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Association of cytokeratin 7 and 19 expression with genomic stability
and favorable prognosis in clear cell renal cell cancer
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The purpose of our study was to demonstrate that distinct cytoge-
netic alterations in the most common subtype of renal cell cancer,
clear cell renal cell carcinoma (ccRCC), are reflected in protein
expression profiles. We performed conventional cytogenetics and
immunohistochemical analysis for cytokeratins (CKs) on 126
ccRCCs. Protein expression was evaluated in sifu using a semiau-
tomated quantitative system. The results were validated using an
independent cohort of 209 ccRCCs with long-term follow-up.
Cytogenetic alterations were identified in 96 of 126 ccRCCs, most
of them involving chromosome 3 through loss, deletion or translo-
cation. Expression of CKs and E-cadherin in ¢ccRCC was associ-
ated with lack of cytogenetic alterations and low nuclear grade. In
the validation set, CK7 and CK19 protein expression was associ-
ated with better clinical outcome. At the multivariate level, the
best model included metastatic status and CK19 expression.
Expression microarray analysis on 21 primary ccRCCs and 14
ccRCC metastases identified genes significantly associated with
CK7 and CK19 expressing ccRCCs. Two novel ccRCC bio-
markers associated with the CK7 positive ¢ccRCC phenotype,
PMS2 and MT1-MMP (MMP14), were further validated. We con-
clude that the variability observed for CK expression in ccRCC
can be explained by genetic heterogeneity. Distinct molecular sub-
types of ccRCC with prognostic relevance were identified, and the
CK7/CK19 expressing subtype is associated with better outcome.
© 2008 Wiley-Liss, Inc.
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The 2004 World Health Organization classification of renal
tumors,’ which was built upon previous classification systems,>>
has refined the classification of adult renal epithelial neoplasms,
taking into account morphological, clinicopathological and cytoge-
netic features. Several studies have shown that renal epithelial neo-
plasms have distinctive microscopic and molecular features.*™
Although tumor stage at presentation, histological tumor grade and
histological subtype are the principal prognostic factors of renal
cell carcinoma (RCC), the clinical behavior, proclivity for metasta-
sis, and potential response to therapy cannot be predicted thus far
by histopathologic markers.* Patients with clear cell RCC (ccRCC)
have an increased risk of cancer specific death when compared to
patients with papillary or chromophobe RCCs.” However, signifi-
cant heterogeneity is observed amongst ccRCCs as evidenced by
variability in protein expression and disease progression.

Cytogenetic analysis of benign and malignant epithelial tumors
of the kidney has identified associations between morphological
features and chromosomal aberrations.*™'” Despite the frequent
associations between morlphological and karyotypic findings in
epithelial kidney tumors,''™"® the association between protein
expression of cytokeratins (CKs) and karyotypic alterations in
ccRCC has not been addressed. Clear cell RCC is an extremely
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heterogeneous tumor with inconsistent immunohistochemical
expression patterns.'*'> We hypothesized that the variability
observed for CK expression and other markers of differentiation
may be best explained by genetic heterogeneity.

Cytokeratins are the fundamental markers of epithelial differen-
tiation,'®!” and CK expression patterns are largely retained during
neoplastic transformation.'® The CKs found in simple epithelia
(CK7, CK8, CK18, and CK19) are expressed in normal renal
tubules and renal neoplasms. The majority of ccRCCs are positive
for CK8 (about 40%) and CK18 (95-100%),'*"> similar to the
normal proximal renal tubule, suggesting that this is the site of ori-
gin for this subtype.'® As almost all ccRCCs express CK18,'*!°
we did not expect it to be a useful distinctive marker and therefore
excluded this CK in the present study. CK7 and CK19 are also
simple epithelial CKs but show a more restricted expression in
c¢cRCC (each about 10-15%), makin% these 2 CKs useful markers to
define certain ccRCC subgroups.'*™ In the normal kidney, CK7
and CK19 are expressed by distal tubules and collecting ducts but
are absent in proximal tubules. The expression of CK7 and CK19
in ccRCC subsets suggests that these ccRCCs may represent spe-
cific subtypes with potential origin from the collecting duct system
or with neo-expression of these CKs.?

