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Protein microarrays are similar to DNA microarrays; both enabling the parallel interrogation of thousands
of probes immobilized on a surface. Consequently, they have benefited from technologies previously
developed for DNA microarrays. However, assumptions for the analysis of DNA microarrays do not
always translate to protein arrays, especially in the case of normalization. Hence, we have developed
an experimental and computational framework to assess normalization procedures for protein
microarrays. Specifically, we profiled two sera with markedly different autoantibody compositions. To
analyze intra- and interarray variability, we compared a set of control proteins across subarrays and
the corresponding spots across multiple arrays, respectively. To estimate the degree to which the
normalization could help reveal true biological separability, we tested the difference in the signal
between the sera relative to the variability within replicates. Next, by mixing the sera in different
proportions (titrations), we correlated the reactivity of proteins with serum concentration. Finally, we
analyzed the effect of normalization procedures on the list of reactive proteins. We compared global
and quantile normalization, techniques that have traditionally been employed for DNA microarrays,
with a novel normalization approach based on a robust linear model (RLM) making explicit use of
control proteins. We show that RLM normalization is able to reduce both intra- and interarray technical
variability while maintaining biological differences. Moreover, in titration experiments, RLM normaliza-
tion enhances the correlation of protein signals with serum concentration. Conversely, while quantile
and global normalization can reduce interarray technical variability, neither is as effective as RLM
normalization in maintaining biological differences. Most importantly, both introduce artifacts that distort
the signals and affect the correct identification of reactive proteins, impairing their use for biomarker
discovery. Hence, we show RLM normalization is better suited to protein arrays than approaches used
for DNA microarrays.

Keywords: protein arrays • global normalization • quantile normalization • robust linear model
normalization • intra-array variability • interarray variability

Introduction

In the past decade, there has been a research paradigm shift
from a traditional hypothesis-driven approach to a discovery-
driven approach employing high-throughput (HT) methodolo-
gies. These new HT methods enable the collection of large data

sets, greatly accelerating the progress of many investigations.
Among the different HT technologies, microarrays are one of
the first and most widely used methods. Microarrays allow the
simultaneous query of thousands or millions of probes (nucleic
acids, proteins, etc.), which are spatially arranged in a grid-
like pattern. DNA microarrays are the most common type of
microarray and typically consist of a series of DNA fragments
representing genes, deposited in a grid on a solid-state surface.
A fluorescently labeled sample, for example, the transcriptome
of a cell, can be used to assess the expression profile of the
cell. By measuring the fluorescence intensity of each probe
bound to its cognate gene probe on the array, an estimate of
the expression for each gene is obtained, and multiple samples
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can be profiled to assess which genes are differentially ex-
pressed under different conditions.

Following a HT methodology, other types of microarrays
have been developed, including Single Nucleotide Polymor-
phism (SNP) arrays,1 tiling arrays for Comparative Genomic
Hybridization (array-CGH),2 and for Chromatin Immuno-
precipitation (ChIP-on-chip).3,4 Although targeted to different
applications, they require the same basic components: probes
placed on a grid, labeled samples, and a system to detect the
fluorescent signal.

Recently, protein arrays have been introduced to further
functional genomics studies.5-8 Protein arrays are composed
of hundreds or even thousands of proteins immobilized on a
solid surface. Protein arrays can be used for a wide variety of
applications, including detection of antibodies in blood,
protein-protein interactions, protein-small molecule interac-
tions, and enzyme activities.9-11 Two types of protein arrays
can be defined: functional protein arrays and protein profiling
arrays.12,13 The latter usually comprise spotted antibodies and
are typically used to measure protein abundance and/or
alterations. Functional protein arrays can include any type of
protein and therefore have broader applicability. Here, we focus
on the analysis of data from biomarker discovery efforts
utilizing functional protein arrays. The premise of these experi-
ments is that autoantibodies present in serum are correlated
with diseases such as autoimmune disorders, infectious disease,
and cancer. This is well documented for autoimmune diseases
where high levels of antibodies are produced by the immune

system against autoantigens, and it has also been shown that
anomalously high levels of cancer-related proteins lead to the
production of the corresponding autoantibodies.14-16

The immune response biomarker profiling assay is per-
formed by probing protein arrays with serum samples in order
to detect antibodies present in the serum that bind to their
corresponding target protein on the array (see Figure 1a).

Bioinformatics is essential for analysis of the large data sets
arising from these experiments. Several software tools have
been developed for the detection and analysis of the hybridiza-
tion signal on microarrays. The most common software tools
for signal detection are GenePix Pro,17 ImaGene,18,19 ArrayVi-
sion,20 ScanAlyze,21 and SpotFinder.22 Many more computa-
tional tools have been developed for other aspects of data
analysis, including preprocessing, quality controls, normaliza-
tion procedures, and actual statistical analysis of differential
expression (e.g., SAM, Bioconductor, cyberT).23-25 The majority
of the hardware and software for the analysis of protein arrays
has been adapted from DNA microarray tools. Although this
has been advantageous in the early stage of protein arrays,
more tailored tools are needed to tackle the specific issues of
protein arrays.

