
1 

 

 

Global Survey of Human T Leukemic Cells by Integrating 

Proteomic and Transcriptomic Profiling 

 

 

 

Linfeng Wu1, Sun-Il Hwang1#, Karim Rezaul1#, Long J. Lu2#, Viveka Mayya1, 

Mark Gerstein2, Jimmy K. Eng3, Deborah H. Lundgren1, David K. Han1* 

 

 
1Department of Cell Biology and Center for Vascular Biology, School of Medicine, University of 
Connecticut, Farmington, CT 06030, USA, 2Department of Molecular Biophysics and 
Biochemistry, Yale University, New Haven, CT 06520, USA, 3Fred Huchinson Cancer 
Research Center, Seattle, WA 98195 

 

# These authors contributed equally to this paper. 

 

 

 

*Corresponding author 
Address correspondence to: 
David K. Han 
Center for Vascular Biology 
Department of Cell Biology 
University of Connecticut Health Center 
263 Farmington Ave., Farmington, CT 06030 
Tel: 860-679-2444 
Fax: 860-679-1201 
Email: han@nso.uchc.edu 

 MCP Papers in Press. Published on May 21, 2007 as Manuscript M700017-MCP200

 Copyright 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

 at Y
ale U

niversity on June 16, 2007 
w

w
w

.m
cponline.org

D
ow

nloaded from
 

http://www.mcponline.org


2 

Running Title 

Global Survey of Human T Leukemic Cell 

 at Y
ale U

niversity on June 16, 2007 
w

w
w

.m
cponline.org

D
ow

nloaded from
 

http://www.mcponline.org


3 

Abbreviations 

PCNA: proliferating cell nuclear antigen 

Lamp-1: Lysosome-associated membrane glycoprotein 1 precursor  

GRP78: 78 kDa glucose-regulated protein precursor  

F1α: ATP synthase mitochondrial F1 complex, alpha subunit 1   

hnRNP C1/C2: Heterogeneous nuclear ribonucleoproteins C1/C2  

CDK: Cyclin-dependent kinase 

PECAM-1: platelet/endothelial cell adhesion molecule-1 

MAPK: Mitogen-activated protein kinase 

Bid: BH3-interacting domain death agonist 

Lck: Lymphocyte cell-specific protein-tyrosine kinase 

TMH: transmembrane helix 
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SUMMARY 

Global protein survey is needed to gain systems-level insights into mammalian 

cell signaling and information flow. Human Jurkat T leukemic cells are one of 

the most important model systems for T cell signaling study, but no 

comprehensive proteomics survey has been carried out in this cell type. Here, 

we combine subcellular fractionation, multiple protein enrichment methods and 

replicate tandem mass spectrometry analyses to determine the protein 

expression pattern in a single Jurkat cell type. The proteome dataset was 

evaluated by comparison with the genome-wide mRNA expression pattern in 

the same cell type. A total of 5381 proteins were identified by mass 

spectrometry with high confidence. Rigorous comparison of RNA and protein 

expression afforded removal of the false positive identifications and redundant 

entries, but rescued the proteins identified by a single high-scoring peptide, 

resulting in the final identification of 6471 unique gene products, among which 

98% of the corresponding transcripts detected with high probability. Using 

hierarchical clustering of the protein expression patterns in five subcellular 

fractions (cytosol, light membrane, heavy membrane, mitochondria, and 

nuclei), the primary subcellular localization of 2241 proteins was assigned with 

high confidence, including 792 previously uncharacterized proteins. This 

proteome landscape can serve as a useful platform for systems-level 

understanding of organelle composition and cellular functions in human T 

cells. 
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INTRODUCTION 

An important goal in functional genomics is to globally profile protein 

expression and localization in biological systems. Many studies have utilized 

genome-wide cDNA or oligonucleotide microarrays to measure mRNA 

expression level, deducing the corresponding protein expression [1,2]. 

However, despite the obvious dependency of protein synthesis on mRNA, 

many studies have reported that more than half of the total transcripts are 

non-coding RNA [3-5]. In addition, quantitative measurements show only 

moderate or even poor correlation between protein and mRNA expression 

level due to different translational efficiency and posttranslational turnover [6-8]. 

Furthermore, subcellular localization of proteins can not be accurately 

predicted based on mRNA expression. Therefore, biological systems ultimately 

need to be explained at the level of proteins. 

The completed draft sequences of the human genome [9,10] and several 

other organisms [11,12] combined with mass spectrometry have made 

large-scale proteomics feasible [13,14]. However, due to the huge diversity 

and dynamic range of expressed proteins, especially in human cells, 

identification of all or most of the expressed proteins in cells has remained as 

one of the greatest challenges [15]. Although many proteome-scale studies on 

different cells, tissues and subcellular organelles have been reported, no 

comprehensive analysis of a single human cell type has been carried out to 

date. In this study, we performed a comprehensive survey of a human Jurkat T 
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Leukemic cell line by combining proteomics and trasncriptomics profiling. 

Human Jurkat T leukemic cells are one of the most popular model systems for 

studying signal transduction since many key advances in the field of T-cell 

receptor (TCR) signaling were made using Jurkat T cells [16]. Moreover, this 

cell type is also used for studying other biological phenomena, such as 

apoptosis and cell engulfment [17,18]. Therefore, a global survey of human 

Jurkat T cells can serve as a platform for many in-depth characterizations of 

cellular function and signaling transduction. Moreover, in contrast to the recent 

survey of organ and organelle protein expression in mouse [8,19], our study 

was carried out in a single cell type, which makes it more suitable for studying 

protein network and signaling flow within cells.  

