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Although some of the underlying technology for quantifying

protein abundance was introduced almost thirty years ago

[1,2], there has recently been a significant increase in the

development of new tools. Concurrently, tools for analyzing

mRNA expression are becoming more mainstream. The

quantification of both of these molecular populations is not

an exercise in redundancy; measurements taken from

mRNA and protein levels are complementary and both are

necessary for a complete understanding of how the cell

works [3]. Additionally, as mRNA is eventually translated

into protein, one might assume that there should be some

sort of correlation between the level of mRNA and that of

protein. Alternatively, there may not be any significant cor-

relation, which, in itself, is an informative conclusion. 

The two commonly used high-throughput methods for mea-

suring mRNA expression, microarrays and Affymetrix chips,

have both been extensively reviewed elsewhere [4-6]. There

are also two basic methods for determining protein abun-

dance; either based on two-dimensional electrophoresis or on

mass-spectrometric methods (Table 1). We provide a brief

review of these technologies and recent efforts to determine

correlations between quantified protein abundances and

mRNA expression.

Methods for determining protein levels
Two-dimensional electrophoresis
Determining relative protein expression levels by conven-

tional two-dimensional electrophoresis requires isoelectric

focusing, SDS-polyacrylamide gel electrophoresis, staining,

fixing, densitometry, and careful matching of the same spots

on two or more gels. Differentially expressed spots are then

excised and enzymatically digested, and the resulting pep-

tides are identified using mass spectrometry. An attractive

aspect of this approach is the low capital equipment cost, but

a high level of expertise is needed to obtain reproducible

gels, and two-dimensional electrophoresis is generally

limited to proteins that are neither too acidic, too basic, nor

too hydrophobic, and that are between 10 and 200 kDa in

size, so that they are reliably separated on gels. Additionally,

this approach detects only those proteins that are expressed

at relatively high levels and that have long half-lives [7,8]. In

one study using 40 µg yeast lysate, the average protein
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abundance detected was 51,200 copies per cell, with no pro-

teins detected with abundances less than 1,000 copies per

cell [8]. Given that 1,500 spots were resolved on a 1.0 pH

unit gel [8], several gels covering different pH ranges would

be needed to resolve a whole cell lysate. Given these limita-

tions, conventional two-dimensional electrophoresis tech-

nology has limited potential for large-scale proteome

analysis [8]. 

Two-dimensional fluorescence-difference gel electrophoresis

(DIGE) utilizes mass- and charge-matched, spectrally

resolvable fluorescent dyes (such as Cy3 and Cy5) to label

two different protein samples in vitro prior to two-dimen-

sional electrophoresis. Its main advantage over conventional

two-dimensional electrophoresis is that both the control and

the experimental sample are run in a single polyacrylamide

gel. The samples are then imaged separately but can be per-

fectly overlaid without any ‘warping’ of the gels. This sub-

stantially raises the confidence with which protein changes

between samples can be detected and quantified. Changes in

the relative level of expression of a protein may be detected

that are as little as 1.2-fold for large-volume spots [9].

Because detection is based on fluorescence, DIGE has a large

dynamic range of about 10,000, which permits differential

expression analysis of proteins that are present at relatively

low copy number [9]. The limit of detection of DIGE for

quantifying protein expression ratios is between 0.25 and

0.95 ng protein, which is similar to that for silver staining

[9,10]. In a recent study [11], the relative levels of expression

of approximately 1,050 protein spots were compared in

250,000 laser-dissected normal versus esophageal carci-

noma cells. This analysis identified 58 spots that were

up-regulated by more than three-fold and 107 that were

down-regulated by more than three-fold in cancer cells.

Mass spectrometric approaches
Disease biomarker discovery
Current approaches to discovering protein or peptide

markers of disease involve batch chromatography, matrix-

assisted laser desorption ionization mass spectrometry

(MALDI-MS) and statistical analysis of large numbers of

disease versus normal serum or other biological samples.