We reasoned that many sources of variability can be intro-
duced in the printing, probing, and scanning of protein arrays,
resulting in differences in the measured signals that are not
caused by differences in biological samples. This technical
variability can be greater than the actual biological variability
and thus hide the real differences between samples (false

Figure 1. Serum profiling assay and experimental design. (a) Schematic of the assay. The array is probed with the serum sample. A
second fluorescently labeled antibody is added after washing the array to remove unbound antibody. The amount of bound serum
antibody is measured with the fluorescent signal intensity. (b) The array contains a series of subarrays. Control proteins are spotted
in each subarray, enabling the estimation of the intra-array variability. They can also be used for the normalization procedure. The
“positive spots” are proteins which reacted with antibodies in the serum or the secondary antibody. (c) Two different sera were utilized,
a “positive” serumsPositive Control Sera (PCS)sand a “normal” serum, known to have distinct proteomic profiles. The “positive”
serum is a mixture of sera qualified for reactivity to different proteins, whereas the “normal” serum is a sample with no known pathology.
Six technical replicate arrays were probed for each serum sample. Interarray variability can be estimated for each serum. In addition,
the two sets of arrays enable the estimation of sample separability, i.e., how well differentiated the proteomic profile of the two sera
is. (d) The two sera were mixed in 5 different proportions, including pure samples, and each was assayed 4 times.
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negatives) or can introduce spurious effects leading to the
identification of false biomarkers (false positives).

An effective normalization procedure should reduce the
variability in the signal caused by systematic artifacts without
losing useful biological information. One way to measure
systematic variation is to use control proteins spotted on the
arrays, which we assume to react independently from the
serum and therefore return constant signals across and within
arrays. For this reason, control proteins can be employed both
for normalization and for evaluation of array variability.

We used a set of specific replicated experiments (Figure 1b,c)
and titration experiments (Figure 1d) to examine the technical
variability of protein arrays and demonstrated that traditional
normalization procedures employed in DNA microarray analy-
sis may not be suitable for protein arrays. Briefly, we employed
two sera known to have different reactivity against specific
proteins on the array. A set of replicated experiments was
carried out to assess intra- and interarray variability by
measuring the coefficient of variation of the control proteins
within one array or the spots at corresponding positions across
multiple arrays (see Materials and Methods for details). More-
over, the distinct reactivity of the two serum samples allowed
us to evaluate sample separability by means of Fisher’s signal-
to-noise ratio and to analyze the correlation of the signal with
the serum concentration within the context of the titration
experiments. Indeed, signals of proteins reacting to a particular
serum sample should show a positive correlation with increas-
ing concentrations of the corresponding reactive serum. Three
normalization procedures were employed. Global and quantile
normalization are commonly used with DNA microarrays. The
third method is a novel normalization approach based on the
robust linear model specifically developed for functional
protein arrays.

Study Rationale

Sources of Variability. Sources of variability in protein
microarrays can be either systematic or random. For example,
systematic spatial artifacts can be introduced by the printing
process of the array, and the scanning process can introduce
systematic noise if the scanner is not properly aligned. Het-
erogeneity of the array surface can introduce random vari-
ability. In addition, differences in the total quantity of serum
or of the secondary antibody can affect the comparison
between different arrays. Other types of artifacts can be
introduced by the experimental procedure itself. Indeed, a
common procedure employed by researchers is the adjustment
of the Photo-Multiplier Tube (PMT) gain which is responsible
for the acquisition and amplification of the fluorescent signal.26

This procedure is typically used to avoid signal saturation or
to enhance lower signals, but it can be a significant source of
variability if arrays acquired at different PMT settings are
compared.27,28

Experimental and Computational Approach. To assess
those diverse sources of noise affecting protein binding signals,
a set of replicated controlled experiments was devised. Protein
arrays with selected control proteins spotted in each subarray
were probed with each of two known different sera to examine
intra- and interarray variability as well as the separability of
the two sera. A set of titration experiments were also conducted
to analyze the correlation of protein signals with serum
concentration. Different normalization techniques were then
evaluated on these data.

Array variability is estimated by means of coefficient of
variations (CVs, see Intra- and Interarray Variability) computed
considering either the replicated experiments (for interarray
variability) or duplicated control protein spots (for intra-array
variability). This measure provides an estimate of the level
of variability in the signal. The lower the CV, the lower signal
variation and, typically, the better the quality of the measure-
ments. Controls proteins are expected to have the lowest CVs
since they should be independent from the sera. Hence, they
are ideal to estimate intra- and interarray variability due to
technical reasons and assess the performance of different
normalization procedures.

Although advisable, a low CV does not always translate to
good quality array. Indeed, one could develop a normalization
technique which sets each spot on the arrays to a fixed value.
In this rather extreme example, CV would be zero, but obvi-
ously, all relevant information is completely lost. Hence, in
addition to CVs, we also assessed sample separability. Since
we have replicated experiments for each serum, which are quite
distinct, we can quantify how well the two groups of serum
are separated by means of Fisher’s Signal-to-Noise ratio S (see
Sample Separability Score). Ideally, the normalization proce-
dure should lower the variability due to technical artifacts
(lower CVs), while enhancing the separability of the samples
(higher S).

Finally, with the set of titration experiments, the two sera
were mixed in different concentrations and repeatedly tested.
The two sera are sufficiently distinct that they react to different
proteins. The intensity of the signals is expected to correlate
with the serum concentration. Therefore, since the relationship
of signals between titrated samples is known, we can evaluate
the normalization procedures. For example, the signal of
proteins known to react with the “positive” serum should yield
a positive correlation with increasing concentration of the
“positive” serum.

