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Abstract  

A principle aim of structural and functional genomics is to elucidate the structures and 

functions of all the gene products in the genome. However, to adequately comprehend 

and analyze such a large amount of information we need new descriptions of proteins that 

scale to the genomic level. In short, we need a unified ontology for proteomics. Here we 

review progress towards this end, surveying the diverse approaches to systematic 

structural and functional classification and their progress towards developing 

standardized, unified descriptions for proteins. We focus particularly on systems to 

organize protein properties (both biophysical and biochemical) - as opposed to the 

classification of 3D protein folds, a subject has been reviewed extensively elsewhere. 

These systems are essential parts of the world-wide structural genomics effort. In relation 

to function, we survey the current classification approaches involving hierarchies, 

networks, and other graph structures (i.e. DAGs) and then describe a new approach to 

classification based on defining a protein's function through systematic enumeration of 

molecular interactions. 
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Introduction  

After recent successes in genome-sequencing projects, the focus of large-scale biology 

has shifted from DNA to RNA and proteins, and the main challenge for bioinformatics is 

to integrate the ever growing amount of data to fully ascribe the biological role of 

proteins, cells, and ultimately, organisms [1]. Such task calls for the development of 

systematic systems describing how we should conceptualize and represent key 

information on proteins that can scale up to genomic level and be sufficiently 

standardized to support datamining (Fig. 1). These systematic descriptions go by the 

formal term of ontologies [2, 3].  Descriptions of protein structure and function, as well 

as the language used to describe experimental protocols in protein production, were 

originally crafted for individual proteins. These notions have progressed rapidly in recent 

years towards systematic representation, but are still isolated from each other, and are 

under intensive study and debate. In this paper we review some of the currently 

established representation systems of structural and functional genomics, and then 

describe a grid-like structure that defines protein function through molecular interactions.  

 

 

Toward an Ontology for Structural Genomics 

Structural genomics has emerged as one of the core areas of post-genomic studies [4-5]. 

It has major goals of helping in the determination of biochemical function for 

uncharacterized proteins and also in comprehensively surveying the range of folds 

adopted by proteins [6-9]. One of the main areas of ontological interest in structure 

genomics is defining a classification scheme for 3D protein folds. Classifying protein 
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folds has a number of important aspects, such as the possibility of doing this either 

manually or automatically via computer program. There has been considerable progress 

on this problem and there are currently a number of popular schemes organizing the 

protein structural universe including FSSP [10], CATH [11], and SCOP [12]. There have 

been quite a few recent reviews on this subject and we direct the reader to these for more 

details [1,13-16]. Here we wish to focus on other ontological issues raised by structural 

genomics, namely the systematic description of protein properties.  

 

 Structure determination requires a large number of experimental steps that go 

from cloning, expression, purification, biophysical characterization, to structure 

determination via NMR spectroscopy or X-ray crystallography. Traditionally the labor-

intensive experimental structural biology had mainly been hypothesis driven and 

conducted on single-protein level. The success of the Human Genome Project has 

encouraged the construction of high-throughput pipelines aiming at characterizing 

proteins on a large-scale and eventually obtaining 3D protein structural information about 

them. Moreover, the highly variable characteristics of proteins make structural genomics 

projects fundamentally orders of magnitudes more complex than genome sequencing 

projects [17]. It is therefore essential that specifications or ontologies be developed to 

standardize the information about protein properties and make them amenable to 

retrospective analysis.  
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Across the world, several large-scale structural genomics projects have been 

initiated [18-20].  In the United States, nine pilot studies have been started under the NIH 

Protein Structure Initiative to develop and implement high-throughput technologies 

required for structural genomics [21]. Each of these centers is supported by database 

systems and underlining ontology structures. Here we use a database we created for one 

of the centers as an example to illustrate some key issues in developing specifications and 

ontologies for protein properties. 

