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Abstract

The goal of human genome re-sequencing is obtaining an accurate assembly of an individual’s genome. Recently, there has
been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from
companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen), with even more
expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important
goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider
optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different
technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs). SV reconstruction is
considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo
assembly of small genomes because of the duplications and repetitive sequences in the human genome.) To this end, we
formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be
computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different
technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the
inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical
assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one
length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection
of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than
just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of human genomes at
maximum accuracy and low cost.
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Introduction

The human genome is comprised of approximately 6 billion

nucleotides on two pairs of 23 chromosomes. Variations between

individuals are comprised of , 6 million single nucleotide

polymorphisms (SNPs) and , 1000 relatively large structural

variants (SVs) of , 3 kb or larger and many more smaller SVs

are responsible for the phenotypic variation among individuals

[1,2]. Most of these large SVs are due to genomic rearrangements

(e.g. duplication and deletion), and a few others contain novel

sequences that are not present in the reference genome [3]. The

goal of personal genomics is to determine all these genetic

differences between individuals and to understand how these

contribute to phenotypic differences in individuals.

Making personal genomics almost a reality over the past decade,

the development of high throughput sequencing technologies has

enabled the sequencing of individual genomes [3,4]. In 2007, Levy

et al. reported the sequencing of an individual’s genome based on

Sanger [5] whole-genome shotgun sequencing, followed by de novo

assembly strategies. Wheeler et al. in 2008 presented another

individual’s genome sequence constructed from 454 sequencing

reads [6] and comparative genome assembly methods. In the

mean time, other new sequencing technologies such as Solexa/

Illumina sequencing [7] have become available for individual

genome sequencing with corresponding, specially-designed se-

quence assembly algorithm designed [8–12].

These projects and algorithms, however, mostly relied on a

single sequencing technology to perform individual re-sequencing

and thus did not take full advantage of all the existing

experimental technologies. Table 1 gives a summary of the

characteristics of several technologies in comparative individual

genome sequencing. At one extreme, performing long Sanger
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technologies are constantly developing, it will be useful to have a

general and flexible approach to predict the outcome of

integrating different technologies, including the new ones coming

in the future.

In the following sections, we will first briefly describe a

schematic comparative genome re-sequencing framework, focus-

ing on the intrinsically most challenging steps of reconstructing

large SVs, and then use a set of semi-realistic simulations of these

representative steps to optimize the integrated experimental

design. Since full simulations are computationally intractable for

such steps in the large parameter space of combinations of

different technologies, the simulations are carried out in a

framework that can combine the real genomic data with analytical

approximations of the sequencing and assembly process. Also, this

simulation framework is capable of incorporating new technologies

as well as adjusting the parameters for existing ones, and can

provide informative guidelines to optimal re-sequencing strategies

as the characteristics and cost-structures of such technologies

evolve, when combining them becomes a more important

concern. The simulation framework is downloadable as a general

toolbox to guide optimal re-sequencing as technology constantly

advances.

Results

We first briefly describe in the following subsection a systematic

genome assembly strategy for the different types of sequencing

reads and array signals, which is an integration of different

sequence assembly and tiling array data analysis algorithms. With

the most difficult steps in the assembly strategy, i.e. the

reconstructions of large SVs, discussed in detail and the

performance metric for such large SV reconstruction defined, we

then present a semi-realistic sequencing simulation framework,

which can guide the optimal experimental design, and show the

results of simulations in the reconstruction of two types of large

SVs.

Schematic genome assembly strategy
The hybrid genome assembly strategy incorporates both

comparative [22] and de novo methods. On one hand, most of

the assembly can be done against the reference, and it will be

unnecessary to perform a computationally intensive whole genome

de novo assembly. Comparative approaches will be capable of

identifying small SVs and large rearrangement events. On the

other hand, de novo assembly will sometimes still be useful in

reconstructing regions with large and novel SVs.