The aim of high-density protein microarrays is the identifi-
cation of candidate proteins that are differentially reactive
between two conditions, such as normal and disease sera.
Therefore, an optimal normalization procedure should result
in a reduction of both false negatives (undetected proteins) and
false positives (proteins incorrectly identified as differentially
reactive) with respect to the original unnormalized data. To
assess this point, we first identified differentially reactive
proteins, that is, created a hit list, by means of M-statistic (see
Hit list section below) and then compared the hit lists of the
three normalization procedures with the one obtained from
the original data looking for the less disruptive normalization
procedure.

Materials and Methods

Human Protein Collection. Human clones were obtained
from Invitrogen’s Ultimate ORF (open reading frame) collection
or from a Gateway collection of kinase clones developed by
Protometrix. The nucleotide sequence of each clone was
verified by full length sequencing. All clones were transferred
into a system for expressing recombinant proteins in insect cells
via baculovirus infection. Using a proprietary high-throughput
insect cell expression system, thousands of recombinant human
proteins were produced in parallel. Each protein is tagged with
Glutathione-S-Transferase (GST), which enables high-through-
put affinity purification under conditions that retain activity.
After purification, a sample of every purified protein is checked
to ensure that the protein is present at the predicted molecular

A Novel Normalization Approach for Functional Protein Arrays research articles

Journal of Proteome Research • Vol. 8, No. 12, 2009 5453



weight. In addition, all proteins are printed onto arrays and
the concentration of each protein is determined. The printed
concentration of proteins on the array ranges from 5 ng/µL up
to over 1000 ng/µL with an average of approximately 50 ng/
µL.

Human Protein Microarray Manufacture. The output of the
protein purification process described above is thousands of
purified proteins that are ready to be printed on arrays. A
contact-type printer equipped with 48 matched quill-type pins
is used to deposit each of these proteins along with a set of
control proteins in duplicate spots on 1 in. × 3 in. glass slides
that have been coated with a thin layer of nitrocellulose. APiX
slides are manufactured by GenTel BioSciences, Inc. ApiX
technology is covered by US Patent #6,861,251. APiX and
GenTel are registered trademarks of GenTel BioSciences, Inc.
The printing of these arrays is carried out in a cold room under
dust-free conditions in order to preserve the integrity of both
protein samples and printed microarrays. The arrays are
designed to accommodate more than 19 200 spots. Protein
samples are printed in 130 µm spots arrayed in 48 subarrays
(4000-µm2 each) and are equally spaced in vertical and
horizontal directions with 22 columns and 22 rows per subarray
(Figure 1). Spots are printed with a 200 µm spot-to-spot
spacing. Control proteins including human-IgG, anti-human-
IgG and V5-CMK1 series (printed in an 8 step gradient: 0.125,
0.25, 0.5, 1, 2, 4, 8, and 16 µg/mL) are replicated on each
subarray at defined positions and are used as reference controls
in our normalization method.

Immune Response Biomarker Profiling Protocol. Microar-
ray slides were blocked in 5 mL of PBS/1% BSA/0.1% Tween
20 in quadriPERM 4-well trays for 1 h at 4 °C with gentle
agitation. After blocking, the blocking solution was removed
from the arrays by vacuum aspiration and 5 mL of each serum
sample diluted 1:500 in freshly prepared Serum Probing Buffer
(1× PBS, 5 mM MgCl2, 0.5 mM DTT, 0.05% Triton X-100, 5%
glycerol, 1% BSA) or buffer alone (negative control) was applied
to the arrays. Samples were allowed to incubate for 90 min at
4 °C with gentle agitation. After incubation, the samples were
removed by vacuum aspiration and arrays were washed five
times (5 min per wash) in 5 mL of Probing Buffer. Alexa
Fluor647-conjugated anti-human IgG at 1.0 µg/mL diluted in
a total volume of 5 mL of Probing Buffer was then added to
each array and allowed to incubate with gentle shaking at 4 °C
for 90 min. Alexa Fluor647- and Alexa Fluor555-conjugated anti-
V5 antibody (0.26 µg/mL each) were added with the anti-
human IgG as a serum-independent control for use in the
robust linear model normalization algorithm (see Normaliza-
tion Methods). After incubation, the secondary antibody was
removed, and arrays were washed as described above. Arrays
were dried by spinning in a table top centrifuge equipped with
a plate rotor at 200g for 1 min.

Design of Experiments. All experiments were performed
with two serum samples:

• “Normal” sample: a serum sample acquired by Biorecla-
mation (Hicksville, NY) with no known pathology.

• “Positive” sample: a Positive Control Sera (PCS, Immuno-
Vision, Cat # HAP-0600); an equal mixture of six indepen-
dent human sera, each qualified for a different antigen,
Ro/SS-A, La/SS-B, Smith Antigen, RNP Complex, DNA
Topoisomerase I (Scl-70), and Jo-1.

Two sets of experiments were performed to evaluate the
variations in the data and the normalization effectiveness:

1. Two-sample replicates: six arrays were probed with the
“positive” serum, and six arrays were probed with the
“normal” serum. This represents a two-class scenario to
assess the relative signals between samples and variations
among replicates.