 

EXPERIMENTAL PROCEDURES 

Whole Cell Lysate Preparation  

 Human Jurkat A3 T leukemic cells from American Type Culture Collection 

(Bethesda, MD) were used for this study. Jurkat T cells were grown to a 

maximal density of 0.5-0.8 × 106 cells/ml, and then collected by centrifugation 

at 400 × g for 10 min at 4°C. The cell pellets were washed twice with ice-cold 

PBS. To obtain whole cell lysates, cells were re-suspended in lysis buffer (50 

mM HEPES, pH 7.5, 100 mM NaCl, 1 mM EDTA, 1% Tween-20, and a cocktail 

of protease inhibitor [Roche Diagnosis GmbH, Mannheim, Germany]) on ice 

for 30 min, and then centrifuged at 12,000 × g for 20 min at 4°C. The 
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supernatant (designated whole cell lysate) was collected and stored at -80°C 

for later analysis. 

 

Subcelluar Fractionation 

  Subcelluar fractionation was carried out as described below. One volume of 

Jurkat cell pellet was incubated in five volumes of hypotonic buffer (buffer A: 20 

mM HEPES, pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1mM EGTA, 1 

mM DTT and a cocktail of protease inhibitor) for 2 minutes, and then mixed 

with equal volume buffer A supplemented with 0.5 M sucrose resulting in a 

0.25 M sucrose isolation buffer. After 10 minute incubation on ice, cells were 

homogenized with a glass Dounce homogenizer until ~50% of the cells 

became trypan blue positive. The homogenates were centrifuged at 650 × g for 

10 minutes at 4°C. The post-nuclear supernatants were incubated on ice for 

other subcellular fraction preparation. The pellets were further homogenized in 

buffer A until ~95% of the cells became trypan blue positive. The nuclear 

pellets were isolated by centrifugation at 650 × g for 10 min at 4°C, and then 

rinsed with isolation buffer once. The nuclear pellets were gently re-suspended 

in 2.5 ml buffer A supplemented with 1.28 M sucrose, layered over 5 ml buffer 

A supplemented with 2.3 M sucrose, and then centrifuged at 60,000 × g for 90 

minutes at 4°C. The purified nuclear pellets were rinsed with buffer A, 

centrifuged at 12,000 × g for 10 min and stored at -80°C for subsequent 

experiments.  
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  The post-nuclear supernatants were used to isolate other subcellular 

fractions, including cytosol, heavy membrane, light membrane and 

mitochondria as described previously [20]. 

  In order to isolate plasma membrane fraction, one volume of cells (~ 2 × 109) 

were re-suspended in five volumes of hypotonic buffer A, homogenized by a 

glass Dounce homogenizer 15 times. The homogenates were centrifuged at 

650 × g for 10 minutes at 4°C and the pellet was removed. The supernatant 

was further centrifuged at 100,000 × g for one hour at 4°C. The pellet was 

re-suspended in buffer A supplemented with 0.25 M sucrose, dounced 10-15 

times, layered on 6.5 ml sucrose buffer (buffer A supplemented with 38% 

sucrose), and then centrifuged at 200,000 × g for two hours. The membranes 

were collected from the phase between the 0.25 M and 38% sucrose, diluted in 

10 ml 0.25 M sucrose buffer, and centrifuged at 100,000 × g for 1 hour. The 

pellet was designated as plasma membrane.  

  In order to isolate lipid raft fraction, the PBS-washed cell pellets were 

re-suspended in 1 ml lysis buffer (25 mM MES, pH 6.5, 150 mM NaCl, 0.1% 

Triton X-100, 1 mM sodium vanadate, 5 mM EDTA and a cocktail of protease 

inhibitor). Cells were dounced 20-30 times, and then mixed with 1 ml 80% 

sucrose in lysis buffer without Triton X-100. The lysates were placed in the 

bottom of a 14 X 89 mm clear centrifuge tube (Beckman), gently overlaid with 

6.5 ml of 30% sucrose and 3.5 ml of 5% sucrose in lysis buffer without Triton 

X-100, and then centrifuged at 200,000 × g at 4°C for 18 hours (the machine 
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was set at NO BRAKE condition). The low density membrane raft in the 5% 

sucrose fraction was collected and designated as lipid raft. The details of cell 

culture and other enrichment approaches are shown in supplemental 

materials. 

 

In-gel Digestion and Nano-LC-MS/MS Analysis 

Proteins were digested with trypsin and analyzed as described previously [20] 

with minor modifications as outlined below. Digested proteins were analyzed 

using a linear ion trap mass spectrometer (Finnigan LTQ; Thermo Finnigan, 

San Jose, CA). Samples were loaded onto a 10-cm × 100-µm capillary C18 

reversed-phase column by a micro-autosampler (Famos, Dionex, Sunnyvale, 

CA) followed by LC-MS/MS analysis on the LTQ. For stable isotope-free 

peptide samples, each full MS scan was followed by five MS/MS scans of the 

five most intense peaks in the MS spectrum with dynamic exclusion enabled. 