Fig. 1 shows the schematic steps of SV reconstruction in the

context of the genome sequencing/assembly process. The data

from different sequencing/array experiments can be processed in

the following way: As shown in Fig. 1A and 1B, with errors

corrected [23] and short reads combined into ‘‘unipaths’’ [10], all

the reads (long/medium/short) from the individual’s genome can

be mapped back to the reference genome. In Fig. 1C, the SNPs

can then be identified immediately based on the reads with single

best matches, and the boundaries of deletions or small insertions

will be detected by such reads as well (allowing gaps in alignment).

Meanwhile, haplotype islands can also be extracted based on the

paired-end information [3,24,25] and the prior knowledge of the

population haplotype patterns revealed by previous work [26].

Further analysis of the single/paired-end reads are required to

reconstruct the large SVs (Fig. 1D and 1E), which are by nature

more complicated than identifying small SVs. First of all, locations

of such SV events need to be detected by analyzing the split-reads

(shown in Fig. 2A and 2B) that cover their boundaries. Second,

two distinct types of SVs need to be handled separately: de novo

assembly is required to reconstruct large novel insertions, and

comparative algorithms should be utilized to identify genomic

rearrangement events (e.g. segmental duplication/deletion). The

homozygosity/heterozygosity of such SVs can be determined

based on the existence of the reads that map back to the

corresponding reference sequences.

Fig. 2A–C show the overall process of de novo assembly for large

novel insertions. While the reconstruction of such regions mostly

depends on the spanning-reads from the new inserted sequence,

misleading-reads from elsewhere in the genome can often hinder

the full reconstruction process. These reads usually comes from the

highly represented regions in the genome, which also exist in the

insertion. In such cases, reads longer than such regions and

appropriate assembly strategies are needed to ensure the

unambiguous and correct assembly output. Paired-end reads with

an appropriate gap size can also help the unambiguous mapping

of the reads inside novel insertions [2].

Fig. 2D illustrates the comparative identification of rearrangements

from the reference sequence. CGH array data can be integrated

into the reconstruction process of such SVs. For long rearrange-

ments detected by sequencing data, the CGH data can be utilized

in both validation and correction of large segmental duplications/

deletions. What is more, incorporating the CGH data can also

lower the coverage depth requirement of sequencing experiments,

since the inner (i.e. not close to SV boundaries) regions of

segmental duplications/deletions not covered by sequencing reads

can still be identified by CNV results. An example is shown in

Fig. 2D: Although the sequence reads can detect the SV event in

region A, B and C, they may not be sufficient to distinguish

deletions from translocations when the sequencing coverage is

relatively low. The copy numbers of the genomic regions inferred

from CGH array data can be integrated into the rearrangement

analysis, and provide additional evidence of the SV types.

Defining a performance metric for large SV
reconstructions

It is important for us to define a reasonable performance metric

so that the re-sequencing approach can be designed in such a way

that its outcome will be optimized according to that metric. For

large SVs, the metric can be defined based on the alignment result

of the actual variant sequence and the inferred variant sequence.

For a large SV due to genomic rearrangements (e.g. deletion,

duplication), it is natural to define its recovery rate as either 1

(detected) or 0 (missed). For a large novel insertion, on the other

hand, we may want to take into account cases where the insertion

is detected but its sequence content is not reconstructed with full

accuracy. Hence, we define the recovery rate of such a large novel

insertion as follows based on its reconstruction percentage:

ReconstructionRateinsertion~

1{
mismatch(wflanking(SV),wflanking(SVinf ))

size(SV)

in which SV is the actual insertion (in simulations, it is already

known; in reality, it will need to be identified in a validation step),

SVinf is the insertion sequence inferred by the genome re-

sequencing approach, mismatch returns the number of mismatches

of two aligned sequences, wflanking returns a sequence with its

flanking sequences on both ends, and size returns the size of a

sequence. The purpose of introducing flanking sequences is to take

into account the accuracy of the predicted location of the SV.