2. Sample titrations: a total of 20 arrays were used. “Positive”
and “normal” sera were mixed at 0:100%, 25:75%, 50:50%,
75:25%, 100:0% proportions. Four arrays were probed with
each mix of sera. This represents a more continuous
situation with a known relationship in the signals between
titrated samples.29

Data Acquisition and Analysis. After probing the sample,
each array was scanned using Axon GenePix 4000B fluorescent
microarray scanner which yields a Tagged Image File Format
(TIFF) image. The arrays were scanned at two different
wavelengths: 635 nm (red) and 532 nm (green) since two
fluorescently labeled antibodies were used. Each image was
then processed by GenePix version 6.1,17 which quantitatively
assesses the intensity of each spot on the array. The output of
GenePix is a GenePix Pro Results File Format (GPR) text file
containing protein reactivity measurements. It also provides
flags and quantities reflecting the spot quality, such as SNR
(signal-to-noise ratio) and percent saturation, which were used
in data preprocessing to filter out protein features that were
saturated or without significant signal. We did not filter control
proteins used for training the robust linear model algorithm.

Each array was scanned twice at two different PMT gains,
High (700/800 V), and Low (550/700 V) for 635 nm/532 nm
channels, respectively, to simulate PMT drifting that may occur
in practice and to evaluate the performance of normalization
procedures in that situation.

Image Processing. Image processing is another example
where tools developed for DNA microarray analysis cannot be
applied “as-is” to protein arrays, but require careful consider-
ations. Features on DNA arrays usually consist of a square
containing a well-defined circle, where the actual foreground
signal is measured. Background signal is then computed from
the remaining region that does not include the foreground
region. The process of identifying objects in an image, such as
the foreground and the background region, is called segmenta-
tion. In protein arrays, features may not contain circular shapes
because of smears, if the signal is quite strong, or small
speckles. This situation may easily affect the proper segmenta-
tion of foreground and background regions. We compared two
different segmentation procedures provided by GenePix: cir-
cular and irregular. The former assumes that the foreground
signal in the spot is circular and identifies the best diameter.
The latter does not assume any specific shape and thus
segments the foreground signal from the background with any
irregular shape. We determined that irregular segmentation had
better performance, and we used the irregular segmentation
option for all the analysis reported in this paper (see Supporting
Information for more details).

Intra- and Interarray Variability. We assess the extent of
intra- and interarray variability by measuring the Coefficient
of Variation (CV), defined as

where σ is the standard deviation and µ is the mean of the
signal at original scale. Regarding intra-array variability, the
computation of CV is based on the measurements of control

CV ) σ
µ
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proteins spotted in each subarray within an array. Concerning
interarray variability, CV is computed for the protein spot at
the same location across multiple arrays.

Sample Separability Score. To examine the separability of
the two serum samples, we apply Fisher’s signal-to-noise ratio
to log2-transformed signals, which is defined as

where µ1 and µ2 are the mean values of a protein feature for
the two classes, and σ1 and σ2 are the corresponding standard
deviations. Along with CV, we use it to evaluate and compare
different normalization procedures. Ideally, normalization
procedures should preserve the real biological difference while
reducing the variation between replicates, yielding higher
values of S with respect to the original data.

Normalization Methods. We compared three different nor-
malization procedures:

1. Global: The signal levels of each array are scaled with a
factor such that the signal medians of all the arrays are
the same as the overall median. In the DNA microarray
context, where global normalization is commonly used,
this strategy assumes that the overall amount of tran-
scription in each sample is the same.30

2. Quantile: Quantile normalization has been developed
mainly in the context of DNA microarrays, where it is one
of the most common normalization procedures.31 This
method assumes that the distribution of actual signals is
the same in all samples and adjusts the observed data
accordingly. Algorithmically, the largest signal for each
array is replaced by a median value of the largest signals;
the second largest signal is replaced by a median value
of the second largest signals, and so forth. Many software
packages for DNA microarray analysis include quantile
normalization as a standard preprocessing step. We used
the implementation provided by the Bioconductor pack-
age “limma”.32

3. Robust Linear Model (RLM):33 We applied a robust linear
model to normalize the data by exploiting the control
proteins. The fitting to a linear model is performed
through a robust regression by means of an iteratively
reweighted least-squares procedure with a robust estima-
tor, like the median. Generally, RLMs are less sensitive
to outliers in the data because outliers are weighted down
in the model fitting procedure and the median is less
affected than the mean by potential outliers. Preliminary
results suggest that the systematic variations across
subarrays or slides appear to be a multiplicative factor to
the protein binding signals. Hence, we propose a linear
model on log-transformed signals to estimate and correct
the variations as the following formula:

where
• yijkr is the observed signal in logarithmic scale for spot r of

protein feature k located in subarray j on the i-th array. Thus,
r ranges from 1 to 2, the spot replicate; k from 1 to nf, where
nf is number of protein features; j from 1 to 48 subarrays;
and i from 1 to ns, where ns is the number of arrays;

• Ri is the slide effect of slide i, accounting for the overall
differences among arrays possibly due experimental and/
or scanning conditions;

• �j represents the subarray j effect, accounting for spatial
and printing pin effects;

• τκ is the effect of the protein feature k, accounting for the
spotted protein amount and binding affinity of different
protein features;

• εijkr is the random error. We assume that εijkr ∼ N(0,σ2);
that is, that the random error has a normal distribution
centered around zero with the same variance σ across all
spots.