 

SPINE: An Integrated Tracking Database for the NESG 

Northeast Structural Genomics Consortium (NESG) [22] is a multi-institutional 

collaboration emphasizing proteins from model eukaryotes. The consortium is 

geographically widespread, requiring a centralized repository to integrate and manage the 

data generated that are accessible to all the participating members. SPINE (Structural 

Proteomics in the Northeast) is the centralized tracking database for the consortium. As 

structural genomics is a new and rapidly evolving field, it was important to allow for 

database evolution to follow the development of the high-throughput process, rather than 

to take a top-down approach in which the database could restrict the development of the 

experimental technologies.  A critical issue in designing a system of this kind is 

determining the fundamental “unit” to be tracked by the database.  Initially the expression 

"construct" was chosen, and the best experimental results for the expression, purification, 

and characterization of each construct was recorded as attributes for this single entity. As 

the database expanded with more and more targets entered from various labs, it became 

obvious then than the primary objects being tracked were actually protein "targets", or the 
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proteins (or protein domains) themselves, each of which was being produced in multiple 

"construct" forms.  Moreover, the need emerged to record experimental information on 

different levels, including not only the best conditions of cloning, expression, 

purification, etc., but also the sub-optimal ones such that future datamining can be 

conducted on multiple fronts. The improved database schema (Fig.2) better captures the 

work flow of the structural genomics pipeline at the NESG. In the current 

conceptualization, each "target" can be cloned into multiple "constructs", which are 

subsequently "expressed" under various fermentation conditions and then purified using 

multiple methods.  The resulting protein "batches" are used for various biophysical 

characterizations (e.g., oligomerization state, monodispersity, crystallization, circular 

dichroism analysis) and structure determination by X-ray crystallography or NMR 

spectroscopy. The protein or nucleic acid (e.g. plasmid or cDNA) material generated at 

each step of the process is assigned a unique "Protein / DNA Sample ID", which is 

associated through the database with the complete history of the sample, as well as its 

specific storage location in the laboratory, reflecting the fact that the properties of each 

protein are contingent its particular preparation history.  Each such sample is derived 

from a specific parent sample by a specific process, with one-to-many relationships from 

start to end. Relationships between samples (e.g., a set of plasmids within a 96-well 

plate), as well as the history of sample locations and transfers from one laboratory to 

another within the consortium, are also stored in these SPINE database records.  

 

Information with disparate formats and types creates difficulty for data mining, 

therefore another key issue of the system is the standardization of experimental data sets. 
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Towards this end we introduced numerical values in place of the text descriptors 

sometimes used by experimentalists, as highlighted in Fig. 2. For a multi-institutional 

collaborative effort, it is important to accommodate the needs of various consortium 

projects where different experimental methodologies are used. Fields from existing data 

sets were used to develop a consensus of experimental parameters, which was in turn 

adapted to the current database framework. Using standardized solubility data from 

SPINE we were able to conduct decision tree analysis for optimization of target selection 

[23]. 

 

SPINS: Standardized ProteIn NMR Storage. 

Another critical component of the structural genomics pipeline involve organizing the 

raw data, intermediate results, and final structure depositions into the public domain for 

each of hundreds of experimental structures determined by X-ray crystallography and 

NMR spectroscopy.  Ontologies and databases for these processes, which will be 

invaluable to structural genomics and traditional structural biology projects, alike, are 

currently under active development [24-26].  An example of one such ontology and 

database is SPINS (Standardized ProteIn NMR Storage), a data dictionary and object-

oriented relational database for archiving protein NMR spectra [27]. Modern protein 

NMR spectroscopy laboratories have a rapidly growing need for an easily queried local 

archival system of raw experimental NMR datasets.   SPINS is an object-oriented 

relational database that provides facilities for high-volume NMR data archival, 

organization of analyses, and dissemination of results to the public domain by automatic 

preparation of the header files required for submission of data to the BioMagResBank 
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(BMRB).  SPINS coordinates the process from data collection to BMRB deposition of 

raw NMR data by standardizing and integrating the storage and retrieval of these data in 

a local laboratory file system. SPINS also includes a user-friendly internet-based 

graphical user interface, which is integrated with certain NMR data collection software.  

To ensure smooth integration of SPINS data into the NMRStar format used by the BMRB, 

efforts are made to keep the SPINS data model as consistent as possible with the related 

and partially overlapping NMRStar data model [28], as well as with the evolving CCPN 

data dictionary and model of experimental NMR data [26, 29].  