Optimally Integrating Biotech to Reconstruct SVs
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Figure 1. Schematic strategy of genome sequencing/assembly. The orange line represents the target individual genome, the red bars stand
for the SNPs and small SVs compared to the reference, and the green region represents a large SV. (A) After the sequencing experiments, single and
paired-end reads with different lengths (long, medium, short, shown in different colors) are generated, which can be viewed as various partial
observations of the target genome sequence. The dashed lines represent the links of the paired-ends. The horizontal positions of the reads indicate
their locations in the genome. (B) After error correction, the reads are mapped back to the reference genome, and the short reads are assembled into
longer contigs based on their overlapping information. The red and green regions stand for the mismatches/gaps in the mapping results. (C) The
SNPs and small SVs can be inferred directly from the mapping results, and haplotype phasing can also be performed after this step. (D, E) Large SVs
can be detected and reconstructed based on the reads without consistent matches in the reference genome, and also based on the results from CGH
arrays. This step will be explained in more details in the Results section. (F) The final assembly is generated after all the small and large SVs are
identified.
doi:10.1371/journal.pcbi.1000432.g001

Optimally Integrating Biotech to Reconstruct SVs
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Figure 2. Schematic of the reconstruction of a novel insertion and rearrangement analysis. The horizontal positions of the reads indicate
the mapping locations, and the colors refer to sequences from different genomic regions. (A–C) An example of the reconstruction of a novel
insertion. (A) The region A (L bases) has multiple copies in the reference genome, and the region B has multiple copies in the target genome. The
novel sequence is inserted right after a copy of region A and contains a copy of region B. (B) Split-reads such as read 1 or 2 will be needed to detect
the left boundary of the insertion: read 1 is a single read that covers that boundary with M bases on the left (M.L); read 2 is a paired-end read with
one end covering that boundary, and the two ends of read 2 can unambiguously map it back to the reference, thus revealing the insertion boundary;
spanning-reads 3–7 are the reads from the novel insertion region; misleading-reads 8–9 are the reads from elsewhere in the target genome
containing the same sequence contents of region B. Such reads may mislead the de novo assembly process for the novel insertion. (C) A possible set
of resulting contigs after the reconstruction process. The gap is due to the false extension of the first contig caused by the misleading read 8. (D) An
example of rearrangement analysis. The target individual genome has a deletion of region B from the reference. Although the sequence reads can
detect such a variant, they may not be sufficient to determine whether this is a large deletion or translocation when the sequencing coverage is
relatively low. The copy numbers of the genomic regions inferred from CGH array data can be integrated in the rearrangement analysis providing
additional evidence of the SV types. For example, the 0 copy number of B inferred from CGH data #1 would be sufficient for us to confidently identify
the deletion of B, while CGH data #2 indicates the translocation of B.
doi:10.1371/journal.pcbi.1000432.g002
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Simulations of genome re-sequencing for optimal
experimental design

Based on the schematic assembly strategy and the performance

measure defined in the previous sections, we can simulate the

sequence assembly process in order to obtain an optimal set of

parameters for the design of the sequencing experiments (e.g. the

amount of long (Sanger), medium (454) and short (Illumina) reads,

the amount of single and paired-end reads) and the array

experiments (e.g. the incorporation of CGH arrays) to achieve

the desired performance with a relatively low cost in the individual

genome re-sequencing project.

Here we present the results of a set of simulation case studies on

reconstructing large SVs, which are in general much more

challenging problems compared to the detection of small SVs. In

order to fully reconstruct a long novel insertion, for instance, one

needs to not only detect the insertion boundaries based on the

split-reads, but also assemble the insertion sequence from the

spanning- and misleading-reads. For the identification of genomic

rearrangements such as deletion/translocations, one may also

want to incorporate array data to increase the confidence level of

such analysis. The simulations described in this section are based

on large (, 10 kb, , 5 Kb and , 2 Kb) novel insertions and

deletions discovered by Levy et al. [3], and they perform semi-

realistic whole genome assembly representative using the sequence

characteristics of both the NCBI reference genome [18] and the

target HuRef genome [3]. The sequencing/array technologies

considered in these simulations are long, medium and short

sequencing methods and CGH arrays, as shown in Table 1.

Paired-end reads are also included in these simulations.