The m/z scan range was either 300-1700 or 400-1700 for full mass range. For 

stable isotope-labeled peptide samples, which mainly come from subcellular 

fractions and phosphoprotein enrichment, each full MS scan was followed by 

one MS/MS scan of the most intense peak in the MS spectrum with dynamic 

exclusion enabled. 

 

Database Searching and Data Processing 

All the mass spectrometry raw files were converted to .dat files using Xcalibur 
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software (version 1.4 SR1), which were then converted to mzXML using the 

conversion software dat2xml 

(http://regis-web.systemsbiology.net/rawfiles/converter/linux/dat2xml). Peak 

lists were generated automatically without smoothing and de-isotoping, and 

charge states assigned based on the MS and MS/MS scans as previously 

described [21]. The minimum signal count for full MS is 1000. All the mzXML 

files were searched against a local copy of the non-redundant human protein 

database (56,709 entries, Nov. 30th 2004 release version) from NCI’s 

Advanced Biomedical Computing Center using the SEQUEST algorithm 

[SEQUEST-PVM v.27 (rev. 0)] [21]. SEQUEST parameters were outlined as 

follows: all the filtering thresholds were off; mass tolerance of 1.0 Da for 

precursor ions and 0.5 Da for fragment ions, full tryptic constraint allowing one 

missed cleavage, allowing oxidization (+16 Da) of methionine. If the peptides 

contain heavy isotope-labeled amino acids, the corresponding amino acid 

modification was also allowed. The detail description of labeled amino acids 

used in each experiment is shown in Table S1. The database search results 

were processed using INTERACT program [22] and filtered with the following 

criteria: Xcorr cutoff values are 1.9, 2.2, 3.7 for 1+, 2+, 3+ peptides, 

respectively; ∆Cn cutoff value is 0.1; partially isotope-labeled peptides were 

excluded. Proteins identified by at least two distinct peptides in the same 

experimental fraction were collected for indept analysis. To estimate the 

false-positive rate, the datasets were searched against a forward and reversed 
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concatenated human protein database [23]. To address redundancy issue in 

the list of identified proteins, the peptides filtered by the above Xcorr and ∆C 

values were used to compute peptide probability and protein probability using 

PeptideProphet (version 1.0) [24] and ProteinProphet (version 2.0) softwares 

[25], which combines the redundant proteins into a unique protein group and 

indicates whether the peptide sequences are unique to the corresponding 

protein group. The searching parameter was set as minimum probability 0.0 to 

include all the results for the in-dept analysis. In addition, a genome-wide 

transcript profiling of the same human Jurkat cell type was performed and 

compared to our proteomic dataset.  

 

Transcript Profiling 

The Sentrix Human-6 Expression BeadChip (Illumina, San Diego, CA) that 

contain 50-mer gene-specific oligonucleotide probes corresponding to >46,000 

human transcript variants were used in this study. There are on average 30x 

redundancy for each transcript per array. Total RNA was isolated from Jurkat 

cells at log phase using guanidine thiocyanate (GTC) method. All the solution 

and materials were RNAase-free if necessary. 1x108 Cells were washed twice 

with PBS, lysed with 4ml GTC (4 M guanidine thiocyanate, 30 mM sodium 

Acetate, 1% 2-mercapotaethanol, pH 7.0), and then homogenized using 20 

gauge syringe needle 20 times. The cell lysate was gently layered on  the top 

of 3 ml CsCl solution (5.7 M CsCl, 30 mM sodium Acetate). Then the sample 
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was centrifuged for 20 hours at 27,000 rpm in SW 41 rotor. The supernatant 

was removed carefully and the pellet was dissolved in 200 µl H2O. Total RNA 

was further purified with phenol:chloroform:isoamyl alcohol (25:24:1 v/v/v) and 

precipitate with 3M sodium acetate and ethanol. The final total RNA pellet was 

lyopholised in speed vacuum and stored in -80°C. Poly-A enriched mRNA was 

isolated from total RNA using Absolute mRNA Purification Kit (Stratagene). 

The qualities of total RNA and poly-A enriched mRNA were examined by 

electrophoresis on a formaldehyde 1% agarose gel and northern blot 

hybridization (Fig. S1).  

RNA sample was amplified using TotalPrep RNA amplification kit (Ambion, 

Foster City, CA), followed by hybridization, labeling and scanning of the chips 

according to the llumina’s protocol. The data was extracted, normalized and 

analyzed using the Illumina BeadStudio software.  

 

Quantitative Analysis 

The semi-quantitation of protein abundance was calculated by normalizing the 

spectral counts of each protein in one fraction relative to the total spectral 

counts in the corresponding fraction. The normalized profiles were 

hierarchically clustered based on uncentered correlation with centroid linkage 

using Cluster 3.0 [26], and visualized using Java TreeView [27]. 

 

RESULTS 

 at Y
ale U

niversity on June 16, 2007 
w

w
w

.m
cponline.org

D
ow

nloaded from
 

http://www.mcponline.org


13 

Saturated Protein Identification 

  To begin to identify the total proteome of human Jurkat T cells, we 

separated 33 µg of whole cell lysates by one-dimensional gel electrophoresis 

and cut the whole gel lane into 18 gel slices. The proteins contained in the gel 

slices were trypsinized and peptides were extracted as previously described 

[20]. The peptides were then analyzed by liquid chromatography and tandem 

mass spectrometry (LC-MS/MS) using LTQ iontrap mass spectrometer. This 

process was repeated fourteen times using the same amount (33 µg) of 

proteins from the same whole cell lysate sample. Each replicate analysis 

identified approximately 2200 to 2700 proteins (Fig. 1A and Table S1). The 

overlap between each two replicates is about 82% with only 1.8% standard 

deviation. Differences in protein identification among replicates can be 

attributed to the complexity of the peptide sample and random sampling during 

data acquisition by LC-MS/MS. When the data for cumulative total number of 

unique proteins was analyzed, we found that 3620 proteins were identified 

from the 14 replicates. We observed that the proteome coverage was 

enhanced by about 40% when the sample was sequenced fourteen times 

compared to a single analysis (Fig. 1B). Moreover, the first five analyses 

reached about 94% of the total proteins identified by 14 replicate analyses. 