This model can be applied simultaneously to both intraslide
and interslide normalization. Once the best parameters of the
model are estimated, the logarithmic intensity of each spot is
corrected according to

For intraslide normalization of a single slide, term Ri is
dropped. In this study, we evaluated normalization using
different sets of control proteins, including human-IgG series
and anti-human-IgG series (together denoted as IgG), which
respond to serum and secondary antibody, or V5-CMK1 series
(denoted as V5), which responds to spike-in anti-V5 antibody,
or the combination of all three control series (denoted as
IgG+V5). Human-IgG and anti-human-IgG spots can be used
as normalization references because they are chemically satu-
rated in our experiment condition and their observed signals
are expected to reflect only technical variations of the arrays
or assays. Normalization was typically carried out using the
control signals acquired at the same wavelength (same-channel
normalization). In addition, since the arrays were scanned at
two wavelengths, we were able to evaluate cross-channel
normalization. In this case, the model was fitted using the
control proteins acquired at one wavelength and then signals
acquired at the second wavelength were normalized with the
coefficients derived from this model.

Weighted or iteratively reweighted least-squares algorithms
have also been used in robust local regression methods (i.e.,
LOWESS) for normalization of cDNA microarrays.34,35 However,
in those settings, the procedure has to be applied to a
sufficiently large number of genes with the assumption that
only a small portion of those genes may be differentially
expressed across conditions. In a different context, a robust
linear model fitting procedure was applied to estimate gene
expression level or difference on Affymetrix microarrays.36 To
the best of our knowledge, a robust linear model has never
been implemented for protein array normalization. We used
the “rlm” function in the R MASS package to implement our
normalization procedure in this study.37

Hit List via M-Statistic. The final goal of serum profiling on
functional protein arrays is to identify a set of candidate
autoantibodies that are differentially reactive between two
different populations, such as normal and disease. To this goal,
Pearson’s t test (or its robust nonparametric counterpart:
Mann-Whitney test) could be applied. By identifying a proper
cutoff on p-values, a hit list of differentially reactive proteins
can be constructed. The t test and Mann-Whitney specifically
take into account the entire set of samples in groups. However,
due to biological heterogeneity of the immune response, it is
possible that an antibody is reactive to a certain protein in only

S )
(µ1 - µ2)2

σ1
2 + σ2

2

yijkr ) Ri + �j + τk + εijkr

y ′ijkr ) yijkr - Ri - �j
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a subset of samples in one group. Hence, to identify protein
features that show different reactivity between the two groups,
we use a statistical method called M-statistic that can identify
proteins reactive in only a subset of a group. Briefly, all of the
signal values for a given protein in one group (e.g., group 1,
control samples) are iteratively compared to the values in the
comparison group (e.g., group 2, diseased samples). The
number of values in group 2 which are above the highest value
in group 1 are counted (M*) and a p-value is determined by
computing the probability of having M greater than M* via
hypergeometric distribution. Then, the number of values in
group 2 which are above the second highest value in group 1
are counted and a p-value is determined and so on until all of

the values in group 1 are considered. A cutoff value (or
threshold) is defined as the comparison which returns the
lowest p-value. This lowest p-value is the significance of the
protein in consideration. Hits identified via M-statistic by
ProtoArray Immune Response Biomarker Profiling assays have
been validated using a variety of approaches.38,39

Data analysis was performed with R version 2.5.40 Table 1
lists the set of definitions and abbreviations used throughout
the paper.

Results

Intra-Array Variability. Intra-array variability was esti-
mated by computing the CV using only the control features
replicated in each subarray that had median signal intensities
significantly above the background and were not used in the
training of the robust linear model (RLM). In the original
data for arrays scanned at the High PMT, the median CV
was 0.24 (Figure 2), whereas RLM normalization reduced the
median CV to between 0.19 and 0.20 when the reference
control signals in the same channel were used to fit the
model. Cross-channel RLM normalization, that is, using the
control signals acquired at a different wavelength than the
signal to be normalized, is less effective than same-channel
normalization, resulting in a median CV of 0.23. On the other
hand, global and quantile normalization are typically applied
on several arrays, and thus, they are not designed to address
intra-array variability. In fact, when global normalization is
performed on a single array, a single scaling factor is applied
to all features, resulting in no effect at all to intra-array CV.
Theoretically, quantile normalization may affect the intra-
array CV depending on the data distribution. But in this
experiment, there was minimal effect.

Signal Distribution. We compared the distribution of the
signals across the arrays in each group before and after applying
the normalization procedures. As an illustration, we also
compared it with a DNA microarray profiling mRNA (Figure

Table 1. List of Abbreviations

abbreviation description

CV Coefficient of variation, i.e., standard
deviation divided by the mean

S Fisher’s Signal-to-Noise ratio
orig Original data, i.e., raw data without any

normalization
global Global normalization
quantile Quantile normalization
rlm.IgG.r Robust Linear model normalization with Human

IgG or Anti-human IgG control proteins,
using the red channel, i.e.,
same-channel normalization

rlm.V5.r Robust Linear model normalization with V5
control proteins, using the red channel,
i.e., same-channel normalization

rlm.IgG+V5.r Robust Linear model normalization with Human
IgG or Anti-human IgG and V5 control proteins,
using the red channel, i.e.,
same-channel normalization

rlm.V5.g Robust Linear model normalization with V5
control proteins, using the green channel,
i.e., cross-channel normalization

Figure 2. Effect of normalization on intra-array CV. The computation of CV was performed by looking at the control proteins spotted
on each subarray that were not used for normalization. The box plots show the results for all 12 slides (6 replicates of the “positive”
serum and 6 replicates of the “normal” serum), see Table 1 for definitions.
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3).41 It is worth noting that, while we are comparing technical
replicates within the “positive” and “normal” samples for the
protein array, the DNA microarray data set includes tissues
from different subjects, thus, adding biological variability to
the technical variability.