One major challenge in implementing these simulations is to

design them in a computationally realistic way. Brute-force full

simulations of whole-genome assembly in this case would be

unrealistic: thousands of possible combinations of different

technologies will need to be tested, and for each of these

combinations hundreds of genome assembly simulations need to

be carried out to obtain the statistical distributions of their

performance. Since a full simulation of one round of whole-

genome assembly will probably take hundreds of CPU hours to

finish, the full simulation to explore the full space of technology

combinations will then require hundreds of millions (, 108) of

CPU hours, equivalent to , 10 years with 1000 CPUs. We

designed the simulations using analytical approximations of the

whole-genome assembly process in order for them to be both time

and space efficient, and the gain in efficiency is summarized in

Table 2 and will be described in details later in the Materials and

Methods section. We have also made this simulation framework

publicly available as a toolbox that can incorporate technology

advancements as well as other SV regions.

Case study: Large novel insertion reconstruction with
shotgun reads of different lengths. Fig. 3 show the

simulation results of the reconstruction of a large (, 10 Kb)

novel insertion in the target individual’s genome. Bear in mind

that the numbers obtained are dependent on specific parameter

settings of the sequencing technologies, which are summarized in

Table 1. Since these technologies are evolving very rapidly (with

new advancements coming out every month), these settings do not

represent the current state of the art in these technologies, but are

sufficient for the purpose to illustrate how our simulation approach

can be used in experiment design and in combining technologies.

Also, we are focusing on the full reconstruction of large novel

insertions, which would in general require a higher sequencing

coverage, thus a higher cost than the detection of small SVs or

discovering SNPs. In these figures, the performance measures are

obtained by using different combinations of long, medium and

short single sequencings reads with a total cost of , $7 on this

novel insertion (i.e. the reads covering this region cost , $7). The

total re-sequencing budget is , $2.1 M if we scale the cost on this

region to the whole genome with the same sequencing depth.

Please note again that this $2.1 M is for illustrative purposes and

does not represent the practical current ‘‘street price’’. The results

show that the actual performance, both average and worst-case, is

heavily dependent on the coverage combination of the different

technologies. The optimal performance (both average and worst-

case) of sequencing/assembly is achievable when the long reads

have , 0.056 coverage, medium reads have , 76 coverage, and

short reads have , 126coverage (as Fig. 3C shows, the worst-case

performance will decrease, i.e. the color becomes lighter, around

the optimal point). A different set of simulations (results not shown)

with a total budget of , $600 K indicate that the full

reconstruction of this SV is still achievable in the optimal

configuration, with an average reconstruction rate of , 0.61.

Our simulation here is focusing on the reconstruction of large

novel SVs, and thus depending on the actual characteristics of

different sequencing technologies, the optimal combination of

Table 2. Time and space complexity of different simulation strategies on the reconstruction of a large novel insertion.

Variable Description Representative value

G Size of the genome 3E9 bp

c Sequencing coverage 106

I Size of the large novel insertion of interest 1E4 bp

r Average read length 50 bp

m Average mapability values of the sub-sequences in the
novel insertion

3

Simulation strategy
Number of reads generated for the reconstruction
of a novel insertion Time to compute read overlaps

Whole genome sequencing+hybrid
(comparative+de novo) assembly

O(G6c/r) (Need to first generate all the reads from the
whole genome and then perform selection)

O((I6c6m)2) (can be improved by hashing the k-
mers in the reads)

Simulation utilizing pre-computed
mapability maps

O(I6c6m/r) (simulating the reads based on the insertion
region and the mapability maps)

O(I6c6m/r) (loss of accuracy due to the simulated
misleading reads)

Approximate reduction in complexity (fold) , 1E5 , 1.5E7

doi:10.1371/journal.pcbi.1000432.t002

Optimally Integrating Biotech to Reconstruct SVs
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these technologies obtained in this simulation may have a trade-off

in the accuracy of detecting SNPs and small indels, i.e., the

optimal mixed sequencing strategy for the reconstruction of large

novel SVs could lead to a low detection rate of smaller SV events.