Here we demonstrate significant associations between the
expression of specific CKs, the cell adhesion protein E-cadherin
and cytogenetic alterations. Two ccRCC subtypes defined by CK7
and CK19 expression were determined to be associated with
genetic stability, a distinct molecular signature as determined by
expression array profiling and a more indolent clinical course.

Material and methods
Patients and tissue microarrays

Two hundred thirty-eight consecutive, unselected epithelial kid-
ney tumors diagnosed between 1999 and 2004 were evaluated
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TABLE I - MONOCLONAL ANTIBODIES USED

Antigen Clone Dilution Source Staining pattern
CK7 OV-TL 12/30 1:100 DAKO Cytoplasmic
CK8a' CAMS.2 1:10 BD Biosciences Cytoplasmic
CKS8 35betaH11 1:50 DAKO Cytoplasmic
CK19 RCK108 1:50 DAKO Cytoplasmic
Pan-CKa? Lu-5 1:50 Biocare Medical Cytoplasmic
Pan-CKb* AE1/AE3 1:50 DAKO Cytoplasmic
AMACR 13H4 1:100 DAKO Cytoplasmic
CD10 56C6 1:20 Vector Labs Membrane
CD31 JC70A 1:40 DAKO Membrane (vessel)
CD34 QBEnd10 1:400 DAKO Membrane (vessel)
E-Cadherin NCH-38 1:400 DAKO Cytoplasmic, membrane
EMA E29 1:200 DAKO Cytoplasmic, membrane
EZH2 Ref. ** 1:200 Ref. % Nuclear
Ki-67 MIB-1 1:200 DAKO Nuclear
Vimentin Vim 3B4 1:400 DAKO Cytoplasmic
WT-1 6F-H2 1:100 DAKO Cytoplasmic
PMS2 Al6-4 1:50 BD Biosciences Nuclear and cytoplasmic
MMP14 113-5B7 1:1000 ACRIS Membrane, cytoplasmic

CK, cytokeratin; EMA, epithelial membrane antigen; WT-1, wilms tumor 1.
'Reacts primarily with CK8 and weakly with CK7.—"Reacts with CK 1, 2, 3,4, 5,6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19.—*Reacts with CK

1,2,3,4,5,6,7,8, 10, 13, 14, 15, 16, 19.

both by histology and cytogenetics at the Brigham and Women’s
Hospital, Boston, MA. All morphologic diagnoses were made on
the basis of hematoxylin and eosin stained slides by 2 patholo-
gists (K.D.M, M.S.H), according to the 2004 World Health
Organization classification of renal tumors.'! Two RCC tissue
microarrays (TMAs) were constructed of these tumors as previ-
ously described.?! Four cores (0.6 mm in diameter) were taken
from each representative tissue block. Among the 238 kidney
tumors 129 were ccRCCs, and karyotype data were available for
126 ccRCCs. Karyotypic studies were performed on all cases
according to standard protocols. Cytogenetic aberrations were
reviewed by a cytogeneticist (P.D.C.) who determined if the
karyotypes were normal, diagnostic for a particular epithelial
tumor, or nondiagnostic. Histologic and cytogenetic diagnoses
were recorded independently and compared for concordance. All
data is stored in a database (http://rubinlab.med.cornell.edu/
supplemental_data/cytogenetics_data/index.jsp).

An independent cohort of 209 ccRCC patients with long-term
follow-up and cancer-specific death as endpoint was identified in
the files of the Institute for Surgical Pathology, University Hospi-
tal Zurich, Switzerland. The clinical and pathological parameters
of this cohort are described elsewhere (mean follow-up 52 months,
range 1-179 months).*

All samples were collected from consented patients with prior
institutional review board approval at each respective institution.