Most recent studies have relied on surface-enhanced laser

desorption ionization time-of-flight mass spectrometry

(SELDI-TOF-MS) [12,13]. The SELDI approach [13] involves

using a gold-coated chip with eight or sixteen 2 mm spots

that are modified with chromatographic surfaces (for

example anionic, cationic, hydrophobic, and so on). After

spotting a few microliters of serum, any contaminants and

salt are removed by washing with water, and the target is

dried by adding a MALDI matrix solution, such as α-cyano-4-

hydroxy-cinnamic acid. In a study by Petricoin et al. [14]

SELDI-MS analysis of serum from 50 control and 50 case

samples from patients with ovarian cancer resulted in identi-

fying five peptide biomarkers that ranged in size from 534 to

2,465 Da. The pattern formed by these markers was then

used to correctly classify all 50 ovarian cancer samples in a

masked set of serum samples from 116 patients who included

50 patients with ovarian cancer and 66 unaffected women.

Similar promising results have been reported in studies of

serum samples from breast and prostrate cancer patients

[12,15]. In a recent study [16], which compared the relative

ability of several different statistical approaches to classify

samples based on MS data, the disease biomarker approach
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Table 1

Overview of selected protein profiling technologies

Number of 
Ability to detect many Approximate proteins/spots 

Type of labeling post-translational Biomolecules that are dynamic range quantified 
Technology required modifications optimally quantified (and reference) (and reference)

Two-dimensional gel Silver staining Yes Naturally occurring forms 10 [9] 1,500 [8]
electrophoresis of proteins larger than 10 kDa 

Differential two- In vitro with Cy2, Cy3 Yes Naturally occurring forms 10,000 [9] 1,100 [51]
dimensional fluorescence or CY5 fluorophores of proteins larger than 10 kDa
gel electrophoresis (DIGE) at primary amines

SELDI- or MALDI-MS None Yes Naturally occurring forms 25 Not applicable
disease biomarker discovery of proteins smaller than 10 kDa

Isotope-coded affinity In vitro with H1/D or No Cysteine-containing tryptic 10,000 * 496 [18]
tag (ICAT) - LC/MS C12/C13 ICAT reagent peptides from digests of 

at cysteine protein extracts

N14/N15 - LC/MS In vivo at nitrogens Yes Tryptic peptides from digests 10,000 [19] 872 [20]
in amino acids of protein extracts

*Assumed to be similar to that for multidimensional protein identification. Abbreviations: SELDI-MS, surface-enhanced laser desorption ionization mass
spectrometry; MALDI-MS, matrix-assisted laser desorption ionization mass spectrometry; LC/MS, liquid chromatography and mass spectrometry.



was extended to a conventional MALDI-MS platform.

Although powerful, the disease biomarker approach does not

provide accurate relative amounts of the control versus experi-

mental biomarker, only the relative intensity difference.

Isotope-coded affinity-tag-based protein profiling
While both MALDI-MS-based disease biomarker discovery

and DIGE comparatively profile the naturally occurring

forms of peptides and proteins, isotope-coded affinity-tag

(ICAT) analysis profiles the relative amounts of cysteine-

containing peptides derived from tryptic digests of protein

extracts. Because only a single tryptic peptide is needed to

quantify the expression of the corresponding parent

protein, the ICAT reagent utilizes a thiol protein-reactive

group that attaches both a biotin tag and either nine 12C

(light) or nine 13C (heavy) atoms to each cysteine residue.

Following derivatization of the control protein extract with

[12C]-ICAT reagent and the experimental extract with [13C]-

ICAT reagent, the pooled samples are subjected to trypsin

digestion followed by both cation and avidin chromatography.

Liquid chromatography and tandem mass spectrometry

(LC/MS/MS) is then used to identify ICAT peptide pairs

and to quantify the relative 12C/13C ratios. It is important to

note that the ICAT approach provides the relative expres-

sion ratios of individual proteins under two conditions; it

does not provide absolute protein concentrations, nor does

it provide the ratio of the concentration of one protein rela-

tive to another in a single condition. A nice feature of this

approach is that the in vitro incorporation of a stable

isotope into one of the two samples being compared obvi-

ates the need to separately analyze the control and experi-

mental samples by MS. Although a tryptic digest of a

whole-cell human protein extract might produce more than

500,000 peptides, less than 100,000 of these might be

expected to contain cysteine, but based on a search of the

SwissProt database [17], less than 5% of human proteins

lack cysteine and would therefore be missed (that is, more

than 95% of proteins would include at least one cysteine-

containing peptide). 

