks change?

[Luscombe et al, Nature (In press)]

Methodology for analyzing network dynamics

DNA

Statistical Analysis of Network Dynamics
SANDY

Need a name!

Dynamic Network Analysis

GHANDI

G(h)enomic Analysis of Network D(i)namics

Regulatory Analysis of Network Dynamics

RANDY

Network usage under different conditions
Cell cycle Sporulation Diauxic shift DNA damage Stress

SANDY:
1. Standard graph-theoretic statistics:

- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage

- Interaction rewiring 

3. Statistical validation of results

[Luscombe et al, Nature (In press)]

Network usage under different conditions
Cell cycle Sporulation Diauxic shift DNA damage Stress

SANDY:
1. Standard graph-theoretic statistics:

- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage

- Interaction rewiring 

3. Statistical validation of results

[Luscombe et al, Nature (In press)]

1. Standard statistics - global topological measures

Degree Path length Clustering coefficient

[Barabasi]

Our expectation

Measures should remain constant

• Literature: Network topologies are perceived to be invariant 
– [Barabasi]
– Scale-free, small-world, and clustered
– Different molecular biological networks 
– Different genomes

• Random expectation: Sample different size sub-networks 
from complete network and calculate topological measures

path length clustering coefficient outgoing degreeincoming degree

random network size

[Luscombe et al, Nature (In press)]
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Outgoing degree

• “Binary conditions”
greater connectivity

• “Multi-stage conditions”
lower connectivity

Binary:
Quick, large-scale 
turnover of genes

Multi-stage:
Controlled, ticking 

over of genes 
at different stages

[Luscombe et al, Nature (In press)]

Incoming degree

• “Binary conditions”
smaller connectivity
less complex TF combinations

• “Multi-stage conditions”
larger connectivity
more complex TF combinations

BinaryMulti-stage

[Luscombe et al, Nature (In press)]

Path length

• “Binary conditions”
shorter path-length
“faster”, direct action

• “Multi-stage” conditions 
longer path-length
“slower”, indirect action

BinaryMulti-stage

[Luscombe et al, Nature (In press)]

Clustering coefficient

• “Binary conditions”
smaller coefficients
less TF-TF inter-regulation

• “Multi-stage conditions”
larger coefficients
more TF-TF inter-regulation

BinaryMulti-stage

[Luscombe et al, Nature (In press)]

Network usage under different conditions
Cell cycle Sporulation Diauxic shift DNA damage Stress

SANDY:
1. Standard graph-theoretic statistics:

- Global topological measures

- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage

- Interaction rewiring 

3. Statistical validation of results

[Luscombe et al, Nature (In press)]

Our expectation

Motif usage should remain constant

• Literature: motif usage is well conserved for 
regulatory networks across different organisms [Alon]

• Random expectation: sample sub-networks and 
calculate motif occurrence

single input motif multiple input motif feed-forward loop

random network size

[Luscombe et al, Nature (In press)]
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20.7%17.0%19.0%44.5%44.3%FFL

20.2%27.3%23.6%16.6%23.7%MIM

59.1%55.7%57.4%38.9%32.0%SIM

Stress 
response

DNA 
damage

Diauxic 
shift

Sporulat
ion

Cell cycleMotifs

[Luscombe et al, Nature (In press)]

1. Standard statistics – local network motifs 1. Standard statistics - summary

multi-stage conditions

• fewer target genes
• longer path lengths
• more inter-regulation 

between TFs

binary conditions

• more target genes
• shorter path lengths
• less inter-regulation 

between TFs
[Luscombe et al, Nature (In press)]

Network usage under different conditions
Cell cycle Sporulation Diauxic shift DNA damage Stress

SANDY:
1. Standard graph-theoretic statistics:

- Global topological measures
- Local network motifs

2. Newly derived follow-on statistics:
- Hub usage

- Interaction rewiring 

3. Statistical validation of results

[Luscombe et al, Nature (In press)]

• Most TFs have few target genes
• Few TFs have many target genes

1. Follow-on statistics – network hubs

Regulatory hubs
>100 target genes

Dictate structure of network

[Barabasi]

Transcription Factors

An aside: Essentiality of regulatory hubs
• Hubs dictate the overall structure of the network

• Represent vulnerable points

• How important are hubs for viability?

• Integrate gene essentiality data

[Yu et al (2004), Trends Genet, 20: 227

All TFs

%
 T

Fs
 t

h
at

 a
re

 e
ss

en
ti

al

All TFs non-hubs
(<100 targets)

hubs
(<100 targets)

non-hubs
(<100 targets)

All TFs

• Essential genes are lethal if deleted from genome
• 1,105 yeast genes are essential

• Which TFs are essential?

Essentiality of regulatory hubs

Hubs tend to be more essential than non-hubs

[Yu et al (2004), Trends Genet, 20: 227
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Regulatory hubs

Do hubs stay the same or do they change over between conditions?
Do different TFs become important?