In this particular example, however, our optimal combination

would also guarantee a high recovery rate of SNPs and small

indels in the genome, according to the results of an individual

genome re-sequencing project described in [4], where , 7.46
medium reads were used to detect 3.3 million SNPs and 0.22

million indels. That is, if we focus on the optimal output of large

novel SV reconstruction when designing a mixed sequencing

strategy, this strategy will give us satisfying result in SNP and indel

detection as well. It is also worth noting that the long reads are

statistically still useful in these simulations. In general, the long

reads are useful in two ways: 1) Long split-reads spanning the

insertion boundary have a better chance of being correctly

mapped back to the reference, thus detecting the insertion. 2) Long

spanning-reads will be especially useful during novel insertion

reconstruction when they cover highly repetitive regions that are

longer than single medium/short reads. Fig. S1 shows some typical

worst-case simulation results with and without low-coverage long

reads using a same total budget. In these examples, mis-assembly

around highly repetitive regions is more likely to take place

without the long reads.

Case study: Large novel insertion reconstruction with
shotgun and paired-end reads. Similarly to Fig. 3, Fig. 4

shows the simulation results on the same insertion as well as a

, 5 Kb and a , 2 Kb novel insertion using a combination of single

and paired-end reads (medium paired-end reads with 3 Kb inserts)

with a total budget of , $600 K (corresponding to , $2 on the

10 Kb novel insertion, , $1 on the 5 Kb insertion, and , $0.4 on

the 2 Kb insertion). The optimal performance in reconstruction

the , 10 Kb insertion, in this case, is achieved when medium

paired-end reads have , 2.46 coverage, medium reads have

, 0.246 coverage, and short read have , 2.46 coverage, with an

average reconstruction rate of , 0.8, which is significantly better

than the results using the single reads only with the same total

budget. The reconstructions on the , 5 Kb and , 2 Kb insertions

also reach their optimal performance with a similar configuration,

although their overall mean and worst-case performance differ

from each other, due to the different sizes and sequence

characteristics of these large novel insertions.

Case study: Large novel insertion reconstruction with
paired-end reads using different insert sizes. We also

carried out simulations on reconstructing these novel insertion

regions (, 10 Kb, , 5 Kb, , 2 Kb) using paired-end reads with

different insert sizes (10 Kb and 3 Kb inserts for medium paired-

end reads, and 150b insert for short paired-end reads). Fig. 5

shows the simulation results using different combinations of these

technologies. In general, the results indicate that a low sequencing

coverage of medium paired-end reads (which takes up a large

fraction of the total budget due to its relatively high per-base cost)

with large inserts (10 Kb in this case) and a high coverage of short

paired-end reads with small inserts would be optimal for the best

reconstruction performance of such novel insertions.

Case study on CNV analysis. The second simulation

focuses on the identification of genomic rearrangement events,

such as deletions and translocations. CNV analysis can be used for

this purpose and in this section we simulate its results based on the

read-depth and signal intensity analysis of sequencing and CGH

array data. Fig. 6 shows the simulation results of such analysis on a

large (, 18 Kb) deletion in the target individual’s genome. The

analysis is based on simulated short sequence reads at different

coverage, and also on simulated CGH array data with different

noise levels. The log-ratio of the posterior probabilities of the

deletion (as opposed to translocation) event is computed for each

dataset, and used as an indicator of the confidence in determining

the deletion event based on that dataset. As shown in the boxplot

in Fig. 6, the confidence offered by the CGH arrays is comparable

to that offered by the sequencing data with , 166coverage. While

, 166 coverage of short read sequencing costs , $0.3 M, using

CGH data in this case has the advantage of achieving satisfying

performance (as shown in this simulation and [3,27] in a much

more inexpensive way (, $1000 per array).

Implementation and Availability. In order to be adaptive

to the fast development of the experimental technologies in

personal genomics, our simulation framework is modularized in

such a way that it is capable of incorporating new technologies as

well as adjusting the parameters for the existing ones. Also, this

approach relies on the general concept of mapability data, and can

be easily applied to any representative SV for similar analysis. We

envision that in the future, more experimental technologies can be

incorporated into this sequencing/assembly simulation and the

results of such simulations can provide informative guidelines for

the actual experimental design to achieve optimal assembly

performance at relatively low costs. With this purpose, we have

made this simulation framework downloadable at http://archive.

gersteinlab.org/proj/ReSeqSim/ as a general toolbox that can be

either used directly or extended easily.