Immunohistochemistry

All TMA sections were freshly cut and immunostained as previ-
ously described.”® Table I lists the monoclonal antibodies used in
our study.

Semiautomated quantitative image analysis by chromavision

Evaluation of all immunohistochemical stainings was per-
formed with the Chromavision (Chromavision Medical Systems,
San Juan Capistrano, CA) Automated Cellular Imaging System
(ACIS 1I), an upgraded version of the previously described ACIS
System.?” The system combines automated microscopy with com-
puterized image analysis to generate continuous quantitative
measurements of immunohistochemical stainings in terms of
staining intensity (between 0 and 255) and percentage of stained
tissue area (between 0 and 100). Each tissue microarray core was
reviewed to ensure that protein expression measurements were
taken from diagnostic regions and that staining scores obtained
from nonrepresentative regions were excluded.

Statistical analysis

Unsupervised analysis of protein expression was performed by
hierarchical clustering using average linkage method and correla-
tion measure to evaluate case similarities. When analyzing protein
expression data, single cluster enrichment for cytogenetic or histo-
logical characteristics was assessed by means. This analysis con-
tains information from protein profiles of each tumor sample. We
then focused our analysis on CK expression by correlating expres-
sion of each individual CK analyzed with either cytogenetic or
histological characteristics of the tumors, by using unpaired stu-
dent’s 7 test (two-tailed p-value). For multiple hypothesis testing
we applied Bonferroni correction, when appropriate.

For survival analysis, we used the Zurich cohort with 209
ccRCC cases. Kaplan—Meier analysis was used to present associa-
tions between cancer specific death and CK expression. Survival
time was calculated from date of nephrectomy to date of death or
to date of last clinical follow-up. Log-rank test was used to evalu-
ate statistical significance of curve splitting. Cox proportional haz-
ard regression analysis was used at univariate and multivariate
level analyses. Backward Wald statistics was applied to identify
the most parsimonious model. All statistics were performed using
SPSS 16.0 for Windows (SPSS, Chicago, IL) with a significance
level of 0.05 on two-tailed p-values.

RNA isolation

For cDNA microarray analysis, frozen material of 21 primary
ccRCCs and 14 ccRCC metastases were randomly selected from
the archive of the Institute for Surgical Pathology, University Hos-
pital Zurich, Switzerland. All tumors were histologically evaluated
by one pathologist (H.M.) and selected for the study on the basis
of hematoxylin and eosin stained tissue sections. Total RNA was
isolated with Trizol (Invitrogen, Carlsbad, CA). RNA quantity
was determined based on Ajg, and the integrity of RNA was con-
firmed by agarose gel electrophoresis.

c¢DNA array analysis

Total RNA was amplified, labeled, and hybridized to HT_HG-
U133A High-Throughput Arrays (Affymetrix, Santa Clara, CA)
which were scanned using the HT Scanner, allowing 96 samples
to be processed in parallel with minimal operator intervention.
The original CEL files were processed with dChip (http://
biosunl.harvard.edu/complab/dchip/) to obtain single data files
comprising 22277 probe-sets. For each array, probe level inten-
sities were normalized against the median array. Low expression
values were filtered out with a high-pass filter and the data was
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FI1GURE 1 — Analysis of protein expression by immunohistochemis-
try on a tissue microarray, positivity or negativity for CK7 (a), CK8
(b), and CK19 (c).

log-transformed. The gene expression was standardized such that
the distribution in each sample had median zero and standard devi-
ation equal to 1.

The array probe sets for CK7 and CK19 were identified and an-
alyzed. The array design includes 2 probe sets for CK7:
209016_s_at (chr12:50913304-50928976 (+) // 96.24 // q13.13)
and 214031_s_at (chr12:50913483-50923188 (-) // 96.79 //
q13.13). We computed the mean of the 2 probe sets to obtain a
representative CK7 expression for further analysis. CK19 is repre-
sented on the array by one probe set (chr17:36933395-36938054
(-)/199.41 /] q21.2).