Derived statistics 1 – network hubs

[Luscombe et al, Nature (In press)]

Our expectation

• Literature: 
– Hubs are permanent features of the network regardless of condition

• Random expectation: sample sub-networks 
from complete regulatory network
– Random networks converge on same TFs
– 76-97% overlap in TFs classified as hubs
– ie hubs are permanent

[Luscombe et al, Nature (In press)]

transitient hubs

permanent hubs

Swi4, Mbp1

Ime1, Ume6

Msn2, Msn4

Unknown functions

• Some permanent hubs
– house-keeping functions

• Most are transient hubs
– Different TFs become 

key regulators in the 
network

• Implications for 
condition-dependent 
vulnerability of network

transient hubs

permanent hubs

cell cycle

sporulation

diauxic shift

DNA damage

stress response

all conditions

[Luscombe et al, Nature (In press)]

DNA
damage

diauxic
shift

sporulation

stres
s

permanent 
hubs

cell
cycle

Network shifts its weight between centres

Derived statistics 1 – network hubs

[Luscombe et al, Nature (In press)]

Derived statistics 2 – TF usage
• 95/142 TFs are used in > 1 condition
• 31 TFs are used in 5 conditions

• Overlap in individual TF usage:

[**]

Great overlap in individual TF usage
Little regulatory specificity

Derived statistics 2 – TF usage

[**]

• BUT: Overlap in combinatorial TF usage:

Little overlap in combinatorial TF usage
Great regulatory specificity
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2. Follow-on statistics  – interaction interchange

• Network undergoes substantial rewiring between 
conditions

• TFs must be replacing interactions with new ones 
between conditions

• Interchange Index = proportion of interactions that 
are maintained between conditions

[Luscombe et al, Nature (In press)]

interaction interchange index

#
 T

Fs

maintain
interactions

interchange
interactions

interchanged 
interactions

maintained 
interactions

cell cycle
interactions

diauxic shift
interactions

maintained 
interactions

Uni-modal distribution with two extremes

• TFs maintain/interchange interactions by differing amounts
• Regulatory functions shift as new interactions are made

[Luscombe et al, Nature (In press)]

2. Follow-on statistics  – interaction interchange

Regulatory circuitry of cell cycle time-course

• Multi-stage conditions have:
• longer path lengths
• more inter-regulation between TFs

• How do these properties actually look?
• examine TF inter-regulation 
during the cell cycle

[Luscombe et al, Nature (In press)]

transcription factors used in cell cycle
phase specific ubiquitous

early G1           late G1                S                 G2  
M

1. serial inter-regulation

Phase-specific TFs show 
serial inter-regulation

→ drive cell cycle forward        
through time-course

Regulatory circuitry of cell cycle time-course

[Luscombe et al, Nature (In press)]

transcription factors used in cell cycle
phase specific ubiquitous

2. parallel inter-regulation

Ubiquitous and phase-specific TFs show 
parallel inter-regulation

Many ubiquitous TFs are permanent hubs

→ Channel of communication between 
house-keeping functions and cell cycle 
progression

Regulatory circuitry of cell cycle time-course

[Luscombe et al, Nature (In press)]

Network dynamics in FANTOM 3?
• SANDY framework is generally applicable to many types of 

networks

• Example applications:
– Tissue-specific regulatory sub-networks
– Sub-network time-courses during development
– Conservation of networks and sub-networks in mouse and human
– Prediction of TF hubs
– Human disease loci, and vulnerability of network (eg hubs and 

lethality)
– Integrated molecular network (protein-protein, protein-DNA, RNA-RNA 

etc)

• Current challenges:
– How do we get to a network using current data?
– Networks are obviously more complex than in yeast eg alternative TSS
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“They say they built the train tracks over the Alps 
between Vienna and Venice before there was a 

train that could make the trip. 

They built it anyway. 

They knew one day a train would come.”

Movie - Under the Tuscan Sun

Mark Gerstein
Haiyuan Yu

Sarah Teichmann
Madan Babu

Summary 1

• Incorporation of many data sources to build a 
comprehensive network of regulatory interactions
– 142 TFs
– 3,420 target genes
– 7,074 regulatory interactions

• Very complex network of inter-regulation

Summary 2
• Dynamic usage of the regulatory network

• Different sections of the network are used in 
different cellular conditions

• How do we measure the changes?
– SANDY

• Expectation is for networks to be constant

Summary 3
• Standard statistics:

• Topological measures indicate global network structure
– Multi-stage: fewer targets, long path lengths, high clustering

– Binary: many targets, short path lengths, low clustering

• Network motifs measure local network structure
– Multi-stage: indirect-acting motifs - SIMS

– Binary: direct-acting motifs – MIMS

• Aside: gene expression profiles
– Targets are co-expressed
– TF and target are often time-shifted

Summary 4
• Derived statistics:

• Hubs:
– Hubs tend to be essential
– Some hubs are permanent
– Most hubs are transient

• TF usage:
– Individual TF usage has large overlap
– Combinatorial TF usage has small overlap -> regulatory specificity

• Interactions interchange:
– TFs maintain or interchange interactions between conditions to 

different degrees
– Highly interchanging TFs shift regulatory functions
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Summary 5
• Multi-stage conditions have:

– Much inter-regulation and long path lengths

• Examine regulatory time-course of cell cycle
– Serial inter-regulation between phase-specific TFs drive cell cycle
– Parallel inter-regulation between ubiquitous and phase-specific TFs 

allow communication between cell cycle and house-keeping 
functions

Summary 6
• Data integration 
• Bayesian methods to uniformly & optimally combine 

evidence
(in application to integration of protein interaction data) 

• Predicting interactions in yeast de novo from non-
interaction data sources (with verification)