The protein accumulation curve approaches a slope of 0 after nine repeats, 

suggesting that fourteen replicate analyses are more than enough to achieve 

saturation. 
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Global Proteome Survey of Human Jurkat T Leukemic Cells 

Although we saturate protein identification in whole cell lysate by replicate 

analyses, it is obvious that we did not identify all the proteins. Therefore, we 

next attempted to detect proteins that were refractory to replicate analysis. We 

aim to increase the proteome coverage by reducing the sample complexity 

using the well-established and validated fractionation methods [20,28]. First, 

we sub-fractionated the cell into seven fractions, including cytosolic, light 

membrane, heavy membrane, mitochondrial, nuclear, lipid raft, and plasma 

membrane fractions. Western blot assessments confirmed the appropriate 

partitioning of several organellar markers across these subcellular fractions, 

providing a basic confirmation of fraction purity (Fig. S2). Second, whole cell 

lysates from Jurkat cells were used to enrich phosphorylated proteins and 

validated by western blotting (Fig. S3). Third, we enriched glycosylated 

proteins by using the lectin wheat germ agglutinin (WGA), which preferentially 

binds N-acetyl glucosamine (GlcNAC), terminal GlcNAC structures and sialic 

acid. The enrichment of the glycosylated proteins from the whole cell lysates 

was validated by western analysis (Fig. S4). Fourth, we tried to detect 

previously masked subsets of proteins by differential protein depletion. Since 

proteins have different binding rates to a particular medium, we hypothesized 

that the abundance level of proteins in a complex mixture might shift during the 

process of binding, resulting in enrichment of previously masked proteins. To 
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investigate this hypothesis, whole cell lysates of Jurkat cells were incubated 

with CNBr-activated sepharose beads which covalently bind to free amine 

groups. Un-coupled proteins were collected at different time points. We found 

that the protein-abundance pattern shifted after depletion (Fig. S5).  

Next we repeatedly analyzed the proteomes from all of the above 

sub-fractions using one dimensional gel electrophoresis combined with 

LC-MS/MS, and a combined total of 1707 LC-MS/MS runs were performed. 

The flow diagram of our experimental strategy is shown in Figure 2A. All the 

mass spectrometry data were then searched against a non-redundant human 

protein database using the SEQUEST algorithm [21] followed by stringent 

filtering, resulting in the identification of 9611 unique proteins. Further selection 

of proteins identified by at least two high-scoring unique peptides and 

exclusion of several apparent contaminants introduced during sample handling 

(e.g., trypsin, keratins), lead to a total identification of 5381 proteins with 

high-confidence, with ~1000 to ~3600 proteins identified in each fraction (Fig. 

2B, Table 1 and S2). The peptide false positive rate in each fraction was lower 

than 0.7% when the entire dataset was searched against the concatenated 

forward and reversed database (Table 1). These data indicated that the criteria 

we used to filter our spectra are stringent and the final protein list contained 

very low false positive identifications. 

 One essential issue in shotgun proteomics is that peptide sequences can 

be present in multiple protein entries due to closely related proteins (e.g. splice 
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variants, homologs, paralogs, orthologs, or redundant entries in protein 

database), which leads to an overestimation of protein identification number. 

To address this issue, we computed protein probability and observed that the 

vast majority of our identified proteins (80%) were assigned unambiguously, 

that is each unique protein groups have only one representative protein in our 

identified protein list and were distinguished by at least one high-scoring 

(peptide probability ≥0.9) unambiguous peptide. The remaining proteins could 

not be identified unambiguously as the same peptide sequences mapped to 

more than one protein. In these cases, it is not reliable to claim which proteins 

are truly expressed in the cells simply based on bioinformatics prediction. 

Therefore a straight bioinformatics method based on mass spectrometry data 

is inadequate to completely address the redundancy issues, which indicates 

that an alternative method is needed to support large-scale shotgun 

proteomics data. 

 

Proteomic and Transcriptomic Profiles Comparison 

To further address the redundancy issue, we next performed a genome-wide 

mRNA analysis in Jurkat cells as an independent approach to support our 

proteome profiling. Both total RNA and mRNA were prepared from Jurkat cells, 

and then examined with commercialized human oligonucleotide microarray 

which contains >46,000 transcript-specific probe sequences per array. 

Duplicate and triplicate arrays were analyzed in parallel using total RNA and 
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poly-A enriched mRNA respectively. Genes with detection p value less than 

0.05 were regarded as positive identification. A total of 15,592 and 15,286 

unique gene targets were detected in total RNA and mRNA, respectively. 

13,973 gene targets were jointly detected in both total RNA and mRNA (Fig. 

3A).  