ICAT results are analogous to those obtained by the use of

two different fluorescent dyes in DNA microarray analysis of

mRNA levels or DIGE analysis of protein expression. The

largest number of proteins profiled so far using this

approach with a single sample are the 491 proteins con-

tained in microsomal fractions of naive and in vitro differen-

tiated human myeloid leukemia cells [18].

Multidimensional protein identification technology 
Multidimensional protein identification technology

(MudPit) is similar to ICAT in that it utilizes cation-

exchange prefractionation followed by reverse-phase (RP)

high-performance liquid chromatography (HPLC) separa-

tion and MS/MS analysis [19]. In contrast to the ICAT

approach, however, MudPit analyzes the entire mixture of

tryptically digested proteins and utilizes tandemly coupled

(cation-exchange followed by reverse-phase) columns. A

specific subset of peptides is eluted from the cation-

exchange column, using a step gradient of increasing salt

concentration, onto the front of the RP column. Peptides are

then eluted from the RP column and enter the mass spec-

trometer for analysis. After the RP gradient is complete, the

next step of the salt gradient releases another subset of pep-

tides from the cation-exchange column onto the RP column,

and the process repeats itself. Using this approach on the

yeast proteome, Wolters et al. [19] identified 5,540 unique

peptides from 1,484 proteins and demonstrated a dynamic

range of detection of 10,000-fold. This method has been

extended to comparative protein profiling by using in vivo
14N/15N metabolic labeling [20,21]. Washburn et al. [20]

used Saccharomyces cerevisiae grown in both 14N- and 15N-

containing minimal media, and 2,264 peptides and 872 pro-

teins were uniquely identified. Also, accurate 14N/15N

quantitation was determined for each peptide with an

average standard deviation of 30%.

Comparison of mRNA and protein levels
Even with the significant developments in the technologies

used to quantify protein abundance over the past couple of

years, protein identification and quantification still lags

behind the high-throughput experimental techniques used

to determine mRNA expression levels. Yet, while mRNA

expression values have shown their usefulness in a broad

range of applications, including the diagnosis and classifica-

tion of cancers [22,23], these results are almost certainly

only correlative, rather than causative; in the end it is most

probably the concentration of proteins and their interactions

that are the true causative forces in the cell, and it is the cor-

responding protein quantities that we ought to be studying.

Primarily because of a limited ability to measure protein

abundances, researchers have tried to find correlations

between mRNA and the limited protein expression data, in

the hope that they could determine protein abundance

levels from the more copious and technically easier mRNA

experiments. Alternatively, if there is definitively no corre-

lation between mRNA and protein data, both quantities

could be used as independent sources of information for use

in machine-learning algorithms, for example, to predict

protein interactions. To date, there have been only a

handful of efforts to find correlations between mRNA and

protein expression levels, most notably in human cancers

and yeast cells; for the most part, they have reported only

minimal and/or limited correlations. 

One of the earliest analyses of correlation looked at 19 pro-

teins in the human liver. Anderson and Seilhamer [24]

found a somewhat positive correlation of 0.48. Another

limited analysis, of the three genes MMP-2, MMP-9 and

TIMP-1 in human prostate cancers, showed no significant

relationship [25]. An additional cancer study [26] showed a
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significant correlation in only a small subset of the proteins

studied. Conversely, Orntoft et al. [27] found highly signifi-

cant correlations in human carcinomas when looking at

changes in mRNA and protein expression levels.

Protein and mRNA correlations in yeast
Many of the present efforts at correlating mRNA and protein

expression have been conducted in yeast using two-dimen-

sional electrophoresis techniques. In particular, Gygi et al.