Pearson correlation for gene selection

Pearson correlation was used to select genes according to their
relation to CK7 or CK19 across samples. As we had 2 probe sets
for CK7, we computed the mean of the probe sets to obtain a
representative CK7 expression. For CK19 with 1 probe set only,
we computed the Pearson correlation of CK19 against every probe set.
Genes with a two-tailed p-value < 0.001 were selected. Clustering
analysis on gene expression data was performed as described for
protein expression data.

Results

Associations between biomarker expression and
cytogenetic profiles of ccRCC

The karyotypes of 126 ccRCCs from the Brigham and Women’s
Hospital Boston, obtained by conventional cytogenetic analysis,
were compared with protein expression patterns. Sixteen immuno-
histochemical markers were selected (Table I), and the protein
expression was evaluated by a semiquantitative image analysis
system (Chromavision) (Fig. 1).

Within the group of 126 ccRCCs, we determined the number of
alterations for each case and subdivided them in those without
any cytogenetic alterations (30 cases, 23.8%), tumors with 1 or 2
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TABLE II - THE MOST COMMON CHROMOSOMAL ALTERATIONS IN A
GROUP OF 126 ccRCCS AS DETERMINED BY CONVENTIONAL
CYTOGENETICS

Alteration (on chromosome no.) Number of cases (Frequency in %)

Gain (5) 11 (3.0)
Gain (7) 16 (4.4)
Loss (3) 25 (6.8)
Loss (8) 17 (4.7)
Loss (14) 16 (4.4)
Loss (Y) 27 (7.4)
Add (3p) 13 (3.6)
Del (3p) 13 (3.6)
t (3;a) 40 (11.0)

Add, addition; Del, deletion; t, translocation; t(3;a), translocation
involving chromosome 3 and any other chromosome (a).

The frequencies are evaluated against the total number of altera-
tions (365) within the set of ccRCCs.

alterations (37 cases, 29.4%), 3 or 4 alterations (31 cases, 24.6%),
and more than 4 alterations (28 cases, 22.2%) (Supplemental
Fig. 1). The most common cytogenetic alterations affected chro-
mosome 3 in approximately one fourth of the cases (27%), most
of them through translocation (42%), deletion (13.5%) or loss of
the entire chromosome (26%) (Table II).

One aim of this study was to classify ccRCCs on the basis of
their differential expression of epithelial markers. Cytokeratins
(Pan-CKa, Pan-CKb, CK7, CK8a, CK8 and CK19), other epithe-
lial markers (EMA, E-cadherin), and the mesenchymal marker
vimentin, all of which are known to be positive in subsets of
ccRCC, were evaluated (Table I). Representative positive and
negative cores for CK7, CK8 and CK19 immunostaining are
depicted in Figure 1, illustrating the heterogeneity for these im-
munohistochemical markers in ccRCC. The mean immunohis-
tochemical staining intensity of each protein, based on absence or
presence of each common lesion, and the two-sided p-value of the
t test corrected for multiple hypotheses were determined. To
investigate if there were associations between protein expression
patterns and genomic lesions, we ran hierarchical clustering and
evaluated the clusters for enrichment for any particular lesion. The
clustering analysis output is visualized by a dendrogram organiz-
ing the samples based on similarity of their protein expression pro-
files. The expression values of the entire cohort of 126 ccRCCs
are shown in the heatmap (Fig. 2). Tumors are annotated accord-
ing to main chromosomal aberrations as listed in Table II, to their
total number of cytogenetic alterations and to Fuhrman nuclear
grade (FNG).

A small group of cases with high expression of CKs (Pan-CKa,
Pan-CKb, CK7 and CK8a) was enriched for absence of cytoge-
netic alterations (p = 0.02) and for FNG 2 tumors (p = 0.01). A
second subset of cases consisting of E-cadherin expressing
ccRCCs with FNG 2 was also lacking any cytogenetic abnormal-
ities (p < 0.01). In contrast, tumors with a high number of cyto-
genetic changes tended to express lower levels of CKs (CK7,
Pan-CKb) and E-cadherin compared to tumors with a low number
of cytogenetic changes.