Quantile normalization assumes that the signal distribution
is the same across all samples. In fact, the distribution of signals
on DNA arrays is similar between multiple samples, and thus,
quantile normalization is appropriate in this context (Figure
3b). However, protein arrays show rather different signal

Figure 3. Signal distribution. (a) Signal distribution for noncontrol proteins before and after normalization. Red and black lines represent
the signals of “normal” and “positive” samples in each replicated experiment, respectively (see Table 1 for definitions). The result of
RLM with control spots is reported in the Supporting Information. (b) Signal distribution of a DNA microarray including 156 samples
divided in two classes: group 1 has 139 samples, whereas group 2 contains 17 samples. The green line represent signal distribution
after quantile normalization.
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distribution for the two samples (Figure 3a). Hence, the
assumptions of quantile normalization do not hold. As ex-
pected, quantile normalization completely removes any varia-
tion in the signal distribution by translating the signal into a
unique distribution which does not resemble the original
distribution of either of the two sera. Global normalization
simply shifts the signal distributions. Conversely, RLM is able
to reduce variability while preserving the original distribution
of the signals.

Normalization of Interarray Variation due to PMT Dif-
ference. One of the common experimental procedures to avoid
saturated (or too low) signals in the scanned image is to change
PMT gains. This may have a particularly detrimental effect on
comparative analysis of different arrays. Hence, we examined
the effect of normalization on PMT variation. We randomly
selected 3 arrays acquired with High PMT and 3 arrays with
Low PMT for both “positive” and “normal” samples.

We calculated Fisher’s Signal-to-Noise ratio S and performed
Principal Component Analysis (PCA) to examine the separabil-
ity of the samples both before and after normalization. PCA
provides a visual illustration of sample separability, whereas
Fisher’s Signal-to-Noise ratio yields a more quantitative
description.

Figure 4 shows the results of PCA. Each plot shows the
projection of the replicated samples along the first two
components of PCA. PCA components are linear combination
of the features, that is, proteins. The first two components
capture most of the variability of the data and can be used to
draw a 2D representation of the data, as in this case.

Clearly, in the original data, the replicated arrays of the same
sample acquired at the same PMT cluster closely together, and
arrays scanned at High PMT are separated from those scanned
at Low PMT. Although the distinction of the two classes, that
is, “positive” and “normal”, is still present, this might not be
the case for more subtle differences as in normal versus cancer
patients. All normalization procedures seem to be able to
correct the PMT effect; however, both global and quantile
normalization also reduce the distance between the two classes.

We took a closer look at these data by comparing Fisher’s
signal-to-noise ratio and interarray CV before and after nor-
malization (see Figure 5). Although global and quantile nor-
malization improve the signal-to-noise ratio with respect to the
original data, RLM with either IgG and/or V5 controls in the
same channel achieves the best improvement. This result is
particularly relevant when differences between samples may
be subtler than in this study.

Figure 4. Normalization comparison using the principal component analysis (PCA) for samples acquired at different PMTs.
Log2-transformed signals were used in PCA (see Table 1 for definitions). (a) The plots show the results for the actual data using different
normalization methods. (b) Schematic of plot interpretation: Fisher’s signal-to-noise ratio is equivalent to the distance between the
two clusters, whereas CV can be represented by the size of the cluster. The actual details of the computation are reported in the text.
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Furthermore, all normalization procedures significantly re-
duce the rather high interarray variability seen in this experi-
ment (Figure 5b). We again observe that cross-channel nor-
malization is less effective than same-channel normalization.

Sample Titration Experiments. To evaluate the effectiveness
of normalization in more detail, we performed a titration
experiment in which the two serum samples were mixed at
defined ratios (see Figure 1d). We preprocessed the data to
identify noncontrol protein features that were reactive with at
least one of the sera used (SNRg 2, not saturated). As expected,
most feature reactivity is linearly proportional to the titration
even with the raw data as shown in the top-left graph of Figure
7. Therefore, we calculated the correlation coefficients between
the signal and the input (titration proportion) as an indicator
of the signal accuracy. Given an increasing concentration of
the “positive” sample, proteins that are more reactive to the
“positive” serum should show positive correlation and those
that are more reactive to the “normal” serum should show
negative correlation. Proteins with similar reactivity to “posi-
tive” and “normal” sera should have correlation coefficients close
to zero, that is, show no correlation. Given the nature of the serum
samples used, we would expect more proteins showing a positive
correlation with “positive” serum concentration.

Our results show that RLM normalization improved the
correlation as the distribution peaks shift toward 1 or -1 in

Figure 6 relative to the original data, suggesting an improve-
ment of data accuracy. This is likely achieved by reducing the
variation between replicates while retaining the signal range,
as also indicated by the results shown in Figure 7a,b, bottom
right.

On the other hand, quantile normalization reduced, elimi-
nated or even reversed the correlation between the signal and
the input as reflected by the flat distribution in Figure 6. Figure
7 shows the results for two proteins on the array. In Figure 7a,
top-right, although quantile normalization effectively reduced
the variation between replicates, it did so at the cost of reducing
the signal range. In Figure 7b, top-right, quantile normalization
generated an artificial negative correlation in a protein feature
with nearly constant reactivity across the titrated samples.