[7] found that even similar mRNA expression levels could be

accompanied by a wide range (up to 20-fold difference) of

protein abundance levels, and vice versa. These results con-

trast with those of Futcher et al. [28], who found relatively

high correlations (r = 0.76) after transforming the data to

normal distributions. In a previous analysis [29], we merged

the data from both of these datasets (referred to as 2DE-1 [7]

and 2DE-2 [28]), comparing the resulting new larger protein

abundance set (‘merged data-set 1’) with a comprehensive

mRNA expression dataset. The mRNA expression reference

set was constructed through iteratively combining, in a non-

trivial fashion, three sets that used Affymetrix chips and a

SAGE dataset [29]. Using these reference datasets, we were

able to do an all-against-all comparison of mRNA and

protein expression levels, in addition to a number of analy-

ses comparing protein and mRNA expression using smaller,

but broad categories [29,30].

Given the difficult, laborious, and limiting nature of two-

dimensional electrophoresis analysis, many of the newer

protein abundance determinations have been done using

MudPit and derivative technologies. Washburn et al. [31]

used MudPit to analyze and detect 1,484 arbitrary proteins:

they were able to detect a somewhat random sampling of

proteins independent of abundance, localization, size or

hydrophobicity (we refer to this dataset as MudPit-1). In a

further experiment, the authors, comparing expression ratios

for both proteins and mRNA levels, found that although they

could not find correlations for individual loci, they could find

overall correlations when looking at pathways and com-

plexes of proteins that functioned together [21]. Peng et al.

[32] analyzed 1,504 yeast proteins with a false-positive rate -

misidentification of a protein - of less than 1% (we refer to

this dataset as MudPit-2). In their analysis [32], they con-

trasted their methodology with that of Washburn et al. [31]

with which there was significant overlap of proteins. 

A new merged dataset
Expanding upon our previous merged dataset, we con-

structed a new merged dataset (merged data set-2) using the

two two-dimensional electrophoresis and two MudPit

datasets described above. Succinctly (more information is

available on our website at [33]), we transformed each of the

protein-abundance datasets into more quantitative data by

fitting each protein dataset individually onto the reference

mRNA expression dataset. The MudPit-1 dataset was also

fitted onto the more finely grained MudPit-2 dataset. Each

of the new, fitted datasets was then inversely transformed

back into protein space. These derived protein datasets were

then combined into a larger reference dataset; when we had

more than one abundance value for an open reading frame

(ORF), we chose the value from the dataset according to a

prescribed quality ranking (see Figure 1). The resulting set

contained protein abundance information for approxi-

mately 2,000 ORFs. (One caveat with the MudPit data:

while quantitative analysis can be subsequently done on the

results of MudPit experiments, MudPit data alone are only

semi-quantitative, in that the number of peptides deter-

mined is relative to the actual protein abundance within the

cell [31]. Some may therefore argue that MudPit alone is not

optimal for a comparison with mRNA data. Nevertheless,

we feel that our methodical merging process creates a quan-

titative and representative dataset that can be compared

with the mRNA expression data.) Using the resulting data

we could compare mRNA expression and protein abundance

globally (Figure 1a) as well as looking at smaller, broad cate-

gories, such as function or localization (see Figure 1b,c). In

particular, we show that some localization categories - for

example, the nucleolus - have significantly higher correlations

than the global correlation. Other localizations may present

less of a correlation between mRNA and protein data - for

example, the mitochondria - possibly reflecting the heteroge-

neous nature and function of the latter organelle. In terms of

MIPS functional categories [34,35], we show that although

some categories, such as cell rescue, show a lower correlation

than the whole merged set, other functional categories, such

as cell cycle, show a significant increase in correlation. Logi-

cally, this increased correlation reflects the co-regulated

nature of the proteins in this functional category.

Reasons for the absence of correlation
There are presumably at least three reasons for the poor

correlations generally reported in the literature between the

level of mRNA and the level of protein, and these may not be

mutually exclusive. First, there are many complicated and

varied post-transcriptional mechanisms involved in turning

mRNA into protein that are not yet sufficiently well defined

to be able to compute protein concentrations from mRNA;

second, proteins may differ substantially in their in vivo half

lives; and/or third, there is a significant amount of error and

noise in both protein and mRNA experiments that limit our

ability to get a clear picture [36,37].

