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Abstract

Highly expressed genes in many bacteria and small eukaryotes often have a strong

compositional bias, in terms of codon usage.  Two widely used numerical indices, the

codon adaptation index (CAI) and the codon usage, use this bias to predict the expression

level of genes.  Both indices are based on fairly simple assumptions about which genes

are most highly expressed, which were known when they were first derived: the CAI was

originally based on the codon composition of a set of only 24 highly expressed genes, and

the codon usage, on assumptions about which functional classes of genes are highly

expressed in fast-growing bacteria.  Given the recent advent of genome-wide expression

data, we should be able to improve on these assumptions.  Here, we measure, in yeast, the

degree to which consideration of the current genome-wide expression datasets improves

the performance of both numerical indices.  Indeed, we find that by changing the

parameterization of each model its correlation with actual expression levels can be

somewhat improved, although both indices are fairly insensitive to the exact way they are

parameterized.  This insensitivity indicates a consistent codon bias amongst highly

expressed genes.  We also attempt direct linear regression of codon composition against

genome-wide expression levels (and protein abundance data).  This has some similarity

with the CAI formalism and yields an alternative model for the prediction of expression

levels based on the coding sequences of genes.  More information is at

http://bioinfo.mbb.yale.edu/expression/codons.
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Introduction

It is well known that highly expressed genes exhibit a strong bias for particular codons in

many bacteria and small eukaryotes.  One suggested explanation is the observation that

there appears to be a relationship between tRNA abundance and codon bias (1-3).

Several reviews on this topic have been published previously (4,5).

In 1987, the codon adaptation index (CAI) was proposed as a quantitative way of

predicting the expression level of a gene based on its codon sequence (1).  More recently,

the "codon usage" was introduced as an alternative quantitative indicator (3).  It also uses

the occurrence of codons in a gene sequence to predict whether genes are likely to be

highly expressed, although the formalism is quite different from the one used for the CAI.

A related method, the codon bias formalism, is based on similar principles (6).

Expression level indicators such as these are widely used and are important in a variety of

contexts.  First, there is the annotation of genome sequences.  The expression level

indicators can serve as one of the variables to determine how likely the transcription and

translation of an open reading frame (ORF) into a protein product is.  Second, in

heterologous gene expression, the codon-based expression indicators are helpful for

finding the codon sequences that are most likely to yield high expression.  The codon-

based expression indicators and related methods are also often used as convenient "rules

of thumb" in other applications.

Given that the codon-based expression models have these important applications, it is

perhaps surprising that they are still based on rather qualitative assumptions about gene

expression.  For instance, the parameters underlying the CAI model rely on the codon

composition of only a limited set of highly expressed genes; to define the parameters in

the CAI model (see below), Sharp et al. counted the codon frequency in only 24 highly

expressed genes.  About half of these genes are ribosomal; the remaining ones are mostly

metabolic enzymes (1).

In the codon usage model, the parameters are based on a somewhat broader set of highly

expressed genes.  The codon usage model has mainly been applied to fast growing
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bacteria, for which, as Karlin et al. have shown, it is a reasonable assumption that

ribosomal genes, chaperones, and translation processing factors are highly expressed

(7,8).

In summary, the codon-based expression models are based on qualitative estimates of the

expression levels of limited gene sets.  But since these models were first proposed,

several quantitative expression datasets, covering the majority of genes in a genome, have

become available.  This raises the natural question whether we could improve the

parameters of the codon-based expression indicators by considering larger sets of genes

with more accurate expression data.  We present the results of such a procedure here,

using the expression information available for the organism yeast.

In the following sections we briefly recap the CAI and codon usage formalisms.  Later,

we show how to calculate new parameters for these models.  We also propose an

alternative linear model to predict the expression levels from the codon composition of

genes.

The CAI model

The CAI model assigns a parameter, termed "relative adaptiveness" by Sharp et al., to

each of the 61 codons (stop codons excluded) (1).  The relative adaptiveness of a codon is

defined as its frequency relative to the most often used synonymous codon; note that this

parameter is computed from a set of highly expressed genes G (we leave aside the

question of how to define this set of genes for now).  It is given by:
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where faa,i is the frequency of codon i (which encodes amino acid aa), and faa,max the

frequency of the codon most often used for encoding amino acid aa in a set of highly

expressed genes G.  The relative adaptiveness parameter waa,i ranges from 0 to 1, with 0

indicating that a codon is not present at all in G, and 1, a codon that occurs most often in

G for a given amino acid.
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The CAI of a gene g is then simply the geometric average of the relative adaptiveness of

all codons in a gene sequence:
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Here, wi is the relative adaptiveness of the ith codon in a gene with N codons.  This

formula can be transformed into:
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where wk now represents the relative adaptiveness of the kth out of the 61 codons in the

genetic code (excluding stop codons); Xk,g is the fraction of codon k among the total

number of codons in gene g:
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where Ck,g is the number of times codon k appears in gene g.  Note that wk = wk(G) in

equation [3] is dependent on the set of highly expressed genes G.