Discussion

The simulation results in the previous section are based on three

sequencing technologies and an idealized array technology, and

assume a specific parameterization of their characteristics and

costs. Thus, the particular optimal solutions found may not be

immediately applicable to a real individual genome re-sequencing

project. However, these results illustrate quantitatively how we can

design and run simulations to obtain guidelines for optimal

experimental design in such projects.

Since our simulation approach is based on the general concept

of mapability map and comparative SV reconstruction instead of

on a specific organism, it can also be adapted to the comparative

sequencing of a non-human genome with regard to a closely

related reference. In such a study, we can first construct an

artificial target genome based on estimations of its divergence from

the reference, and then compute the mapability maps of those

representative SVs as input to the simulation framework to find

the optimal combination of technologies. Obviously, the closer the

two genomes are, the more informative the simulation result

would be. In cases where it is hard to estimate the divergence of

the target genome from the reference, a two-step approach can be

conducted: First, combined sequencing experiments will be carried

out using an optimal configuration obtained from the simulation

based on the ‘‘best guess’’, such as another closely related genome.

Second, by using the target genome constructed in the previous

step, a new set of simulations can be executed and their results can

guide a second round of combined sequencing which can provide

a finer re-sequencing outcome when combined with the previous

sequencing data. Meanwhile, our simulation framework specifi-

cally focuses on the effects of misleading reads in the SV

reconstruction process, and it will be the most helpful in cases

where the target and reference genome both have complex

repetitive/duplicative sequence characteristics which will intro-

duce such reads.

In this paper, we propose to optimally incorporate different

experimental technologies in the design of an individual

genome-sequencing project, especially for the full reconstruction

Optimally Integrating Biotech to Reconstruct SVs
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Figure 4. Simulation results on the reconstruction of large novel insertions using paired-end reads. (A) The same type of figure as Fig. 3B
on a , 10 Kbp novel insertion, with two axes representing the coverage of single medium and paired-end medium reads. The coverage of short reads
is not explicitly shown and changes with the values of the two other two, forming a same fixed total cost. (B) The same type of figure as Fig. 4A on a
, 10 Kbp novel insertion, showing the worst-case recovery rates on the insertion region with a fixed total sequencing cost. (C) The same type of
figure as Fig. 4A on a , 5 Kbp novel insertion. (D) The same type of figure as Fig. 4B on a , 5 Kbp novel insertion. (E) The same type of figure as Fig. 4A
on a , 2 Kbp novel insertion. (F) The same type of figure as Fig. 4B on a , 2 Kbp novel insertion.
doi:10.1371/journal.pcbi.1000432.g004

Optimally Integrating Biotech to Reconstruct SVs
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Figure 5. Simulation results on the reconstruction of large novel insertions using paired-end reads with different insert sizes. (A)
The same type of figure as Fig. 4A on a , 10 Kbp novel insertion, with two axes representing the coverage of paired-end medium reads with
, 10 Kbp and , 3 Kbp inserts. The coverage of paired-end short reads (with , 150 bp insert) is not explicitly shown and changes with the values of
the two other two, forming a same fixed total cost. (B) The same type of figure as Fig. 4B on a , 10 Kbp novel insertion, showing the worst-case
recovery rates on the insertion region with a fixed total sequencing cost. (C) The same type of figure as Fig. 4A on a , 5 Kbp novel insertion. (D) The
same type of figure as Fig. 4B on a , 5 Kbp novel insertion. (E) The same type of figure as Fig. 4A on a , 2 Kbp novel insertion. (F) The same type of
figure as Fig. 4B on a , 2 Kbp novel insertion.
doi:10.1371/journal.pcbi.1000432.g005
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value of a sequence is the number of times this particular sequence
(allowing the specified number of mismatches) appears in a
genome, defined below:

Definition 1 For a given genomeGand a given sequences, the
mapability functionM(s, G, m)is defined as the total number of
occurrences of the elements inS in G, whereS = {s9|mismatch(s,
s9), = m}. For simplicity, we also denote thatM(s, G) = M(s, G, 0),
which is the extract occurrence ofs in G.