Examining the first option - that there are a number of

complex steps between transcription and translation - we

looked at correlations between mRNA and protein abun-

dance for those ORFs that had varied or steady levels of

mRNA expression over the course of the cell cycle [38]. To

normalize for the varied degrees of expression for different

ORFs, we took the standard deviation divided by the average

expression level as representative of the variation of each

ORF over the course of the yeast cell cycle (Figure 2).

Broadly speaking, the cell can control the levels of protein at
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the transcriptional level and/or at the translational level.

Logically, we would assume that those ORFs that show a

large degree of variation in their expression are controlled at

the transcriptional level - the variability of the mRNA

expression is indicative of the cell controlling mRNA expres-

sion at different points of the cell cycle to achieve the result-

ing and desired protein levels. Thus we would expect, and we

found, a high degree of correlation (r = 0.89) between the

reference mRNA and protein levels for these particular

ORFs; the cell has already put significant energy into dictating

the final level of protein through tightly controlling the

mRNA expression, and we assume that there would then be

minimal control at the protein level. In contrast, those genes

that show minimal variation in their mRNA expression

throughout the cell cycle are more likely to have little or no

correlation with the final protein level; the cell would be con-

trolling these ORFs at the translational and/or post-transla-

tional level, with the mRNA levels being somewhat

independent of the final protein concentration. And indeed,

we found only minimal correlation between protein and

mRNA expression for these ORFs (r = 0.2).

Furthermore, we found that those ORFs that have higher

than average levels of ribosomal occupancy - that is that a

large percentage of their cellular mRNA concentration is

associated with ribosomes (being translated) - have well cor-

related mRNA and protein expression levels (Figure 2).

These cases probably represent a situation wherein the cell,

having significantly controlled the mRNA expression to

produce a specific level of protein, will probably not also

employ mechanisms to control the translation. Alternatively,

those proteins that have very low occupancy rates have

uncorrelated mRNA and protein expression; thus, given that

the cell has not tightly controlled the mRNA expression for

this ORF, it will dictate the resulting protein levels through

rigorous controls of its translation (that is, through tight

limits on occupancy) [39]. 

A second option for a general lack of correlation between

mRNA and protein abundance may be that proteins have very

different half-lives as the result of varied protein synthesis and

degradation. Protein turnover can vary significantly depending

on a number of different conditions [40]; the cell can control
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Figure 1
Comparison of mRNA expression and protein abundance. (a) A plot
comparing our mRNA reference expression set [29] with our newly
compiled protein abundance dataset. The mRNA axis is in copies per cell;
the protein axis is in thousand copies per cell. The protein dataset is the
result of iteratively fitting two MudPit datasets (MudPit-1 [32] and MudPit-2
[31]) and two two-dimensional electrophoresis datasets (2DE-1 [7] and
2DE-2 [28]). Given the semi-quantitative nature of the MudPit data [31], we
transformed the data into a more quantitative set by fitting each set
individually onto our reference mRNA expression dataset. In addition, we
fit the MudPit-1 dataset onto the more finely-grained MudPit-2 dataset.
Each of the datasets was then moved back into ‘protein space’ using an
inverse transformation derived from the 2DE-1 set, as this set has the most
precise values. These datasets were then combined into the new reference
abundance dataset. In cases in which there were overlapping values for a
given ORF we used the dataset in accord with the following ordering: 2DE-
1, 2DE-2, MudPit-2, MudPit-1. The resulting reference protein abundance
dataset (N = 2044) had a correlation of 0.66 with the mRNA reference
dataset. (b,c) Additionally, we show that when looking at specific subsets
(subcellular localization [52] or functional groups [34,35]) we can find both
higher and lower correlations amongst these groups. The lower
correlations are generally reflective of a more heterogeneous category.
This analysis indicates that while correlations may be weak when looking at
the global data, we tend to find higher correlations when looking at smaller
well-defined subsets of ORFs. Further analysis is available at [33].



the rates of degradation or synthesis for a given protein, and

there is significant heterogeneity even within proteins that have

similar functions [41]. Recent efforts have been made to com-

putationally measure these rates [42]. 