Like the relative adaptiveness, the CAI also ranges from 0 to 1.  Higher CAI values

indicate genes that are more likely to be highly expressed.

The codon usage model

Karlin et al. define the codon bias of a gene g relative to a gene set G as (4):
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where paa(f) is the fraction of amino acid aa in gene g; f(x, y, z) the frequency of a codon

triplet (x, y, z) in gene g normalized such that f(x, y, z) = 1 if (x, y, z) is the most common
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synonymous codon; g(x, y, z) is the corresponding normalized codon frequency in gene

set G.  Equation [5] is written in the notation of Karlin et al.  We can rewrite equation [5]

in our own notation as follows:

∑ −=
k

Gkgk XXGgB ,,)|( [6]

where Xk,g and Xk,G are defined as in equation [4].  Note that k has replaced (x, y, z) as the

summation index.  Given these definitions, Karlin et al. defined an expression level

measure E(g) as follows (8):
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where the gene set C comprises all genes in the genome, RP the ribosomal proteins, Ch

chaperones, and Tf translation processing factors.  E(g) is close to zero if gene g has a

codon composition close to the average composition of the genome (E(g) _ 0 because

B(g|C) _ 0), while E(g) would take on very large values if the codon composition of gene

g is close to the composition of ribosomal genes, chaperones and translation processing

factors (E(g) >> 1 because B(g|RP), B(g|Ch), B(g|Tf) _ 0).  The idea is that highly

expressed genes tend to have higher values of E than lowly expressed genes.

Karlin et al. have shown that highly expressed genes can best be differentiated from

lowly expressed genes in the multidimensional space of the different codon bias terms

B(g|RP), B(g|Ch) and B(g|Tf) (8).  However, in this study, we use the simplified

expression measure E(g|G), defined as:
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where G is a set of highly expressed genes.  Thus, E is dependent on the set G that can be

chosen in different ways.  In other words, the parameters of the model are the 61 codon

fractions Xk,G in the gene set G (see equation [6]).
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Given this formal description of the CAI and the codon usage, the question is how we can

use the genome-wide expression data to optimize the 61 parameters in the two models

with respect to the prediction of expression levels.

Methods

Expression data

We give an overview of the expression data we used in this study in supplementary table

1.  Briefly, we have combined different publicly available Affymetrix gene chip and

SAGE datasets into one reference mRNA expression dataset, and two publicly available

2D-gel electrophoresis datasets into one reference protein abundance dataset (9-14).  We

have described this procedure, which helps to remove noise and errors from the data,

previously (15).  The codon composition of genes fundamentally affects the mechanism

of protein translation; thus, the protein abundance data might contain more useful

information than the mRNA expression data.  On the other hand, the protein abundance

data is available only for a very limited subset of 150 genes while there is a substantially

larger amount of mRNA expression data (6071 genes).  (For our calculations, we only

considered those genes in the reference mRNA expression set that have an expression

level of more than 0.5 copies/cell -- this is the case for 4270 genes.  Smaller expression

levels are too close to the resolution limits of the gene chips and therefore too noisy (see

also caption of table 1)).

As described previously (15), we term the combination of a gene set (with GProt referring

to the protein abundance and GmRNA to the mRNA expression reference set) and an

expression level or weight (aProt for protein and amRNA for mRNA abundance) "weighted

population".  Thus, three different weighted populations can be formed from our

reference datasets: [GProt, aProt], [GProt, amRNA], and [GmRNA, amRNA].  ([GmRNA, aProt] is not

meaningful since aProt is not defined on all genes in GmRNA.)  In the following we use all

three populations for the parameterization of the CAI and the codon usage models.
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Parameterization of the CAI and codon usage models with whole-

genome expression data

Figure 1 schematically shows the procedure we used to parameterize the CAI and codon