We identified another ccRCC group which does not express
CKs but vimentin. This group showed higher frequency of cytoge-
netic alterations and higher FNGs. Vimentin-positive tumors,
which are frequently negative for markers of epithelial differentia-
tion, most likely represent a subset of advanced tumors with
aggressive clinical behavior.?®

Survival analysis

A second independent cohort of 209 ccRCCs with clinical fol-
low-up data was evaluated to test if CK expression in ccRCCs was
associated with differences in prognosis. Sections of the TMA
were stained for Pan-CKb, CK7, CK8a, CKS8, CK19 and E-cad-
herin. The expression levels of each protein were determined by
Chromavision and transformed into nominal variables, above and
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FIGURE 2 — Visual qualitative overview of ccRCC protein expression data. Hierarchical clustering revealed natural groups of tumors sharing
similar protein expression patterns, and identified clusters enriched for particular lesions. This analysis included 125 ccRCCs and 14 immunobhis-
tochemical markers. The heatmap represents the protein expression percentages (in rows; red = high and blue = low protein expression) for
each tumor sample (in columns). The clustering analysis output is shown by the dendrogram on the top of the figure. Tumors are annotated
according to their Fuhrman nuclear grade (first row below sample ccRCC labels; FNG 1 = gray; FNG 2 = brown; FNG 3 = dark green; FNG 4
= light green), according to the total number of alterations (0 = 0 alterations, green; 1 = 1 or 2 alterations, white; 2 = three or four alterations,
purple; 3 = more than 4 alterations, pink), according to presence of alterations on chromosome 3 resulting in a loss of genomic material (0 = no
alteration on chromosome 3, pink; 1 = deletion, loss, translocation on chromosome 3, brown), and according to the main chromosomal altera-
tions as listed in Table III. The CK cluster on the right side of the figure (black framed; » = 11) is enriched for absence of cytogenetic alterations
(p = 0.02) and for FNG2 tumors (p = 0.01). E-cadherin positive cases (n = 4) also tended to be low grade tumors (FNG2) without genomic
alterations, and these associations were statistically significant. In contrast, vimentin positive but CK negative tumors (n = 19) tended to have

genomic alterations and higher FNGs.

TABLE III - COX REGRESSION UNIVARIATE ANALYSIS OF THE ZURICH
COHORT (209 ccRCCS)

95.0% CI for RR

p-value RR

Lower Upper
Fuhrman Grade <0.01 2.52 1.45 4.40
pT Stage <0.01 2.69 1.71 4.23
Sarcomatoid Features <0.01 2.07 1.36 3.16
Necrosis <0.01 2.44 1.61 3.71
Nodal Status <0.01 3.51 1.65 7.46
Metastatic Status <0.01 4.79 2.63 8.73
Lymphocytic Infiltrate 0.01 2.48 1.24 4.94
Size (cc) <0.01 243 1.349 4.39
Gender n.s. .81 53 1.24
Age (years) 0.03 1.62 1.06 2.48
CK7 <0.01 0.52 32 .85
CK8a n.s. 0.76 48 1.20
CK8 n.s. 0.79 .50 1.25
CK19 n.s. 0.80 51 1.25

n.s., not significant.
For CK7, CK8a, CKS, and CK19, cases with expression above and
below or equal to the median were compared.

below the median. Cox regression analysis at univariate and multi-
variate levels considered histopathological and clinical parameters
as well as protein expression.

Cox regression results are summarized in Table III (univariate
level). Figure 3 shows the survival curves for selected biomarkers.
CK?7 expression was associated with better outcome (p < 0.01,
Fig. 3a), whereas CK8 (Fig. 3b) and CK19 (Fig. 3d) expression
did not show long-term association. However, within the first 5
years after initial diagnosis, CK19 expression and CK8a expres-
sion were associated with a more favorable outcome (p < 0.01,
Table IV, Fig. 3d; p = 0.01; Table IV, Fig. 3¢).