  

SPINS v1.0 and its associated data dictionary represent the first phase of a multi-

phase process integration project, providing organization, archiving, and simple 

submission to the BMRB of time domain FID files and all the information needed to 

describe and reproduce these data.  Relatively few raw NMR data sets (FIDS) are 

currently available in the public domain and routine archiving of such data using tools 

like SPINS will have significant scientific value. Through the activities of the NESG, 

SPINS is evolving into a central agent which integrates the entire process of NMR-based 

protein structure determination.  As the protein spectroscopist progresses through the 

resonance assignment and structure determination process, the evolving SPINS database 

serves as the central archive, logging important information critical for documenting and 

reproducing each step of the NMR data analysis process, and generating intermediate 

files in appropriate formats for the supported specific software applications, forming the 

core of an automated data analysis process.  The SPINS data dictionary is also designed 

to be consistent with evolving structural genomics project databases, such as SPINE.   
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Finally, SPINS will also capable of auto-submission of the associated intermediate and 

final data files generated in the process of NMR resonance assignments and structure 

analysis to the public domain BioMagResBank [25] and Protein Data Bank [30] in a fully 

validated format.  Similar efforts are in progress for NMR data organization by the CCPN 

Network [26, 29], and for X-ray crystallographic data organization by the PHENIX 

project [24]. 

 

Other Efforts to Standardized Structural Genomics Information 

There are a number of prominent efforts to standardize structural genomics information. 

Currently the information from various centers and labs is highly scattered.  Before 

solved structures are deposited into the Protein Data Bank (PDB), there need to be 

coordination of the selection and production progress of protein targets in order to 

minimize the waste of resources and efforts on the overlapping target pools that have 

been identified by the various centers.  For this purpose, TargetDB [31] was created as a 

target registration database, originally for registration and tracking information for NIH 

P50 structural genomics centers, and later expanded to include target data from 

worldwide structural genomics and proteomics projects. Participating centers provide 

status and tracking information on the progress of their targets in XML format based on 

the Document Type Definition (DTD) defined by TargetDB, which in turn provides 

display and query interface to the target information.  The minimal contents of TargetDB 

was defined by a subcommittee of the International Structural Genomics Organization so 

as to allow for its rapid implementation, though in the future the range of structural 
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genomics information consolidated in TargetDB and shared across the world-wide 

structural genomics community is envisioned to greatly expand.  

 

Another structural genomics database aimed at improving communication in the 

field by providing a repository of project progress information is PRESAGE (Protein 

Resource Entailing Structural Annotation of Genomic Entities) [32]. The fundamental 

unit in PRESAGE is an annotation, either experimental or prediction, with subsidiary and 

additional varieties, as submitted by researchers worldwide.  

 

The PDB as the sole repository of macromolecular structural data is aiming to validate all 

data in its archive and release a uniform data format as well as a guideline for future 

deposition, so as to facilitate systematic analyses and integration with other biological 

and structural databases. The depository is also expanding their data dictionary to include 

a comprehensive experimental data collection and refinement that previously were 

embedded in unstructured REMARK records in PDB files [33]. 

 

 

Toward an Ontology for Functional Genomics 

It is important to recognize that functional characterization must be done on several 

levels.  A particular gene product can be characterized with respect to its genetic or 

physiological function (e.g., expression of the gene product codes for a particular cellular 

fate or lineage), a cellular function (e.g., the protein regulates microtubule assembly), the 

biochemical function (e.g., the protein is a kinase), and the biophysical function (e.g., the 
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details of individual residue pKa's and local electrostatic potential in determining the 

specificity and mechanism of phosphorylation).  Solving the structure of a protein can 

often provide valuable clues towards elucidating its biochemical and biophysical function, 

and there numerous examples in structural genomics of how having a structure suggested 

a function for an uncharacterized protein [34-37].  