usage models with the expression data.  We start by selecting one of the three populations

mentioned above as an evaluation set.  The evaluation set is later used to evaluate how

well the CAI or codon usage model predicts actual expression levels.  We also need to

define a parameterization set.  The parameterization set is the set of highly expressed

genes G (see Introduction); it is used to calculate the parameters wk(G) for the CAI (see

equation [3]) and the parameters Xk,G for the codon usage (see equation [6]).  To define

the parameterization set, we choose one of the three populations and an expression level

threshold T.  We only include those genes of the population in the parameterization set

whose expression level exceeds this threshold.  With the parameters in hand, we are able

to compute CAI and codon usage values for all genes in the evaluation set.  We evaluate

how well the CAI and codon usage models predict expression levels with two figures of

merit: the Pearson correlation and the Spearman rank correlation1.

We use the rank correlation as an additional diagnostic to the (linear) Pearson correlation

because the relationship between CAI or codon usage values and expression levels is of a

non-linear nature (see Supplementary Material).

We can iterate the procedure by changing the expression level threshold T and repeating

the subsequent steps until we arrive at an optimal figure of merit.  This gives us optimal

parameters for the CAI and codon usage models.

Example of the CAI parameterization

Figure 2 shows a specific example of the parameterization of the CAI with [GProt, aProt] as

both the parameterization and evaluation population and illustrates how the figure of
                                                  
1 Given a set of abundance levels a in the evaluation set, and a vector of CAI or codon
usage values (C), we calculate the Pearson correlation as
corr(log(a),log(C))
and the rank correlation as
corr(rank(a),rank(C))
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merit (Pearson correlation of the CAI values and the evaluation set) changes as a function

of the expression level threshold T.  When the threshold reaches T = 66,200 protein

copies/cell the Pearson correlation reaches a maximum.  At this point, there are only 21

genes in the parameterization set.  The maximum correlation is slightly greater than the

correlation between the CAI based on the original parameters by Sharp et al. (1) and the

same evaluation set.

Linear model

In addition to the determination of the parameters for the CAI and codon usage models it

is also possible to relate expression levels and codon composition of genes more directly.

The CAI formalism itself, slightly modified, suggests a multivariate linear model for

doing this.  Starting with equation [3], we can take the logarithm on both sides to obtain:
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If we introduce vk _ log(wk) and keep in mind that the log(CAI) is related to the logarithm

of the gene expression levels, we can suggest the following linear model to predict the

expression level ag of a gene g:
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with the residuals

εg = yg - log(ag) [11]

In equation [9], yg is the predicted expression level, the codon fractions Xk,g are the

predictor variables and v0 … v61 the parameters.  Note that we have introduced an

intercept parameter v0 in equation [10], for which there is no equivalent in equation [9].

We can then perform a standard multivariate linear regression to estimate the model

parameters v0 … v61 by minimizing the deviance:
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Reducing the number of parameters in the linear model

One problem of this regression approach is obviously the large number of parameters.

This may result in overfitting, even when the regression is applied to the largest

population [GmRNA, amRNA], which contains 4270 data points.

We avoided this problem by deriving a linear model that consists of fewer parameters.

This is done via a forward selection of parameters, adding one predictor variable at a time

(25).  A similar procedure has previously been used in finding significant promoter

sequence motifs (18).

We start with a model of just one predictor variable (codon fraction Xk):

gkkgk Xvvy ,0, += [13]

which gives the residuals:

gkgmRNAgk ya ,,, )log( −=ε [14]

and the deviance:
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Note that the deviance is dependent on the codon k.  This allows us to find the codon that

produces the smallest error and thus select the first predictor variable.  We add this codon

to a "model set" M.

Then we iterate this procedure.  Given a model set M of codons with optimal parameter

estimates, the linear model is:
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This model gives the new residuals:
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We then choose the next predictor variable by finding the codon k that minimizes:
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This codon is then added to model set M, and we iterate the procedure described in

equations [16]-[18].  Note that the interpretation of equation [18] is that the optimal

predictor variable is orthogonal to the linear model of equation [16].

Significance of predictor variables

Each time we add a new predictor variable to the model, we need to check whether the

corresponding parameter is significant.  We can do this by observing the t statistic for a

parameter estimate vk; the ratio of a parameter estimate to its standard deviation follows a

t-distribution and a P-value based on this distribution can be used for testing the

hypothesis that vk = 0.  The t statistic and its corresponding P-values can be gathered

from the standard output of a linear regression when performed in various statistical

software packages (here, we used the publicly available R statistical computing

environment, http://www.r-project.org/, as well as MATLAB for these computations).