The following lemmas are obvious:
Lemma 1 Given a genomeG and two sequencessand s9, if s

containss9, then M(s, G), = M(s9, G). M(s, G) = M(s9, G) if and
only if all the occurrences ofs9 in G are within sequences. An
intuitive interpretation of this lemma is that if a sequences
containss9, thensmust occur at most the same number of times as
s9in a genome.

Lemma 2 Given a genomeG, a sequences, and two non-
negative integersm, m9, if m. m9, then M(s, G, m). = M(s, G, m9).
This lemma states that for any given sequence, its mapability value
in a genome never decreases with an increasing mismatch
threshold.

Definition 2 For a given genomeGand a given sequences, the
k-mapability mapMM(s, G, k, m)of swith respect toG is a vector
sequentially containing the mapability values of all thek-mers ins
with a tolerance ofmmismatches:MM(s, G, k, m) = [M(sub(s, 0, k),
G, m), M(sub(s, 1, k+1), G, m), …], wheresub(s, a, b)returns the sub-
sequence of s from a to b-1 (0-based index). For simplicity, we
denote thatMM(s, G, k) = MM(s, G, k, 0), which counts exact
occurrence only.

According to the above definition,MM(s, G, k, m)can be viewed
as a set of mapability values of all the length-k sub-sequences ins
allowing no more thanmmismatches.

Generation of the split-/spanning-reads and computation
of the mapability maps. First, all the reads from the target
insertion region are generated (Fig. 7E) based on the same setting
of the long, medium and short sequencing coverages as in the
problem being simulated (Fig. 7A and 7B). Second, as shown in
Fig. 7D, in order to take into account the effects of the same/
similar/misleading-reads from elsewhere in the genome in a
whole-genome sequencing experiment, we computed the
mapability mapsMM(s, G, k, m)of the insertion regions (the
, 10 Kb insertion sequence with its 1 Kb up/down-stream
flanking sequences), whereG= NCBI reference genome, HuRef
target genome;k= 25, 26, …, 800; m = 0, 2. For computational
efficiency, the ‘‘mismatch’’ function is currently implemented to
take into account only the nucleotide mismatches of two sequences
with the same length. On one hand, it would be more realistic to
include indel mismatches as well to represent such sequencing
errors. On the other hand, we would expect that in practice most
of such sequencing errors will be corrected in a preprocessing step
[23].

The generated reads that align to the same genomic starting
locations are grouped together and the per-position error statistics
are computed, resulting in a set of read-groups that starts from
different locations with their position-specific error statistics
computed. These read-groups are then further combined in the
de novo reconstruction process describe below.

Simulation of same/similar/misleading-reads in de novo
reconstruction. Additional reads (same, similar and
misleading) are introduced (Fig. 7E) to simulate the effects of the
whole genome sequencing in Fig. 7A and 7B. The reads
originating from the insertion region and the additional reads
are then combined into contigs based on a heuristic read extension
algorithm. This is a partial simulation of the overlap-layout-
consensus/read-extension/unipath-finding step in thede novo

assembly process [8,10,19,30], where the current contig is
extended based on the information of the reads that overlap
with its end. The extension is only performed when there is either
an unambiguous extension supported by all the overlapping reads,
or when there is a sufficiently large set of reads with the longest
overlap that supports the same extension.

In order to simulate such a process in a whole-genome
sequencing setting, the mapability data are again utilized, as
illustrated in Fig. 7D and 7E. For a highly represented regionr in
the insertion, its corresponding same/similar reads from elsewhere
in the target genome are generated based on the pre-computed
M(r, TargetG, 0)andM(r, TargetG, 2)2 M(r, TargetG, 0)(the maximal
allowed mismatch of 2 corresponds to, 6% or lower difference
between two short reads). The number of such reads are randomly
generated based on the mapability values ofr, the sequencing
coverage, and the distributionP(n, r)of the number of reads (n)
exactly covering a region with the same size ofr, which can be
either empirically generated based on the previously simulated
reads from the inserted region, or constructed based on a
theoretical Poisson distribution representing a uniform sequencing
process.