Bridging gene symbols with protein accession numbers resulted in about 

7000 gene/protein pairs for the expression comparison study. According to 

their different detections using mass spectrometry and microarray tools, we 

categorized these gene/protein pairs into four groups (A, B, C, D) (Table 2 & 

S3). Group A includes gene products detected by at least two unique peptides 

and high-confidence mRNA expression. Majority of group A genes (4270 out of 

4522 genes) were matched to a single protein accession number, which 

indicates that there is no redundancy among these protein identifications. A 

small set of group A genes (252 genes/540 proteins) were matched to multiple 

protein accession number, which might be due to two reasons. First, there are 

redundant protein entries in our list. Second, some of the oligonucleotide 

probes on the chip may not be splice isoform-specific as claims. To address 

this issue, we investigate the ProteinProphet results and observed that at least 

332 proteins were identified in this subgroup based on at least one 

unambiguous peptide sequences. Therefore a total of 4602 proteins (4270 + 

332)were accepted as unambiguous identification in group A. Group B 

includes 360 proteins (350 genes) identified with at least two peptides, while 
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their transcripts were not detected with high confidence. This group might be 

due to either false positive identification or their mRNA level was too low, or 

even degraded after translation. Among them 74 proteins were identified with 

more than four unique peptides including at least one unambiguous peptide 

sequence, which were accepted as positive identification. The remaining 

proteins were considered false positive identification. In group C, the identified 

proteins have no corresponding gene target on the microarray. In these cases, 

we accepted 62 proteins which were identified with more than four unique 

peptides including at least one unambiguous peptide sequence. Group D 

comprises proteins identified with a single peptide and their mRNA 

expressions were jointly detected in both purified total RNA and mRNA with 

high-confidence. In this study, we identified more than 4000 proteins with 

single peptide which have a relatively high false positive rate. However, 

transcript expression confirmation effectively reduces the number to 1733 

proteins which we accepted in the final protein count and list these proteins 

separately in table S4. Thus, using a these stringent criteria, we were able to 

accept a total of 6471 unique proteins (4602 + 74 + 62 + 1733). 

It is known that membrane-associated proteins are more difficult to be 

detected with multiple peptides. Therefore we compared the distribution of 

integral membrane proteins identified with single peptide (group D) and 

multiple peptides (combined group A, B, C). As expected, we observed that 

proteins in group D have a higher coverage of integral membrane proteins than 
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those identified by multiple peptides (Fig. 3B).  

In total, excluding the redundant protein entries and potential false positive 

identification, we identified 6471 unique gene products by mass spectrometry, 

among which 98% are verified by high-confidence transcript expression (Table 

S2, S3 & S4). We also investigated the presence of membrane-associated 

proteins as a measure of proteome detection coverage. Using TMHMM Server 

2.0 [29] to predict protein transmembrane helix (TMH), we found that a total of 

998 proteins in our accepted proteome dataset had at least one putative TMH, 

while 492 proteins had two or more TMHs (Table S2). These results are better 

than a recent study where similar scale proteome was characterized from the 

mouse organs and organelles [8]. Therefore, we concluded that our dataset 

provides high coverage of membrane-associated proteins. 

 

 

Subcellular Localization 

One major advantage of proteomic measurements over mRNA profiling is 

the ability to deduce protein subcellular localization, providing insights into the 

organelle functions. However, one limitation associated with proteomic study is 

the difficulty to isolate pure subcelluar organelles. Although we have attempted 

to purify sub-fractions efficiently and optimized the purification methods [20,28], 

it may be inaccurate to assign protein localization solely based on the protein 

identification in the enriched fractions due to the possible cross-contamination 
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during sample preparation. The specificity of protein assignment to particular 

organelles requires appropriate comparison and data analysis.  

Since it has been reported that spectral count of proteins is a 

semi-quantitative measure of protein abundance [30], the proteomic data 

reported here might be useful for protein subcellular localization prediction. In 

this study, we focus on analyzing subcellular localization of proteins identified 

by at least two unique peptides but not having redundant matches to the same 

gene target (cytosol, light membrane, heavy membrane, mitochondrion and 

nucleus fractions, Table S5) based on their spectral count. In addition to the 

subcellular localization analysis performed in these five fractions, we also 

provide detailed protein identification list for all of the fractions that were 

analyzed (Supplementary Table S2). This information can be used to predict 

the global localization studies of all of the identified proteins.  

First, we compared the normalized spectral counts obtained in this study 

with western blotting results (Figure S2). It was observed that the normalized 

spectral counts of several biomarker proteins agree with their distribution in 

different organelles. We therefore assigned a primary localization to each of 

the proteins based on the normalized spectral count followed by hierarchical 

clustering (Fig. 4A, Table S5). The clustering result shows significant pattern 

differences between the five subcellular fractions, which confirms that our 

samples enriched distinct proteins belonging to different functional categories. 