To accept a predictor variable as significant we required that the P-value of the t statistic

stay below α = 0.05.  Since we were choosing from several possible predictor variables at

each step, a Bonferroni correction is necessary for this statistical test.  This is equivalent

to multiplying the P-value for a parameter with the number of remaining possible

predictor variables.  Given that there are already NM parameters in the model set M, we

have a choice of 61 - NM remaining predictor variables, and the condition for significance

is thus:
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P' = (61 - NM)P < α [19]

Results

Parameterization of the CAI and codon usage models

Table 1a shows the performance of the CAI and the codon usage with the original

parameters in terms of the Pearson and rank correlation with the expression data.  Here,

the CAI parameters were taken from the original publication by Sharp et al. (1), which

stem from 24 highly expressed genes.  The situation is a little bit more complicated for

the codon usage, in that previously the codon usage had not been explicitly used for the

prediction of expression levels in yeast, but only in prokaryotes.  However, to come up

with a set of 'original' parameters, we computed them from the set of 128 ribosomal

genes, following the recommendation of Karlin et al. who showed that, in yeast,

ribosomal proteins exhibit the largest codon bias amongst all gene classes (4).

Table 1b generalizes the example shown in figure 1 by listing all possible evaluation and

parameterization populations for both the CAI and the codon usage.  Note that the

parameters of the CAI and the codon usage are in each case dependent on the

parameterization population and the expression level threshold T.  (The threshold T

defines the number of ORFs with expression levels greater than T).  The table shows the

maximum Pearson and rank correlations that can be achieved by varying T, the increase

of the correlation compared with the original models ("∆ correlation"), and the size of the

parameterization set at the maximum (rank) correlation, measured in number of ORFs.

A mixed picture emerges from this comprehensive collection of statistics.  In many cases

the new parameters improve the performance of the CAI and the codon usage (gray and

black shaded squares in table 1b), but sometimes the performance is also slightly lower.

The codon usage models with the new parameters generally perform better than the

model with the original parameters (∆ correlation is greater than 1% 6 out of 9 times for

both the Pearson and rank correlations), whereas the improvements for the CAI are less
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obvious (∆ correlation greater than 1% 3 out of 9 times for both the Pearson and rank

correlations).

One important observation is that the parameterization sets for which we found optimal

parameters are usually very small (on the order of 100 genes or less) for both the CAI and

the codon usage.  This is despite the fact that we used whole-genome information in our

calculations.  An extreme example is the codon usage with parameterization population

[GProt, aProt] and evaluation population [GProt, amRNA]: here, the optimal parameterization

set contains only one gene (the phosphopyruvate hydratase ENO2).  This alone yields a

rank correlation of 0.66 with the expression data.

Linear model

We fitted the linear model of equation [16] to the population [GmRNA, amRNA] according to

the iterative procedure described in the Methods section.  We tested models ranging from

one to 61 codons (= predictor variables).  The largest model for which all parameters

were significant was a model with 20 codons.  (The results for each model are shown in

our supplementary material).  These values of these 20 codon parameters are shown in

figure 3.  We have only used [GmRNA, amRNA] as the parameterization set because the other

possible populations are too small (150 genes) relative to the possible number of

parameters.  When we used the reduced parameter procedure with [Gprot, aprot] or [Gprot,

amRNA] as the parameterization populations, we found that linear models with only two

predictor variables are already superseding the critical P-value of 5% (see Methods), thus

making them of little use for predicting expression levels.

The 20 codons that are significant predictor variables in the linear model for [GmRNA,

amRNA] represent 13 different amino acids (see figure3).  Of the seven remaining amino

acids, 5 are underrepresented in highly expressed genes (Asp, His, Ile, Met and Tyr)

while two of them are roughly equally represented in highly and lowly expressed proteins

(15, 16).  Four of the 20 chosen predictor variables (= codon compositions) are negatively

correlated with expression levels.  The parameters of the linear model and corresponding

codons (= predictor variables) are discussed in more detail in the section "preferential



14

codons in yeast" below.  Details of the regression results (parameters, P-values etc.) can

be found in our Supplementary Material.