Multivariate Cox proportional hazards regression analysis
showed that metastatic status (RR = 7.28; 95%CI = 1.93-27.39;
p < 0.01) and CK19 expression (RR = 0.23; 95%CI = 0.06-0.90;
p = 0.04) emerged as independent prognostic factors for cancer-
specific survival at a multivariate level.

When testing for association between expression of single pro-
teins and histopathological characteristics of the 209 ccRCC
tumors within this cohort, we detected a significant association
between CK7 expression and low FNG (p < 0.05), low pathologi-

cal stage (p = 0.02), absence of necrosis (p < 0.05), and absence
of lymphocytic infiltration (p < 0.01) (Table V). All p-values are
two-sided and corrected for multiple hypotheses.

Determination of CK7and CK19 specific signatures in ccRCC by
microarray analysis

We further determined if CK7 and CK19 expression in ccRCCs
is associated with specific gene expression signatures. Gene
expression profiles were obtained from 21 primary ccRCCs and
14 ccRCC metastases by cDNA microarray analysis. Pearson cor-
relation was used to estimate the relation between each single
gene and CK7/CK19 expression, the 2 CKs identified as having
prognostic relevance in ccRCC. Genes with a two-sided p-value
<0.001 were selected. We identified 62 genes with a strong rela-
tion to CK7 (Fig. 4), and 182 genes related to CK19 (Supplemen-
tal Fig. 2).

Loss of CK7 expression in ccRCC was associated with signifi-
cant dysregulation of genes involved in transcription, signal trans-
duction, cell cycle regulation, DNA mismatch repair, cell adhesion
and immune responses. To evaluate whether the transcripts identi-
fied could help distinguish between ccRCC subtypes defined by
CK7 expression, we selected 2 candidates whose transcripts were
up- (PMS2) or down- (MMP14) regulated in relation to CK7. For
both PMS2 and MMP14, antibodies were commercially avail-
able.?”?® PMS2 was strongly expressed in all ccRCCs positive for
CK7. These cases had low or absent MMP14 expression. Repre-
sentative TMA cores are depicted in Figure 5.

Thus, the data sets obtained by Pearson correlation for CK7 and
CK19 represent a potential source of markers that may aid in dis-
tinguishing molecular ccRCC subclasses.

Discussion

Markers of epithelial differentiation, and among those CKs as
constituents of the cytoskeleton in epithelial cells, show variable
expression in ccRCC. In our study, we define a correlation
between the heterogeneous expression of CK subtypes and the het-
erogeneous clinical behaviour of ccRCC. We demonstrate that the
distinctive CK expression patterns of ccRCCs can be a surrogate
for underlying genomic alterations, have predictive value for
patient outcome and reflect different gene expression patterns in
ccRCC subgroups.
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FiGure 3 — CK7 and CK19 protein expression and survival in ccRCC. Kaplan-Meier curves for CK7 (a), CK8 (b), CK8a (c¢) and CK19 (d)
protein percentages (above and below median). The green lines correspond to cases with protein expression equal to or above the median, the
blue lines correspond to cases with CK expression below the median. (a) CK7 protein expression is associated with longer survival in ccRCC
patients (log rank p-value = 0.03). (b) CK8 expression alone is not a statistically significant parameter for predicting outcome (p = 0.31). (¢)
Similarly, the predictive value of CK8a is limited, indicating a better prognosis within the first 5 years after initial diagnosis, but loosing statisti-
cal significance at later time points (p = 0.24). (d) CK19 protein expression shows significant association with longer survival within 5 years

after initial diagnosis (p < 0.01), but is not significant on long term.