 Next we use a “gold standard” protein list to assess the accuracy of our 

 at Y
ale U

niversity on June 16, 2007 
w

w
w

.m
cponline.org

D
ow

nloaded from
 

http://www.mcponline.org


21 

subcellular assignment. This gold-standard list is constructed based on the 

Gene Ontology (GO) terms and comprises four specific subcellular 

compartments, i.e., cytosol, non-mitochondrial ribosome, mitochondria, and 

nuclei. The accuracy of the GO terms assignments were further confirmed by 

comparison with human protein reference database (HPRD) which only 

contains information manually extracted from the literature by expert biologists 

[31].  Only those proteins in agreement with the primary localization 

annotation in HPRD were accepted as the gold-standard proteins. Our list and 

the gold-standard list have 616 proteins in common. By plotting the distribution 

of these gold standard proteins, we observed that cytosolic proteins are mainly 

enriched in the cytosolic fraction, non-mitochondrial ribosomal proteins in the 

light membrane fraction, mitochondrial proteins in the mitochondrial and heavy 

membrane fraction, and nuclear proteins in the nuclear fraction (Fig. 4B). We 

hierarchically cluster these gold standard proteins as previously to assign a 

primary localization (Table S6). If our assignment to a protein agrees with the 

annotations, we consider it as a correct assignment. We quantify the degree of 

correct assignment in the four clusters that we are able to evaluate (cytosol, 

nuclei, mitochondria and light membrane) using an enrichment score, which is 

defined as the ratio of the number of correct assignment to the number of total 

assignments in this cluster (Table 3). A high enrichment score was observed 

for the nucleus and mitochondrion (0.93 and 1.00 respectively). The cytosol 

cluster contains a moderate (0.73) enrichment score. We analyzed the 
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potentially incorrect assignment in the cytosol, most of which (42 out of 44) are 

nuclear proteins based on the annotation. This may be due to protein shuttling 

between organelles or incorrect protein annotation in the literature. For 

example, proliferating cell nuclear antigen (PCNA) is known to be present in 

the cytosol, but also shuttles to the nucleus during cell proliferation [32]. 

Therefore, incomplete assignment of many proteins in the literature penalized 

the actual enrichment score in the cytosol. For the light membrane cluster, 

although most non-mitochondrial ribosomal proteins are assigned to this 

cluster, many proteins from other organelles are also included, resulting in a 

relatively low enrichment score (0.32). This is because light membrane fraction 

comprises multiple membrane compartments, such as lysosome, 

smooth/rough endoplasmic reticulum, Golgi apparatus, and even the debris of 

the nucleus. As for heavy membrane fraction, also called crude mitochondrial 

fractions in some studies, most proteins (22 out of 25) clustered in this fraction 

are mitochondrial proteins, which indicates some proteins in this fraction 

localize in the mitochondrion. However, based on the distribution of several 

biomarkers, heavy membrane also enriched with other membrane structures, 

such as endoplasmic reticulum and plasma membrane. Therefore, it is also 

difficult to specifically assign a primary localization to proteins clustered in 

heavy membrane. Therefore we concluded that the overall protein 

assignments in the three clusters (cytosol, nuclei and mitochondria) are highly 

reliable, and caution should be paid to the light membrane and heavy 
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membrane assignments. 

We also verified the specificity of the clustering results using our protein list. 

We collected the annotated or predicted cytosolic, mitochondrial and nuclear 

proteins based on the GO terms and PSORT II prediction [33]. We observed 

that the majority (259/373) of proteins in mitochondrion cluster are assigned to 

the mitochondrion, 670 out of the 1100 proteins in the cytosol cluster are 

assigned to the cytosol, 520 out of the 768 proteins in the nucleus cluster are 

assigned to the nucleus. Since we obtained a higher enrichment score in these 

three clusters using the gold standard list, there is a high probability that the 

rest of the unassigned proteins in these three clusters are predicted correctly. 

Therefore, our proteome data provide a primary subcellular prediction for 2241 

proteins with high confidence, including 792 proteins which are unannotated by 

the GO terms and unpredicted by PSORT II. For the rest of 1129 proteins in 

the light membrane and heavy membrane clusters, more dedicated subcellular 

prediction computation and assessment are required. 

 

DISCUSSION 

Eukaryotic cells segregate and organize functionally related proteins into 

discrete compartments that have distinct structures and functions. Previous 

organelle proteomics studies have mainly focused on one compartment， 

providing insights into the biology and functions of these structures. Recently 

two groups performed magnificent proteomics studies on multiple organelles in 
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mouse organ by combining subcellular fractionation and mass spectrometry 

technologies. However, no comprehensive characterization of a single human 

cell type has been carried out to date. In this study, we combine replicate 

proteomics analyses and extensive subcellular fractionation/enrichment 

methods in Jurkat cells, identifying 5381 proteins, of which 80% were assigned 

with at least one unambiguous peptide sequences. Based on comparison 

between proteomic and transcriptomic profiling in Jurkat cells, we were able to 

specifically exclude redundant entries and potential false positive 

identifications, resulting in 4738 protein identifications. Among them, more than 

98% were confirmed by high-confidence mRNA expression. Since we use 

multiple stringent criteria to filter and confirm our proteome dataset, the protein 

false positive rate was estimated to be closed to zero.  

This proteome/transcriptomic coverage is much higher than previous 

proteomic and transcriptomic comparison studies in mammalian cells [8,34]. It 

may be because previous studies either did not analyze the global expression 

of proteome or transcriptome comprehensively, or compared proteomic and 

transcriptomic data generating from different biological systems (e.g., different 

mouse strains or cell type).  