The misleading-reads are generated in the following way: for a
contig c and a readr that overlaps it, denote the overlapping
sequence withs, then according to lemma 1, the unambiguous
extension ofc based on readr is guaranteed if and only ifM(s,
TargetG) = M(r, TargetG), which means that the sequencesis always
within sequencer in the target genome. WhenM(s, TargetG). M(r,
TargetG), we introduce the misleading reads based onM(s,
TargetG)2 M(r, TargetG)and P(n, r).

For computational efficiency, we also developed a simplified
assembler module to assemble all the generated reads. As
illustrated in Fig. 7G, This assembler estimates the overlaps
between different reads based on their locations and the
corresponding mapability values. It extends a contig by the
best overlapping reads with the most supported extension, and
simulates the effect of the misleading-reads in the following way:
If r is from a paired-end read whose other endr9 satisfiesM(r9,
RefG) = 1, we assign high confidence tor and always extend with
its sequence. Otherwise, if the estimated number of misleading
reads are significantly lower than the number reads supporting
read r (e.g. by 2-fold), the correct extension is selected.
Otherwise, if the misleading reads are over-represented, the
misleading extension is chosen and the extended sequence will
be different from what is in the actual inserted sequence. The
longest common extension supported by all the reads is
appended toc if neither type of reads significantly out-numbers
the other. The sequencing error statistics at each position are
updated accordingly in this procedure.

Computing the reconstruction rate of the combined
result. The de novo extensions are performed by the
simplified assembler described above from both ends of the
insertion region, and the combined results are then compared to
the actual insertion to obtain the reconstruction rate of the target
region, based on the metric described in the Results section. The
flanking sequences are taken into account to measure the accuracy
of boundary detection. If the de novo reconstruction result does
not cover the insertion boundaries, the reconstructed sequence
cannot be localized in the reference genome and the
reconstruction rate is set to 0. Fig. 7F shows example output
contigs, which contain small sequencing errors, a false extension
error due to the misleading-reads introduced by an highly
represented region inside the insertion, and a gap due to both
the false extension and the low-coverage of sequencing in that
particular region.
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The simulation of CNV analysis
In this simulation, we assume that the boundaries of a large

deletion event have already been identified by sequence reads, and

we are simulating the process of determining whether this is a

deletion or translocation event, based on the short reads alone or

on the idealized CGH data. The reads are generated in a similar

fashion as described in the previous section, without considering

sequencing errors for simplicity. The idealized CGH signal of a

corresponding region r is defined as Gaussian variable with mean

M(r, TargetG), and noise/standard deviation = 0.05, 0.1, 0.2. For

each dataset, the log-ratio of the posterior probability of the

deletion event is computed to represent the confidence level

provided by each dataset for determining that deletion. These

confidence levels are computed according the following formulas:

Ri~sub(SV ,i,izl )

Nsignals~t
size(SV)

l
s

C~log10

PrfDeletiong
PrfNotDeletiong

Confidenceseq~log10

PrfDeletionjreadsg
PrfNotDeletionjreadsg{C

~log10 PrfreadsjDeletiong{log10 PrfreadsjNotDeletiong

~
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i~1

log10 Pr obs(Ri )jDeletionf g{
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i~1
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n o
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� �

where sub(s, a, b) returns the sub-sequence of s from a to b-1 (1-

based index), l is the length of the short read, SV stands for the

deleted region, coveragereads is the sequencing coverage, obs(r) is the

number of observed reads that are the same as r, sig(r) is the

normalized CGH-array signal of probe r, PDF{D, v} is the

probability density/mass function of the distribution D at value v,

and RefG/TargetG refers to the reference/target genome.

Supporting Information

Figure S1 MM values and worst case reconstruction examples of

a 10 Kb novel insertion.

Found at: doi:10.1371/journal.pcbi.1000432.s001 (0.08 MB PDF)
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