However, structure rarely provides deep insights into genetic, physiological, or cellular 

function.  These other levels of protein function can also be characterized by various 

high-throughput functional genomics methods, using oligonucleotide and cDNA 

microarrays, gene disruption through transposon insertion [38] or deletion [39,-40], yeast 

two hybrid assays [41-44], proteome microarrays [45-47] and the TAP-tagging method 

[48, 49], or through homology-based annotation transfer based on the idea that proteins 

of similar sequence and structure are presumably descended from a common ancestral 

protein, and have related functions [50-52].  Much caution needs to be taken in 

annotation transfer, in that the relationship between sequence or structure similarity and 

functional similarity is not as straightforward as that between sequence and structure 

similarity. For protein pairs that share the same fold, usually 30-40 % sequence identity is 

required for function to be conserved [53-54]. Examples also exist where proteins of high 

sequence and structural similarity perform disparate functions, such as lysozyme and α-

lactalbumin; or proteins with different structural folds have identical function, such as 

subtilisin and chymotrypsin [55]. 
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Systematic representation of protein function 

Early functional annotation tended to be recorded as simple phrases, which are 

nonstandard, highly unstable, and have no organized structure among functions. Many 

humorous examples can be taken from the fly (e.g. Redtape, roadblock, starry night) [56]. 

Moreover, function has been described from different angles dependent on the 

experimental perspective. Biochemists often characterize protein function in terms of 

molecular reactions. Cell biologists describe protein function as its role in a cellular 

process. Geneticists characterize genes by the phenotype of their mutations. Standard 

ontology systems that integrate these various conceptualizations in genomics and define 

exact specifications of function need to be established.  

 

One approach is the hierarchical representation adopted by most functional 

ontologies such as the Gene Ontology (GO)[57], the MIPS Functional Classification 

Catalogue [58] and the Enzyme Commission (EC) classification [59].  Fig. 3a shows a 

simplified hierarchy in [26] to represent enzyme and non-enzyme function. Sharing of 

classification numbers indicates functional similarity. One can trace up and down the 

hierarchy to find whether one function is part of another function, and whether or not (but 

not quantitatively) there is any commonality between two functions, i.e. whether they 

descend from the same broad function.  

 

The Gene Ontology Consortium has been highly successful in creating a 

structured and precisely defined controlled vocabulary for describing gene function 
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across several organisms [57]. GO classifies genes into three parallel categories, i.e. three 

directed acyclic graphs: biological process, molecular function and cellular component. 

This is for defining the function of a gene at various levels, including its biochemical 

activities, biological roles as well as cellular structure. Nodes can often be reached from 

multiple paths, which facilitates the representation and comparison of genes with multiple 

functions or involved in more than one process. GO Consortium has recently launched an 

umbrella web site called GOBO (Global Open Biological Ontologies) for structured 

shared controlled vocabularies for use within the genomics and proteomics domain [60].  

 

 

Another approach to global representation of gene function is through network 

graphs, including pathway maps and protein-protein interaction maps. These graphs 

differ from the hierarchical representation in that each node is not a function, but a 

protein or a substrate/product of a reaction. The link between two nodes indicates an 

interaction. They can provide a framework from which complex regulatory information 

can be extracted.  

 

One example of a pathway graph is EcoCyc, an ontology that describes metabolic 

pathways and other cell functions of the E. coli genome by encoding information about 

the molecular interaction of E. coli genes [61]. It uses distinct frames to represent the 

molecule and its chemically modified forms, and then models its interactions by labeling 

it substrate, catalyst, modulator or cofactor in a reaction.  
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Protein-protein interaction maps represent a population of interacting proteins 

displayed as networks or circuits. An example is shown in Fig. 3b. The yeast two-hybrid 

system is one of the major methodologies for large-scale analysis of protein-protein 

interactions. Interaction maps combining yeast two-hybrid studies with previous 

annotations have been generated [42]. The more recently developed proteome microarray 

technology allows for direct analysis of a variety of interactions, including interactions 

between proteins [45-47]. Protein interactions have also been predicted by computational 

methods based on genomic sequence [62] or mRNA expression [63]. We found that gene 

expression data is sometimes more meaningful when they are grouped under a protein 

complex scheme rather then a functional classification scheme [64].  