The bottom of table 1b shows the performance of the linear model compared with the

CAI and codon usage.  There is no possible comparison to a set of original parameters, as

in the case of the CAI and the codon usage.  Instead, we compared the performance of the

linear model with the performance of the original CAI and codon usage models on the

same evaluation sets.  The left half of the "∆ correlation" column in table 1b refers to the

difference with the CAI correlation, whereas the right half gives the difference with the

codon usage correlation.  (There are three possible choices for the evaluation set.)  It is

clear from the results that the best performance is obtained when the parameterization

and evaluation populations are both [GmRNA, amRNA].  (This should be expected, given that

the model parameters were optimized on this set.)

When [GmRNA, amRNA] is both the parameterization and evaluation population, the Pearson

correlation of the linear model with the expression data is 0.75.  This is slightly higher

than the best Pearson correlations for the CAI and CU models.  (The CAI has a maximum

Pearson correlation of 0.72, while the CU has a maximum Pearson correlation of 0.71.)

In terms of the rank correlation, the best CU model is somewhat better than the linear

model (0.60 vs. 0.56), while the CAI performs worse than both of the other methods

(0.46).

Preferential codons in yeast

As mentioned in the beginning, it is important for heterologous gene expression to

encode proteins with sequences that yield optimal expression.  A good rule of thumb for

finding such an optimal sequence is to choose codons that are most frequent in highly

expressed genes.  The CAI model provides an explicit way of finding such codons; the

most frequent codons simply have the highest relative adaptiveness values, and sequences

with higher CAIs are preferred over those with lower CAIs.  The codon usage formalism

does not explicitly use relative adaptiveness values, but they can be easily calculated with

equation [1] from the parameterization sets that yield optimal codon usage parameters.  A
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third possibility is to interpret the parameters of the linear regression with respect to

which codons are more preferred.  (This is of course only possible for those codons that

are predictor variables in the linear model.)

Figure 3 shows the relative adaptiveness values for the CAI and codon usage (CU) --

when the parameterization and evaluation populations are both [GProt, aProt] with the

Pearson correlation as the figure of merit -- together with the parameter values of the

linear regression (LM) with [GmRNA, amRNA].  For comparison, we also show the relative

adaptiveness values for the genome as a whole.  Codons with relative adaptiveness values

of 100% (= preferential codons) are shown in black.  It is evident that both the CAI and

the codon usage give the same preferential codons.

The relative adaptiveness values for the CAI are computed from the 21 most abundant

proteins in aProt, whereas the codon usage values stem from the 4 most abundant proteins.

Note that the preferential codons for both the CAI and the codon usage stay the same

regardless of which parameterization and evaluation sets we choose (with the Pearson

correlation as the figure of merit).  The only exception is when we choose [GmRNA, amRNA]

as both the parameterization and evaluation set for the codon usage.  In that case, the

optimal parameterization set becomes relatively large (253 ORFs) such that several of the

preferential codons are the same as the ones for the genome as a whole.

The parameters of the linear model are shown in the third column for each codon in

figure 3.  Not that the parameters vk give the expected change of expression level for an

increase in the composition of the corresponding codon k, given that the composition of

the other codons in the model stays the same:

k
kg

g v
X

y
=

∂

∂

,

[20]

One would expect the regression parameters to roughly correlate with the relative

adaptiveness values of the CAI and codon usage.  Because the number of parameters in

the linear model is less than the total number of codons, this comparison is only possible

for synonymous codons of seven amino acids (see figure 3).
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Contrary to our expectation, the rank order of the regression parameters was different

than that of the relative adaptiveness values of the CAI and codon usage for three of these

seven amino acids (Val, Cys and Arg).  One (non-biological) explanation for this

different order might be the sensitivity of the parameters.  This is in fact the case for Val

and Cys where the 95% confidence intervals of the parameter values overlap (see

Supplementary Material).  However, parameter sensitivity does not explain the different

codon order for Arginine; the codon CGT has a much higher parameter value than the

codon AGA (9.7 as opposed to 4.7), contrary to the ranking of relative adaptiveness

values (see figure 3).