Although we performed a comprehensive proteome analysis of a single cell 

type, resulting in the identification of a huge number of proteins with high 

confidence, many lower-abundance and membrane-associated proteins are 

still refractory to rigorous identification by mass spectrometry techniques. This 
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incomplete proteome coverage likely arose from the intrinsic limitations in 

instrument sensitivity and bias of data-dependent acquisition towards 

high-abundance proteins [30]. Additionally it may also be due to an overly 

stringent filtering of the mass spectrum search results. Consistent with this, 

over 4000 proteins were identified by one high-scoring peptide. By simply 

accepting proteins identified by single high-scoring peptide if the 

corresponding transcript was jointly detected in both total RNA and mRNA 

samples, the number of protein identifications could be boosted to 6471. 

Moreover, the accepted proteins identified with a single peptide have a higher 

coverage of membrane-associated proteins than the proteins identified with 

multiple peptides. This result indicates that proteomic and transcriptomic 

integration is a powerful tool to rescue false negative protein identification. 

Another benefit of proteomic and transcriptomic integration is to investigate 

how the mRNA levels reflect protein abundances and the biological 

mechanisms of the discordance between protein and mRNA expression. This 

ongoing investigation being conducted in our laboratory will be reported in the 

near future. 

In this study, we use CNBr-activated sepharose beads to covalently couple 

proteins and identified un-coupled proteins during time course. Using this 

approach, we were able to detect several hundreds of new unique proteins 

after previous extensive profiling. We found that this method helps purify 

specific class of proteins including some hydrophobic proteins after long-time 
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incubation. But the reaction between proteins and the beads are not simply 

based on protein hydrophobicity (data not shown). The reaction rate between 

proteins and the beads is likely due to the combinational outcome of multiple 

protein properties, such as hydrophobicity and the number of accessible free 

amine groups. 

One unique advantage of proteomics profiling over transcriptomics profiling 

is the ability to provide information on protein post-translational modifications. 

In this study, we enriched proteins based on two types of post-translational 

modifications, phosphorylation and glycosylation. Therefore, proteins identified 

in these two fractions are likely phosphorylated or glycosylated. However, note 

that we did not specifically detect the modification sites and the proteins were 

enriched based on affinity purification, some unspecific binding proteins and 

proteins associated with those phosphoproteins/glycoproteins may also be 

detected in these two fractions. Therefore large-scale phosphopeptide and 

glycopeptide identification are needed to complement our dataset.  

Another advantage of proteomics profiling is to deduce protein subcellular 

localization, providing insights into the biological functions of gene products 

and organelles. Given the difficulty of isolating completely pure organelles, we 

opted to combined differential protein expression in multiple subcellular 

fractions with hierarchical clustering to more accurately predict the primary 

subcellular localization of proteins. Using annotated proteins to assess the 

prediction accuracy, we were able to provide high-confidence assignment by 
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this method in at least three compartments (the cytosol, nuclei and 

mitochondria). The primary subcellular localization assignment of 2241 

proteins reported here, including 792 previously unassigned proteins by the 

GO term or PSORT II predictions, add more information into the proteome 

composition of these organelles in this widely used human cell type. As for 

proteins clustered in other two compartments (light membrane and heavy 

membrane), we chose to be more cautious and did not assign a specific 

primary localization to each of them, because these two compartments 

comprise multiple subcelluar structures. More defined subcellular fractionation 

approaches are required to further separate these fractions. However, the 

information here still provides a clue for protein localization. Together with the 

proteins detected in lipid raft and plasma membrane fractions, one can 

deduced much valuable information on those unassigned proteins in this study. 

One of the main challenges confronting protein subcellular localization 

prediction is that many proteins likely shuttle between compartments, having 

multiple subcellular localizations. In this study we only assign a primary 

localization to each protein, while most proteins reported here were detected in 

more than one subcellular fraction. Although some of these cases may stem 

from crosscontamination during sample preparation, we cannot exclude that it 

may indeed reflect the real protein localization patterns. Moreover, 1129 

proteins clustered in the light and heavy membrane fractions were assigned 

with a primary localization with low confidence due to the multiple organelle 
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composition of these two fractions. Therefore, it is possible that by applying 

more advanced machine-learning methods on the proteomics data reported 

here more accurate subcellular localization assignment can be expected.  

Despite the caveats in the identification of post-translationally modified protein 

and the assignment of protein subcellular localization, the proteomics profile 

reported here provides a global landscape in a single human cell type, 

precluding the differences among tissues and more suitable for many in-depth 

characterization of human systems at a cellular level, such as comparison 

between protein and mRNA expression, integration of protein expression 

pattern with protein-protein interactions and biological phenotypes. In addition, 

some of the data in this study were obtained from cells after specific 

perturbations. More thorough analysis on the dynamic regulation of proteins in 

these cells were, or will be reported separately [28]. Since many mutant cell 

lines have been derived from human Jurkat cells and widely used by the 

biological community [16], the comprehensive proteome survey of this cell type 

can serve as a useful platform for more extensive experimental 

characterization and integration studies. Complete summaries of the peptides 

and proteins identified in this study are accessible in the supplemental data.  In 

addition, all of the raw data generated in this study are being deposited with the 

MCP data repository. Investigators are encouraged to utilize this rich proteomic 

resource. 
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SUPPLEMENTAL DATA 

Supplemental data include experimental procedures, five figures, six summary 

tables and the detail information for each identified peptide (peptide atlas file) 

and their sharing results among different protein entries (ProteinProphet file). 
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FIGURE LEGEND 

Figure 1: Saturated Protein Identification by Replicate Analyses 

(A) The number of unique proteins identified in each replicate analysis of the 

human Jurkat whole cell lysates is shown. 