For global normalization, the impact is even more dramatic:
the majority of the proteins reversed their correlation (Figures
6 and 7a,b, bottom-left). These results demonstrate that global
normalization drastically distorted the data in this experiment.

Impact of Normalization on Hit Calls. Ultimately, the
function of protein arrays is to distinguish samples based on
their reactivity. In this experiment, we probed arrays with two
serum samples (in 6 replicates) and determined the significant
protein features (hits) using M-statistic (see Materials and
Methods). We determined how many spotted proteins had
increased reactivity with one serum sample or the other using

Figure 5. Interarray variability and sample separability. (a) Fisher’s signal-to-noise-ratio before and after normalization. The y-axis is
trimmed at 20. (b) Comparison of normalization methods by means of interarray CV (see Table 1 for definitions).
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either the raw data acquired at the same PMT or signals
normalized with quantile, global or RLM. The results are
summarized in Figure 8. We expect that the “positive” serum
should show a higher number of reactive proteins compared
to the “normal” serum. When comparing the raw data, 2574
proteins have elevated reactivity with the “positive” serum as
compared to the “normal” serum. Surprisingly, global normal-
ization reduced that number to 289 and quantile reduced the
“positive” hit-list to 1048, therefore, increasing the number of
potential false negatives. RLM, however, extended the hit-list
to 4110 proteins. Conversely, 510 proteins were found to be
more reactive to the “normal” serum in the raw data. Global
normalization raised that list to 2503 proteins, and quantile to
1210 proteins. RLM reduced the “normal” hit-list to 439
proteins. Thus, RLM maintains a similar proportion of hits
between the two samples as seen in the original data and as
expected from the experimental design.

Since the hit-lists changed dramatically after normalization
(especially after quantile and global normalization), we inves-

tigated if also the classification of the hits defined in the raw
data changed after normalization. We found that of the 2574
“positive”-serum reactive proteins, global normalization clas-
sifies 1396 of them as being more reactive with the “normal”
serum. This redefinition of reactive proteins occurred with
quantile normalization too, although to a lesser extent. Indeed,
quantile normalization redefined 464 of the “positive”-serum
reactive proteins as “normal”-serum reactive ones. Conversely,
RLM changed the classification of only 3 proteins (from
“normal” to “positive” serum reactive). By this measure, RLM
again better maintains the trends seen in the original data and
expected by experimental design, whereas quantile and global
normalization appear to introduce artifacts.

Overall, the results from this set of experiments are very
consistent with those in the previous sections. Reduction of
technical variability without losing biological signals with RLM
normalization improved the sensitivity of M-statistic calls,
resulting in more significant hits. Quantile and global normal-
ization dramatically changed the hit lists due to signal distor-

Figure 6. Density distribution of Pearson’s correlation between signal and titration proportion. (a) The plot includes 1390 proteins
satisfying the following criteria across all 20 replicates: no saturated spots, less than 20% flagged spots; more than 80% spots with a
Signal-to-noise ratio g2 (see Table 1 for definitions about the legend). (b) The two extreme situations are depicted in a simulated
example. If there is no correlation between the entire set of proteins and serum concentration, we will observe an almost flat line
ranging from -1 to +1 (dashed blue line). On the other hand, if there is a correlation between reacting proteins and serum concentration,
we will see two peaks around -1 and +1 (for normal and positive correlated proteins, respectively). Since we have more proteins
reactive to the “positive” serum than to “normal” one, in this example, the peak centered around +1 is higher than the one at -1, as
expected.
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tion, including strong artifacts that reversed the polarity of the
hits, as shown in Figure 6.

Discussion and Conclusions

Protein microarrays have become important tools for large-
scale analysis of protein function and interactions, often taking
advantage of the well-developed DNA microarray technology.
Here, by means of a comprehensive comparative analysis, we
show that some assumptions made by studying DNA microar-
rays may not be true for functional protein microarrays,

although they share the common framework of immobilizing
probes on a surface. Some artifacts affecting protein arrays may
play a different role with respect to DNA microarrays. For
example, local spatial effects are a substantial source of noise
for protein arrays due to differences in the printing process or
uneven probing conditions, whereas this aspect is not as critical
for DNA microarrays. Other artifacts are related to the nature
of binding between antibodies and proteins, which is markedly
different from the hybridization process on DNA microarrays.
For example, highly reactive proteins can yield strong signals

Figure 7. Correlation of signal with titration proportion for protein MAP2 (a) and protein DUSP21 (b) as measured by the protein arrays.
Each panel shows the original data, quantile normalization, global normalization and RLM normalization with IgG and V5 (see Table
1 for definitions). Red lines represent fitted regression lines.
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that exceed the size of the spot. This technical variability and
the differences in binding characteristics contribute to one of
the most distinct characteristics between the two array types:
signal distribution. In DNA microarrays, the overall amount of
mRNA is assumed to be nearly the same across samples,
therefore enabling global or quantile normalization approaches.
The assumption of the global normalization method is that
arrays have the same median expression value, whereas the
quantile normalization assumes the same signal distribution
across arrays. These assumptions hold true for DNA microar-
rays, since large numbers of “neutral” genes in the samples
show levels of expression that cover the entire dynamic range
of the microarray. However, this cannot be considered a
reasonable hypothesis for protein arrays. When serum is
profiled on functional protein microarrays, typically only a
small portion of protein features on the array shows reactivity
to the probed serum samples. Furthermore, the number of
reactive proteins and their reactivity can vary significantly from
sample to sample, leading to markedly different signal distribu-
tions. These two observations imply a violation of the assump-
tions underlying quantile and global normalization. Indeed, we
demonstrated that global and quantile normalization methods
are not always suitable for protein microarrays and blindly
applying those normalization methods may result in loss of
real signal differences between samples or production of
artifacts.