 

Protein-protein interaction maps have not only confirmed the existence of 

previously known complexes and pathways but also shed light on the discovery of new 

complexes and crosstalk between previously unlinked pathways [43, 65]. An interaction 

map generated in one species can potentially be used to predict interactions in another 

species, presuming that large numbers of physically interacting proteins in one organism 

have evolved in a correlated fashion such that their respective orthologs in other 

organisms also interact [66].  

 

Limitations of the current ontology systems 

Up to now, ontologies that define gene function as hierarchical structure are all based on 

natural language. Although a protein’s function can be defined with relative accuracy 

through a controlled vocabulary and cross-linked hierarchical structures, the use of 
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natural language limits the precision of function definition and potential applications of 

computational automation.  

 

The most basic question in functional computation is whether two proteins have 

the same function. Functional equality is relative and approximate since natural language-

based ontologies may not be fine tuned enough to reflect the complex cellular function 

and regulation of each gene. To the answer question of functional equality more precisely, 

one needs to integrate functional information from a variety of resources including 

pathway and interaction maps.  

 

 For two non-identical but related functions, the degree of similarity is much 

harder if not impossible to answer using natural language-based ontologies. When 

comparing two GO terms, their names and positions in the hierarchy often do not provide 

full information on the level of similarity between them. Moreover, there are 

multifunctional proteins or proteins involved in multiple cellular processes that can be 

associated with more than one GO term in each of three level categories. On the other 

hand, certain function may only be meaningful in terms of protein complexes. In such 

cases the interaction network graph may provide a more accurate picture of the protein. 

Another situation is that two genes may have the same cellular function but are under 

different regulation, for example, myoglobin and hemoglobin [67].  

 

Consider the following more complex questions such as: Is the function of protein X 

more similar to protein Y than to protein Z? Among a group of proteins with known 
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function, are there subgroups that are more closely related? Can novel function be 

deduced based on known function and other features of a protein.  These questions can 

potentially be easy to solve if function were represented in numerical form. Here we 

describe a grid-like structure that represents protein function in term of interaction 

probabilities (recently proposed in [64]) and discuss its potential application in function 

prediction. 

 

Construction and potential application of the function grid 

In the function grid the proteome interaction map is represented as a matrix, as each 

protein is associated with a row vector that consists of the probability of binding to 

various ligands (Fig. 4a). The dimension of each row vector can potentially be infinite, as 

it expands when experimental data for previously unknown ligands become available.  

Functional similarity between two proteins can be defined by the cosine of the angle 

between the two corresponding vectors. Then, proteins can be grouped according to 

function similarity using a number of clustering methods.  

 

There are several issues that need to be addressed in designing the interaction grid.  First, 

there needs to be a systematic way to define a binding probability, which determines the 

accuracy of the calculations. Second, we need to consider what, and how many ligands to 

put into the grid, and the relationship between these ligands. On the one hand, we want to 

collect every possible piece of information on molecular interactions. In the meantime, 

these ligands need to be grouped into a hierarchical structure, allowing the function grid 

to be viewed and mined at multiple levels (Fig. 4b). Third, when information on 
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molecular interaction from multiple organisms is collected, how are we going to integrate 

them, i.e. should homologs be treated as different fields of the same protein or different 

proteins? One reasonable decision is to construct individual matrices for each organism, 

and keep evolutionary relations between homologs in another table. This way the 

similarity and difference between interaction partners among homologs can be easily 

calculated by calculating the distance between the respective binding vectors. The fourth 

point is concerned not so much with data-mining but more with the power of this 

interaction grid system to represent gene function in the context of cellular regulation. 

Apart from probability and evidence, each reaction has two extra fields of action and 

condition, to indicate the reaction type and regulation of this interaction. Fig. 4c-d shows 

how two steps in the MAP kinase pathway involved in the maintenance of cellular 

integrity [42] are represented in the interaction grid.  

The interaction grid can be combined with sequence and structural features, cellular 

localization as well as expression data, to make up a more comprehensive grid, which can 

be used for data-mining as we deduce novel interactions based on known ones.  

 

Conclusion 

The availability of fully sequenced genomes challenges bioinformatics to elucidate the 

structure, interactions and functions of proteins on genomic scale. Ontology systems are 

needed that can facilitate calculation of function together with other biological data. Such 

ontologies should aim at capturing all dimensions of protein structure and function and 

should keep up with the phenomenal rate at which biological data are being produced. 