Simplistically, it can be presumed that the change in a pro-

tein’s concentration over time will be equal to the rate of

translation minus the rate of degradation. By analogy to con-

cepts in chemical kinetics, we can approximate this equa-

tion: dP(i,t)/dt = SE(i,t) - DP(i,t), where P is protein

abundance i at time t, E is the mRNA expression level of

protein P, S is a general rate of protein synthesis per mRNA,

and D is a general rate of protein degradation per protein

[43]. Additionally there are some experimental methods that

can also be used to measure turnover and the translational

control of protein levels [41-44]. 

Given the degenerate nature of the genetic code, there are

many synonymous codons (codons that translate into the same

amino acid). As the cell is biased in its usage of synonymous

codons - that is, the usage of a subset of codons results in a

higher level of mRNA expression, possibly as a result of

differing cellular tRNA levels [45] - the codon adaptation index

(CAI), a measurement of codon usage, can be used to predict

the expression of a gene [46] (we recently calculated new para-

meters for this model, with some improvement in predictive

strength [47]). It is thought that the CAI will correlate differ-

ently with mRNA levels than with protein abundance levels

due, in part, to protein turnover rates [48]. Ranking the ORFs

in terms of their CAI value, we found that although those ORFs

that ranked the highest in terms of CAI did not show a very

strong correlation between mRNA and protein levels, they nev-

ertheless showed a significantly higher correlation than ORFs

that were ranked as having the lower CAI values (r = 0.48

versus 0.02). The low correlations reflect the fact that the CAI

will correlate differently for protein and mRNA values because

of the additional cellular controls on protein translation,

namely the effect of protein turnover rates. Nevertheless, the

sizable difference in correlations between the two groups of

ORFs with high- and low-ranking CAI values (Figure 2) shows

that there is some relationship between mRNA and protein

values, possibly indicating that highly expressed genes tend to

result in a more correlated level of protein abundance than

lower expressed ones.

Correlations have been found between the mRNA expression

levels of different protein subunits within protein complexes

[49]. This implies that there should be, in general, a correla-

tion between mRNA and protein abundance, as these sub-

units provide a special case as they have to be available in

stoichiometric amounts of proteins for the complexes to func-

tion. Thus, we believe that a major limitation to finding corre-

lations is the degree of natural and manufactured systematic

noise in mRNA and protein expression experiments. There is

a continued effort to both describe and reduce this noise [50].

Meanwhile, in an attempt to get around the noise one could

look at broad categories of proteins - for example, groups

defined by function, structure, or localization - such that the

background noise is cancelled out to some degree [29].

Although proteomics is still in its infancy, given the pace of

technological advancement in protein quantification, mRNA

expression analysis and noise reduction, more comprehensive

correlation studies will soon be feasible. This will allow for

more robust analyses of the relationship between mRNA

expression and protein abundance values. Finally, to be fully

able to understand the relationship between mRNA and

protein abundances, the dynamic processes involved in protein

synthesis and degradation have to be better understood; is the

protein level changing because of a change in the rate of protein

synthesis, or mRNA, or protein turnover? These questions

need to be looked into further before we can appreciate in full

the relationship between mRNA and protein abundance levels.
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Figure 2
The differences in correlation between mRNA and protein expression
values using novel categories. We see significant differences when looking
at the highest and lowest ranking of groups of ORFs in the following
categories: occupancy, CAI (codon adaptation index) value [45-47] and
variability. Occupancy refers to the percentage of transcripts associated
with ribosomes; we compared the correlation between the top 100 ORFs
and the bottom 100 in terms of occupancy (r =0.78 versus 0.30). For the
CAI, we compared the correlation between mRNA and protein for those
ORFs with the highest CAI and those with the lowest (r = 0.48 versus
0.02). Variability refers to the normalized standard deviation (that is, the
standard deviation divided by the average expression level) for all ORFs in
the cell-cycle expression dataset of Cho et al. [38]. Here, we compared
the correlations between protein abundance and mRNA expression for
the most variable compared with the least variable proteins (r = 0.89
versus 0.20). We found significant differences between the correlations of
mRNA and protein levels for the top and bottom ranking populations for
each of the comparisons.
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