The experimental design of this study resulted in more
proteins on the array that were reactive to the “positive” than
to the “normal” serum, although the reactive proteins were still
only a small fraction of the number of expressed genes typically
seen on DNA microarrays. The selection of these two samples
may have exaggerated the problems identified with global and
quantile normalization to some extent, but similar artifacts
were introduced by quantile normalization when comparing
autoimmune disease patients with normal controls (unpub-
lished results). Global and quantile normalization procedures
distorted the signal such that they impaired the detection of
reactive proteins. Conversely, RLM was able to improve the
detection of those proteins.

Among the main advantages of RLM are its flexibility to
capture many sources of errors, such as local spatial variations

(subarrays), overall differences in the brightness of the arrays,
and its ability to exploit control proteins, either internal or
spike-in controls. Moreover, the robust model fitting algorithm
used in RLM makes this method less prone to artifacts
introduced by outliers.

Some other normalization strategies for protein microarrays
have been proposed or evaluated in recent studies. Zhu et al.
proposed ProCAT: a normalization procedure for functional
protein microarrays in the context of radiometric kinase
assays.42 ProCAT specifically focuses on a single array by
reducing the effects of noise in the background signal of a spot
via a window of neighboring spots. The use of this window
allows the elimination of potential artifacts in the background
signal due to smears and smudges, which are prevalent in
radiometric assays. This procedure enhances the signal-to-
noise ratio of each spot. Moreover, a neighboring window is
used also to normalize the foreground signal of a spot by using
robust statistics less prone to outliers, helping to reduce spatial
effects. For kinase assays, ProCAT is particularly useful because
the main purpose is the analysis of catalytic activities of a
protein. In our setting, however, signal scattering is not a
concern in the fluorescent detection system. The main problem
with fluorescent-based detection strategies is interarray vari-
ability since we need to identify reactive proteins across
multiple arrays where differences between protein reactivities
may be subtle.

Hamelinck et al. reported that global normalization with
ELISA-determined IgM concentration performed the best
among the six normalization methods evaluated on their
antibody microarray platform.43 Although this strategy can be
easily extended to subarray level as long as a sufficient number
of reference protein spots are present in each subarray, the
requirement to perform ELISA on every sample is a limiting
factor. In addition, it may be challenging to identify a good
reference protein to calibrate with ELISA in the immune
response profiling on functional protein microarrays. Sundaresh
and colleagues applied DNA microarray analysis techniques to
their pathogen protein microarrays, including variance stabiliz-
ing normalization (VSN), which performs data transform and
normalization at the same time.44-46 The parameters of the
transform/normalization were estimated with either all content
or only control proteins using a robust algorithm. However, in
this case too, subarray effects are not taken into account in
the method. Given that VSN employs a nonlinear function
(arsinh), it would be difficult to extend VSN to fit a multifactor
model such as ours, although it may be an interesting future
direction to explore.

Marina et al. addressed the protein concentration variation
in protein microarrays, an orthogonal source of variation to
the ones we have considered in this study.39 The core of their
concentration-dependent analysis (CDA) method is a modified
Z-score transform that is localized to a neighborhood of protein
concentration and robust against outliers. The variation of
protein concentrations may be more important for intra-array
analysis, that is, when comparing different proteins on the same
array to determine significant hits, than when the same protein
is compared across arrays, that is, interarray comparison. As
long as each protein is printed consistently across arrays, the
absolute concentration of a protein will only affect the relative
signal-to-noise ratio and thus power or sensitivity of detection.
CDA for comparison between arrays would be similar to
applying global normalization in a concentration neighbor-
hood, assuming that a sufficiently large proportion of proteins

Figure 8. Effect of normalization on hit-list. The first two bars in
each category show the number of reactive proteins, i.e., hits,
detected by M-statistic. The normalization methods also report
the number of reactive proteins that changed classification, i.e.,
up in “positive” or “negative” serum, with respect to the original
data.
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in any given concentration neighborhood have a similar
distribution across arrays or conditions. Therefore, in cases
where such an assumption is violated, comparison of the
signals across two RLM normalized arrays may provide more
accurate results than the comparison of Z-scores.

In this manuscript, we show that some assumptions of DNA
microarray studies are not applicable to protein arrays. To this
end, we have proposed a new normalization protocol able to
properly address the variability seen in protein array experi-
ments. RLM reduced technical variability, but unlike other
normalization strategies, RLM was able to preserve biological
difference. Although the results we present in the paper refer
to a particular application and platform, such as functional
protein microarrays, we believe that the problems we highlight
might apply in general to other protein array applications or
platforms. However, further analysis should be carried out to
examine to what extent the issues reported here are common
across different platforms.

Data Sets and Source Code Availability. RLM is included
in the Prospector v5.2, the software tool by Invitrogen for
analyzing protein chips. The software is available for free
download at: http://www.invitrogen.com/site/us/en/home/
Products-and-Services/Applications/Protein-Expression-and-
Analysis/Biomarker-Discovery/ProtoArray/Online-Tools.html. The
data sets used in this study can be downloaded from http://
archive.gersteinlab.org/proj/proteinchipRLM/.
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