Although there is a well-studied link between protein structure and function [55, 68], the 
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ontologies adopted in the each field, such as CATH that describes protein folds, SPINE 

that delineates biophysical characteristics, and GO that represents function, have been 

developed separately and remain largely isolated. One potential connection point would 

be the description of active sites in protein structure that illustrates its function.  

Current structural and functional ontology systems are mainly based on natural language, 

which has limitations in the precision of function definition and therefore cannot readily 

support calculation of functional similarity. Future progress in this field is likely towards 

increased uniformity, more refined data structure and higher level of standardization to 

support datamining.  
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Fig.1. History, current status and future perspective of protein ontology 

Early descriptions of protein structure, function and biophysical properties consist of 

natural phrases as well as experimental data in diverse format. Genome-scale 

representation systems in the form of hierarchical structure, directed acyclic graph or 

grid-like structure is being developed for structural and functional proteomics, 

respectively. Future progress in this field is likely towards a unified system with higher 

level of standardization to support datamining.  
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Fig. 2. Simplified schema of SPINE database 

The major tables in SPINE and their relationship are shown. Some of the key attributes 

are listed. Standardized fields using numerical values are in red, while fields using 

controlled vocabulary are in green. Shaded fields are those we used in datamining of 

SPINE [23] 
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Fig. 3. Systematic representation of protein function 

(a). Hierarchical scheme for functional classification, adapted from ref. 26. In a tree 

structured schema, functional similarity is measured by the height of common ancestor.  

In practice, the path of each node from the root is encoded into a classification number, 

and comparison is done by scanning the classification numbers from left to right. If two 

proteins are both enzymes or both non-enzymes, then they possess general functional 

similarity. If they share the first component of their classification numbers, then they are 

in the same functional class. If they share the first three components of their enzyme 

numbers (or the equivalent for non-enzyme numbers, depending on category) then they 

have the same precise function. 

(b) Example of a yeast protein network.  The green edges represent protein-protein 

interactions from the MIPS complexes catalog [58], two yeast-two hybrid datasets [43-

44], and two in-vivo pull-down datasets [48-49].  The gray edges stem from a 

computational analysis of different data indicating protein-protein interactions; these data 

include information on whether two proteins are localized in the same subcellular 

compartment, whether they are coexpressed under the same physiological conditions, and 

whether they are involved in the same biological processes [69-71]. 
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Fig. 4. Functional grid and its application in functional prediction 

(a). A simplified example of Interaction Grid. The function of each protein is defined as a 

row vector that consists of the probability of binding to various ligands. The grid is filled 

with data collected from GO, EC, yeast two-hybrid system interactions and proteome 

chip experiments. For information gathered from GO, based on the GO evidence code 

associated with each entry (defined at http://www.geneontology.org/GO.evidence.html) 

we assigned probabilities from 0.8 (NR) to 1.0 (TAS & IDA). Using the data from 

proteome chip experiments, we define the binding probability of each protein by 

normalizing its binding signal against the lowest value of all proteins that are known to 

bind the ligand. The value is left empty when binding probability is unknown. The 

dimension of each row vector can be expanded when experimental data for previously 

unknown ligands become available. 

 (b). Hierarchical organization of the functional grid. The fields in the functional grid can 

be grouped into a hierarchical structure, such that the data mining can be performed at 

various levels. The range of potential number of fields (columns) for each group is 

indicated in parentheses. Areas where rapid expansion is expected in the near future in 

italic. 

(c)-(d). Representation of part of a signal transduction pathway. Here we show schematic 

representation of some of the main components of yeast protein kinase C cascade (c) and 

how part of this cascade is represented in the interaction grid (d). Mkk1 phosphorylates 

SLT2 when phosphorylated by BCK1. SLT2 phosphorylates RLM1 SLT2 when 

phosphorylated by Mkk1 or Mkk2. RLM1 binds DNA when phosphorylated by SLT2. 

The “link” in evidence field refers to the original publication.  
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