In contrast to the linear model parameters, the relative adaptiveness values describe the

global enrichment of a codon in highly expressed genes with no restrictions on the

compositions of the other codons.  (This is confirmed by the fact that the Pearson

correlation between the logarithms of amRNA and the codon composition of AGA is larger

than that between amRNA and CGT).  Thus, in the case of arginine, one explanation for the

discrepancy between the linear model and the CAI/codon usage might be that yeast cells

preferentially use AGA codons for Arginine in highly expressed genes (explaining the

CAI value), but that the supply of the corresponding tRNA is already strongly exhausted

for fast growing cells.  Thus, to achieve additional translation of Arginine at high rates,

the cell might need to use the supply of another tRNA for Arginine (explaining the higher

regression parameter for AGA).  Note that the tRNA gene copy number is 11 for the

AGA codon and 6 for the CGT codon (the highest and second highest among all Arginine

codons).  This way, the cell would make optimal use of the supply of Arginine tRNAs

when it is already growing fast.

Discussion

Quantitative versus qualitative, genome-wide versus few genes

The CAI and codon usage models are originally based on somewhat qualitative

assumptions about the expression levels of relatively few genes.  This was our motivation

for using quantitative, genome-wide expression data to recalculate optimal model
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parameters.  These new parameters sometimes lead to a slightly better correlation of the

codon-based expression models with expression data according to several measures,

although the improvements are relatively marginal and the results are mixed.

Small parameterization sets are sufficient

Furthermore, the parameterization sets that yielded optimal parameters for the CAI and

codon usage are often very small compared to the number of genes in the genome -- very

much in the same way that the original parameterization sets were small (see table 1).

Thus, very few highly expressed genes often seem to be sufficient to describe the overall

codon bias in yeast.  This shows that the original procedures for determining the

parameters of the CAI and codon usage were indeed quite prescient.  The CAI and codon

usage models are relatively insensitive to the exact choice of highly expressed genes.

One explanation for this observation might be that although the optimal parameterization

sets are small compared to the size of the genome, their share of the overall number of

transcripts and protein copies in the cell is much larger; they may in fact dominate the

overall codon composition of transcripts and proteins (16).  This situation can be

compared with the way a financial market index, composed of very few stocks with very

high market capitalization, can be a very good approximation for the value of a total

market, which consists of perhaps thousands of individual stocks.

Thus, to obtain robust parameters for the CAI and codon usage models, it often seems

sufficient to infer them from rather qualitative information about gene expression levels.

For instance, it may be enough to infer from information about biological function

whether a group of genes is highly expressed.  Note that, using our parameterization

procedure, we achieved a Pearson correlation of 0.72 between the codon usage model and

the expression data (when both the evaluation and parameterization population are

[GmRNA, amRNA], see table 1b).  This is only a marginal improvement over the original

parameters (Pearson correlation 0.71, see table 1a) that were derived from the codon

composition of the 128 ribosomal proteins in yeast.
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Comparison of the CAI, codon usage and linear models

In contrast to the linear model and the codon usage, the parameters of the CAI are

normalized by synonymous codon usage, a constraint that is not present in the other two

models.  It is therefore remarkable that the CAI model (given the best parameterization

set) usually performs as well as the other two models.  The only exception from this

general rule is perhaps the relatively low rank correlation of the CAI with [GmRNA, amRNA],

which is only 0.49 under the best circumstances (compared with 0.60 for the codon usage

and 0.56 for the linear model).

The linear model achieves the highest Pearson correlation (0.75) with [GmRNA, amRNA],

while the comparable values for the CAI and codon usage are slightly lower (0.72 and

0.71).

Can the models be improved?

The main motivation of our study was the question whether it would be possible to

improve on existing and commonly used codon-based models for predicting expression

levels.  The results showed that the original models are relatively robust to the exact way

they are parameterized.  However, one could argue that these models could still be

improved if other protein properties were included as additional features in the

prediction.

We have explicitly tested whether one protein property, namely protein length, can aid in

improving the prediction performance.  It has previously been observed that longer

proteins often tend to be less highly expressed than shorter ones (16, 19).  For instance, in

the linear regression model one could explicitly consider protein length by replacing the

codon fractions Xk with the number of codons (equation [16]).  However, we found that

this severely decreases the correlation between the model predictions and actual

expression data (data not shown).
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Codon composition is often the most strong predictor of expression

levels

Pavesi (20) proposed a model for predicting expression levels based on several different

protein properties (the CAI, the codon bias index, an entropy score relating to

synonymous codon usage, a TATA-box score and a pyrimidine bias index) (21).  He

showed in a regression analysis that the two significant parameters of the model were the

CAI and the entropy score, both measures relating to synonymous codon usage.  Pavesi

reported a Pearson correlation of 0.76 with a select set of 621 SAGE expression levels.