TABLE 1V - COX REGRESSION UNIVARIATE ANALYSIS OF THE ZURICH
COHORT (209 ccRCCS) WITHIN 5 YEARS FROM DIAGNOSIS

pvalue RR 95.0% CI for RR
Lower Upper
CK7 <0.01 0.52 0.32 0.85
CK8a <0.01 0.47 0.28 0.78
CK8 0.01 0.54 0.33 0.88
CK19 <0.01 0.48 0.29 0.79

ccRCC cases with CK7, CK8a, CK8 or CK19 expression above and
below or equal to the median were compared.

Our findings in ccRCC are consistent with CK expression stud-
ies in other malignancies. Schaller et al. have previously shown
that loss of CK8 and CK18 in breast carcinomas was associated
with a significantly worse prognosis, whereas the ma]orlty of
patients with high' CK18 remained recurrence-free.”” In breast
cancer cell lines, forced re-expression of CK18 was associated
with reduced invasiveness in vitro.” A similar correlation
between CK8/CK18 expression and reduced tumongemcny was
reported by Pankov et al. for murine pancreatic carcinoma cells. 3
Similar results were also obtained by Sommers and Thompson
who showed that breast cancer cell lines became more aggressive
as keratin filaments were replaced by vimentin, the intermediate
filament-protein of mesenchymal cells.”

Our conventional cytogenetic analysis identified ccRCC sub-
groups with prognostically relevant CK expression patterns, indi-
rectly suggesting that the number of cytogenetic alterations is
linked to the biologic tumor behavior. It has been suggested that
RCC progression is characterized by an accumulation of complex

chromosomal alterations. Comparative genomic hybridization
(CGH) analyses have shown that a high number of chromosomal
copy number aberrations is associated with poor prognosis.’ Inter-
estingly, 24% of ccRCCs in our study did not reveal any conven-
tional cytogenetic aberrations. Conventional cytogenetic analysis
as applied for the Brigham and Women’s Hospital cohort has its
limitations, and therefore could affect our results. One of these
limitations is the low resolution of the method. Furthermore, con-
ventional cytogenetics can result in a bias towards tumor cells
with a growth advantage in vitro. For these reasons, we validated
our hypotheses on a large independent cohort of ccRCCs with
long-term follow-up data.

Cytogenetic studies have shown that 3p deletions are linked to
ccRCC, occurrmz‘g_ in 40-70% of sporadic tumors with this histo-
logical subtype.**® Previous molecular studies demonstrated that
different genes on chromosome 3p are candidates for tumor sup-
pressor genes (TSG), with VHL on 3p25.5 as the most frequently
inactivated TSG. Although it is assumed that the inactivation of
one or more genes on 3p plays a role in ccRCC initiation, it has
been suggested that other cytogenetic alterations go along with
ccRCC progression, but the nature and relevance of their interrela-
tionship is poorly understood. Our data strongly indicate that there
are ccRCC clusters defined by specific cytogenetic alterations,
resulting in different CK expression patterns.

Microarray analysis of malignancies from other organ sites has
revealed molecular subtypes of tumors that are histologically
indistinguishable, and gene expression proﬁles have been identi-
fied that correlate with clinical outcomes.>”° Global analysis of
gene expression using cDNA microarray technology offers signif-
icant opportunities to identify novel markers that discriminate
between classes of tumors and holds promise in identifying mo-
lecular subclasses of tumors with differing prognosis. Our data
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TABLE V - FOR EACH IMMUNOHISTOCHEMICAL MARKER (PERCENTAGE OF TUMOR AREA EXPRESSING THE PROTEIN), WE TESTED FOR SIGNIFICANT
DIFFERENCES WITH RESPECT TO CLINICOPATHOLOGICAL VARIABLES

E-cadherin p-value Pan-CK, p-value CK7, p-value CKS8, p-value CK19, p-value
(up-down) N = 199 (up-down), N = 178 (up-down), N = 184 (up-down), N = 174 (up-down), N = 176
Event 0.02
Fuhrman Grade <0.005 (0.05)
pT Stage 0.002
Sarcomatoid Features 0.01
Necrosis <0.01 <0.005
Nodal Status
Metastatic Status 0.03
Lymphocytic Infiltrate <0.01
Size (cc)
Gender