(B) The cumulative curve of unique proteins identified by replicate analyses of 

the whole cell lysates from human Jurkat T Leukemic cells is shown. The 

percentages of proteome coverage after two, three and five repeats are 

indicated. 

Figure 2: Proteome Survey of Human Jurkat T Leukemic Cells 

(A) The flow chart of overall experimental strategy for protein identification. 

Human Jurkat T Leukemic cells were fractionated into ten fractions including 

cytosolic, light membrane, heavy membrane, mitochondrial, nuclear, lipid raft, 

plasma membrane, phosphoprotein, glycoprotein, and depletion. Proteins 

extracted from the Jurkat whole cell lysates and the above subfractions were 

repeated analyzed by one dimensional gel electropheresis combined with 

LC-MS/MS (GeLC-MS/MS). A total of 1707 LC-MS/MS runs were performed 

resulting in the identification of 5381 proteins.  

(B)The cumulative curve of total identified proteins following multiple 

enrichment methods is shown. WCL, whole cell lysates; HM, heavy 

membrane; LM, light membrane; Mito, mitochondria; Phospho, 

phosphoproteins; Glyco, glycoproteins; PM, plasma membrane; Depletion, 

un-coupled proteins by CNBr-activated sepharose beads. 
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Figure 3: Proteomic and Transcriptomic Profile Integration 

(A) High-confidence transcript detection. Using p < 0.05 as a cutoff, 15592 and 

15286 unique gene targets were detected in purified total RNA and mRNA 

samples, respectively. 13973 gene targets were jointly detected in both 

total RNA and mRNA. 

(B) Comparison between the distribution of membrane-associated proteins 

identified by single and multiple peptides. The accepted proteins identified 

by multiple peptides and a single peptide were applied for transmembrane 

helix (TMH) prediction by TMHMM server 2.0. The membrane protein 

distributions in these two categories are shown.  

 

Figure 4: Protein Subcellular Localization  

(A) Hierarchical clustering of protein expression pattern obtained from 

cytosolic, light membrane, heavy membrane, mitochondrial, and nuclear 

fractions are shown. The protein expression level was measured by the 

normalized spectral count, i.e. the spectral count of each protein in one 

fraction divided by the total spectral counts of the same fraction. The five 

protein clusters are indicated. This pattern allowed the assignment of 

primary localization of each of the identified proteins, except in some 

proteins with multicompartment distributions. Note compartment specific 

protein distribution pattern as well as the multi-compartmental distribution 
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patterns.  

(B) The expression pattern of the “gold standard” proteins in cytosolic, light 

membrane, heavy membrane, mitochondrial and nuclear fractions are 

shown. The “gold standard” proteins were selected from the identified 

proteins in different subcellular compartments using the GO terms.  
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  Table 1. Summary of the Proteomics Data. The Number of 

high-confidence protein identification (more than one high-scoring 

peptide) and their associated unique peptide counts, spectral counts and 

peptide false positive rate in each experimental fraction were shown. 

Experimental fraction Proteins Unique Peptide Spectra Peptide False 

Positive% 

Whole cell lysates 3620 26865 256375 0.43% 

Cytosol 2012 13618 72893 0.64% 

Heavy Membrane 1599 9073 34671 0.39% 

Light Membrane 2154 13617 58001 0.42% 

Mitochondrion 1154 5971 21037 0.46% 

Nucleus 1750 10338 44673 0.37% 

Raft 1112 5462 20645 0.28% 

Plasma Membrane 1529 8239 49381 0.28% 

Glycoprotein 936 6175 23668 0.08% 

Phosphoprotein 1033 4964 21693 0.50% 

Depletion 3035 20156 195167 0.51% 

Total 5381 43693 798204  
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Table 2. Summary of proteomic and transcriptomic profiles comparison 

Protein ID microarray 
target 

Unique 
Match 

no. 

Redundant 
Match no.

Total 
RNA mRNA ID 

no. Group 

Yes Yes 4180 
Yes No 32 
No Yes 58 

A 
4610 N/A 

No No 340 B 

Yes Yes 536 
(250) 

Yes No 4(2) 
No Yes 0 

A 

with target 

N/A 560(262)

No No 20 
(10) B 

5381 protein 
identified by 

more than one 
peptide 

No target N/A N/A N/A N/A 211 C 
Protein 

identified by a 
single peptide

With 
target 1733 0 Yes Yes 1733 D 

Yes, the corresponding transcripts were detected with p < 0.05; No, the corresponding 
transcripts were not detected with p < 0.05.  
The numbers outside parentheses represent the matched protein number; the 
numbers inside parentheses represent the corresponding target gene number. 
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Table 3: Validation of subcellular localization prediction of proteins 
based on the normalized spectral count followed by hierarchical 
clustering. 
Protein 
Group 

Cluster Total 
Protein 
no. 

Known Correct 
Assignment 
no. 

Enrichment 
Score 

Cytosol 165 121 0.73 

Nuclei 88 82 0.93 

Mitochondria 208 207 1.00 

Light Membrane 130 42 0.32 

 
 
616 Gold 
Standard 
Protein 

Heavy Membrane 25 N/A N/A 

Cytosol 1100 670 0.61 

Nuclei 768 520 0.68 

Mitochondria 373 259 0.69 

Light Membrane 745 N/A N/A 

 
 
 
3370 
Identified 
Proteins 

Heavy Membrane 384 N/A N/A 
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