Linear model

As an alternative to the CAI and codon usage models, we have proposed a simple linear

model that relates codon fractions and expression levels of genes.  An advantage of the

linear model is that, unlike the numerical values from the CAI and the codon usage, the

predicted expression levels have the same dimension (copies/cell) as the actual

expression levels and are directly comparable with them.  The linear model predicts an

expression level of 1.7 copies/cell for transcripts from sequences with average codon

fractions; this is equal to the average expression level in amRNA.  (This follows from

equation [11] and the fact that the average residual in the model is equal to zero.)

We have suggested a natural, intuitive justification for the linear model, based on the CAI

formalism.  Of course, this does not exclude the possibility that there are better

alternatives.  From a mathematical standpoint, the linear regression is relatively simple

and involves much less complex computations than non-linear regressions.

Applications

Overall, it seems justified to use the CAI, codon usage or related measures as "rules of

thumb" in a variety of applications such as heterologous gene expression, either based on

the original parameters or on our newly optimized ones.  For the annotation of genomes,

all three models seem to be useful, however, they should of course only be used in

conjunction with other gene-finding criteria (22).
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The 20-parameter linear model allows us to compare the codon parameters for seven

amino acids.  Surprisingly, the linear model parameters suggest a different rank order for

the codons of the amino acid Arginine.  An explanation might be that fast growing yeast

cells have already exhausted the supply of the most optimal codon, and thus have to make

use of the second best codon.

General issues of data quality

The value of the codon-based expression indicators can perhaps be appreciated by

comparing them to the correlation of mRNA and protein abundance data in general.  The

correlation for the two populations [GProt, amRNA] and [GProt, aProt] is 0.67, well within the

range of the correlations in table 1 (13-15).  One interpretation of this is that the codon-

based expression indicators are actually just as good as mRNA expression data in the

prediction of protein abundance levels.

Of course, the codon-based expression indicators yield static values, whereas gene

expression is of course a dynamic process, with very different expression levels under

different conditions.  The expression data that we used in this study stems from

experiments under very similar conditions, that is, yeast cells in vegetative growth on rich

media (9-12).  Thus, the prediction of expression levels based on codon composition

should work best for these physiological situations, but might work less well for others.

Coghlan et al. have pointed to the example of ENO1 and ENO2, which both exhibit

strong codon biases -- the former is repressed by high glucose concentrations whereas the

latter is strongly induced (19).  In general, the regulation of translation might be less

flexible than the regulation of transcription because the abundance of charged tRNAs

cannot be changed as flexibly as the abundance of transcription factors (there are 33

cognate tRNAs in yeast, but perhaps hundreds of transcription factors (23, 24).

Of course, there are many limitations of the expression data itself that might confound the

relationship between expression levels and codon composition.  The 2D-gel data is

subject to many biophysical and biochemical constraints (13, 14, 17).  The situation is
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somewhat better for the mRNA expression data, where we have more data resources that

we combined in this study.

Supporting website

Additional data relating to our analysis is available at:

http://bioinfo.mbb.yale.edu/expression/codons
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Figure 1

Our general procedure for the parameterization of the CAI and codon usage models.  We

first choose an expression data set and an arbitrary expression level threshold T to

differentiate highly from lowly expressed genes.  The highly expressed genes with
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expression levels greater than T define the parameterization set.  Based on this we

calculate new model parameters.  Finally, to evaluate the performance of the models, we

choose another expression data set (we term this the evaluation set): we calculate the CAI

and codon usage values for all genes in the evaluation set and then measure the

correlation between the model values and the actual expression levels as a figure of merit.
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Figure 2

An example of the parameterization of the CAI with expression data.  Here, we use

[GProt, aProt] for both the parameterization and the evaluation steps.  The Pearson

correlation of the CAI with the evaluation set (left ordinate) is shown as a function of the

expression level threshold T, which defines the parameterization set of highly expressed

genes.  The right ordinate shows the number of genes in the parameterization set for a

given threshold T.  At T = 66,200 proteins/cell, the Pearson correlation reaches a

maximum.  This correlation is slightly higher than the correlation of the original CAI

model with the evaluation set (dashed line).
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Figure 3