Age (years)

Mann—Whitney test was applied. All p-values are two-tailed. Uncorrected p-values are reported for all significant test results, and the reported

results represent downregulations of the markers with respect to the

clinicopathological features. Results in brackets are not significant, but

revealed a tendency. If we consider multiple hypothesis correction, the bold printed p-values are still significant. Downregulation of CK7 expres-

sion appears to be strongly associated with aggressiveness.
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FIGURE 4 — Clear cell RCC gene expression data - 62 genes showed significant correlation with CK7 expression.
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Pearson correlation was used

to estimate the relation between each single gene and CK7 expression in 21 primary ccRCCs and 14 ccRCC metastases. Genes with a p-value
<0.001 were selected and color-coded: red = high expression, green = low expression, related to CK7. The hierarchical clustering is computed
as average linkage with correlation distance. The 35 cases are further annotated according to their CK7 expression (first bar on the top; CK7
expression is color-coded as a gradient with red = low and magenta = high expression) and according to their status as primary (blue) or meta-

static (red) ccRCCs (second bar on the top).

provide a starting point for identification of distinctive molecular
signatures for ccRCC subtypes and may offer unique biological
insights into these tumors. We demonstrate the potential benefits
of 2 novel biomarkers in ccRCC with distinctive expression pat-
terns that were identified in our analysis. The DNA mismatch

repair protein PMS2 was found to be strongly expressed in CK7
expressing ccRCCs. Defects in DNA mismatch repair result in an
accumulation of mutations that are associated with human cancers
and diseases. While their contribution to gastrointestinal tumors is
well studied, the role of mismatch repair defects in other tumor
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MT1-MMP / MMP14

CKTY -

CKT7 +

575
PMS2

FI1GURE 5 — Immunohistochemical analysis of PMS2 and MT1-MMP/MMP14 as 2 distinctive biomarkers in CK7 positive ccRCCs. (a) Exam-
ple of a CK7 negative ccRCC with strong positivity for MT1-MMP/MMP14 (b), but without PMS2 expression (c¢). CK7 positive ccRCC (d)
lacking MT1-MMP/MMP14 expression (e), but expressing PMS2 (f). The MT1-MMP/MMP14 immunohistochemical signal was located at the
membrane and in the cytoplasm, whereas PMS2 showed mainly a nuclear staining pattern with weak cytoplasmic staining.

types is not well characterized. Norris et al. report a significant
increase in the level of PMS2 in pre-cancerous and low grade
prostate cancer as compared to higher grade tumors. & Our finding
of increased PMS2 expression in CK7 positive ccRCCs is in line
with this observation. However, further validation will be neces-
sary to determine the prognostic significance of PMS2 expression
in ccRCC.

In our study, we show the absence of matrix metalloproteinase
(MMP) MT1 (also known as MMP14) in CK7 positive ccRCCs. A
crucial step in tumor progression and invasion is the proteolytic
degradation of the extracellular matrix (ECM) and basal mem-
branes.** MMPs are zinc-dependent endopeptidases, which are
largely involved in tissue remodeling, degradation of the ECM
and tumor invasion.*' Although most MMPs are secreted, the
membrane type 1 matrix metalloproteinase (MT1-MMP) is local-
ized in the cell membrane.*? Its expression has been correlated
with the invasive capacity of different tumors.*! Our findings sug-

gest that the good prognosis of CK7 expressing ccRCC can be par-
tially explained by absence of MT1-MMP expression.

In summary, we have identified ccRCC subgroups, which are
characterized by specific CK expression patterns and different
prognosis. These findings may also have therapeutic relevance in
the near future. Targeted delivery of liposome-encapsulated CK18
expression vectors by conjugation to anti-HER2/neu antibodies
seems a promising approach in the treatment of breast cancer.*?
Similar treatment strategies could be envisioned for ccRCC. Bio-
markers and pathways associated with CK7 or CK19 expression
provide sources of novel therapeutic targets for ccRCC.
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