Shows which codons are common in highly expressed genes.  There are four columns for

each codon.  The first two columns show the relative adaptiveness values for the CAI and

codon usage (CU) according to equation [1].  The third column shows the regression

parameters of the linear model (LM).  Note that there are only 20 values because the

model contains only 20 codons as predictor variables.  The fourth columns shows the

relative adaptiveness values for the genome as a whole.  The relative adaptiveness values

are normalized to 100 for the most frequent synonymous codons.  The regression

parameters are not normalized.
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a

b

Table 1

Table 1a shows the Pearson and rank correlation of the original CAI and codon usage

models with various evaluation sets of expression data.  The last column of the table

Model
Parameters 
according 

to …
Evaluation set

Pearson 
correlation

Rank 
correlation

# ORFs in 
parameteri-
zation set

[GProt , aProt ] 0.63 0.61

[GProt , amRNA ] 0.70 0.70

[GmRNA, amRNA ] 0.69 0.43

[GProt , aProt ] 0.63 0.61

[GProt , amRNA ] 0.67 0.65

[GmRNA, amRNA ] 0.71 0.54

24

128

CAI

codon usage 
(CU)

Karlin et al. 
(1998)

Sharp et 
al.(1987)

rel. to 
CAI

rel. to 
CU

rel. to 
CAI

rel. to 
CU

[GProt , aProt ] 0.64 0.6% - 21 0.62 0.8% - 21

[GProt , amRNA ] 0.70 0.0% - 22 0.71 0.5% - 36

[GmRNA, amRNA ] 0.71 2.0% - 14 0.47 4.0% - 12

[GProt , aProt ] 0.63 -0.4% - 7 0.61 -0.2% - 47

[GProt , amRNA ] 0.70 0.0% - 37 0.71 0.5% - 46

[GmRNA, amRNA ] 0.72 3.0% - 15 0.49 6.0% - 15

[GProt , aProt ] 0.63 -0.4% - 27 0.61 -0.2% - 120

[GProt , amRNA ] 0.70 0.0% - 106 0.71 0.5% - 103

[GmRNA, amRNA ] 0.70 1.0% - 23 0.46 3.0% - 220

[GProt , aProt ] 0.69 - 5.9% 4 0.63 - 2.4% 8

[GProt , amRNA ] 0.70 - 3.1% 7 0.66 - 0.5% 1

[GmRNA, amRNA ] 0.70 - -1.0% 62 0.59 - 5.0% 150

[GProt , aProt ] 0.68 - 4.9% 6 0.63 - 2.4% 6

[GProt , amRNA ] 0.71 - 4.1% 3 0.66 - 0.5% 12

[GmRNA, amRNA ] 0.71 - 0.0% 44 0.59 - 5.0% 149

[GProt , aProt ] 0.68 - 4.9% 5 0.63 - 2.4% 5

[GProt , amRNA ] 0.71 - 4.1% 3 0.66 - 0.5% 5

[GmRNA, amRNA ] 0.71 - 0.0% 253 0.60 - 6.0% 983

[GProt , aProt ] 0.65 1.6% 1.9% - 0.60 -1.2% -0.6% -

[GProt , amRNA ] 0.65 -5.0% -1.9% - 0.41 -29.5% -24.5% -

[GmRNA, amRNA ] 0.75 6.9% 4.9% - 0.56 13.0% 2.0% -

# ORFs in 
parameteri-
zation set at 
maximum 
correlation

Evaluation set
Maximum 
Pearson 

correlation

# ORFs in 
parameteri-
zation set at 
maximum 
correlation

Maximum 
rank 

correlation

∆  Pearson 
correlation

∆  rank 
correlation

Linear 
regression

[GmRNA, amRNA ]

codon usage 
(CU)

[GProt , amRNA ]

[GmRNA, amRNA ]

[GProt , aProt ]

[GmRNA, amRNA ]

[GProt , amRNA ]

[GProt , aProt ]

Model
Parameteri-
zation set 

chosen from …

CAI
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shows how many genes were used to calculate the original parameters (given in number

of ORFs).

Table 1b shows the Pearson and rank correlations of the CAI and codon usage models

based on the new parameters.  Altogether, there are nine possible combinations of

parameterization and evaluation sets (2nd and 3rd column) for both models.  The fourth

column shows the Pearson correlation for the best set of parameters that could be found

with our procedure.  The fifth columns compares this value with the correlation achieved

by the original models.  The seventh column shows how many genes were present in the

parameterization set that yielded that maximum correlation.  The remaining columns give

the same statistics for the rank correlation.

The bottom of the table shows similar statistics for the linear model.
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