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Abstract
We show how a basic pairwise alignment procedure
can be improved to more accurately align conserved
structural regions, by using variable, position-
dependent gap penalties that depend on secondary
structure and by taking the consensus of a number of
suboptimal alignments. These improvements, which
are novel for structural alignment, are direct analogs
of what is possible with normal sequence alignment.
They are feasible for us since our basic structural
alignment procedure, unlike others,  is so similar to
normal sequence alignment. We further present
preliminary results that show how our procedure can
be generalized to produce a multiple alignment of a
family of structures. Our approach is based on finding
a “median” structure from doing all possible pairwise
alignments and then aligning everything to it.

Introduction

Structural alignment involves finding equivalences
between sequential positions in two proteins. As such, it is
similar to sequence alignment. However, in structural
alignment the equivalences are not found by comparing
two strings of characters but rather by optimally
superimposing two structures and finding the regions of
closest overlap in three-dimensions (figure 1). Structural
alignment is becoming increasingly important as the
number of known protein structures increases
exponentially. Currently, there are more than 5000
structures in the Protein Data Bank (exactly, 5208 as of
September 1995). Structural alignment is also very
important because it is usually thought of as providing a
standard or target for sequence alignment. That is, one will
be a long way towards achieving accurate sequence
alignment if one can align two homologous but highly
diverged proteins (say, with low percent identity of ~15 %)
on the basis of sequence as well as on the basis of structure.

A number of procedures for automatic structural
alignment and comparison have been developed (Taylor &
Orengo, 1989; Russell & Barton, 1993; Holm & Sander,
1993; Sali & Blundell, 1990; Godzik & Skolnick, 1994;
Artymiuk et al., 1989; Subbiah et al., 1993; Laurents et al.,
1994). These procedures for structural alignment have
detected many interesting similarities in protein structure
— e.g. the globin-colicin similarity (Holm & Sander,
1993b) and have been used to cluster the whole structure
databank on the basis of structural similarity (Holm &
Sander, 1994).

There are often two goals in structural alignment. One is
oriented toward sensitivity, finding remote similarities to a
query structure in a large structural database. Another is
more oriented towards accuracy, finding as good as
possible an alignment between structures which one
already knows are similar. To achieve the first goal one
wants as fast as possible an alignment algorithm, whereas
for the second goal speed is not a primary consideration. It
is this second goal that will occupy us here.

The next step after pairwise structural alignment is
obviously multiple structural alignment, simultaneously
aligning three or more structures together. There are
currently a number of approaches for doing this (Taylor et
al., 1994; Sali & Blundell, 1990; Russell & Barton, 1993).
These methods can proceed by analogy to multiple
sequence alignment (Taylor, 1987, 1988, 1990), building
up an alignment one structure at a time.

Multiple structural alignment is valuable for a number of
reasons. It is an essential first step in the construction of
consensus structural templates, which aim to encapsulate
the information in a family of structures (Johnson et al.,
1993; Altman & Gerstein, 1994, Gerstein & Altman, 1995).
It can also form the nucleus for a large multiple sequence
alignment of a family (Bashford et al., 1987; Sander &
Schneider, 1991; Pascarella & Argos, 1992; Gerstein et al.,
1994; Kapp et al., 1995). That is, highly homologous
sequences can be aligned to each structure in the multiple
alignment.



Here we present two modifications our previously
described alignment procedure (Subbiah et al., 1993;
Laurents et al., 1994) to make it more accurate and better
able to align conserved core regions: variable gap penalties
and noisy, suboptimal alignment. These modifications,
which are novel to structural alignment, are direct analogs
of common techniques in sequence alignment — for
instance, for a discussion of variable gap penalties see Lesk
et al. (1986), Smith & Smith (1992), and Vingron &
Waterman (1994), and for a discussion of suboptimal
alignment, see Zuker (1991) and Waterman et al. (1992).
They are feasible for our structural alignment procedure
because it is so similar to normal sequence alignment,
involving repetitive application of Needleman-Wunsch
(1971) dynamic programming. In contrast, many of the
other commonly used approaches to structural alignment,
which involve comparing distance matrices for two
structures (Taylor & Orengo, 1989; Holm & Sander, 1993)
or looking for similarities in a graph (Artymiuk et al.,
1989), would not be modifiable in this way. After
describing how our alignment procedure can be made more
accurate, we sketch how it can be extended in
straightforward fashion to generate multiple structural
alignments, based on aligning all structures to a central or
median structure.  Our results in the area of multiple
structural alignment are only preliminary and will be
described in detail elsewhere (Gerstein & Levitt,
submitted).

Figure 1: Structural Alignment. This figure shows a
sample structural alignment of two globins (1mbd and
1ecd, see figure 6).  The aligned positions are indicated by
small, gray CPK spheres.

Pairwise Structural Alignment

The procedure we use for pairwise structural alignment,
described in Subbiah et al. (1993) and Laurents et al.
(1994), is based on iterative application of  dynamic
programming. As such it is a simple generalization of
Needleman-Wunsch sequence alignment (Needleman &
Wunsch, 1971). As shown in figure 2, one starts with two
structures in an arbitrary orientation. Then one computes
all pairwise distances between each atom in the first
structure and every atom in the second structure. This
results in a inter-protein distance matrix where each entry
dij  corresponds to the distance between atom i in the first
structure and atom j in the second one. This distance matrix
can be converted into a similarity matrix sij , similar to the
one used in sequence alignment, by application of the
following formula:

sij = M

1+
dij

do







2  .

Here M is the maximum score of a match, which is
arbitrarily chosen to be 20. do is the distance at which the
similarity falls to about half its maximum value (i.e. dij =do
→ sij =0.45M). do is taken here to be 5 Å — reflecting the
intrinsic length-scale of protein structural similarity. This is
a little more than 3 times the length of a C-C bond (1.52 Å)
and is larger by a about third than the usual distance
between Cα  atoms (3.8 Å).

One applies dynamic programming to the similarity
matrix to generate a “sum matrix” and get equivalences. If
this were normal sequence alignment, one would be
finished at this point since dynamic programming gives the
optimal equivalences. However, this is not the case for
structural alignment. So one takes these equivalences and
uses them to fit the first structure  onto the second one.
Then one repeats the procedure, finding all pairwise
distances and doing dynamic programming to get
equivalences. One repeats this over and over until it
converges on the same set of equivalences. In practice, the
iteration is tried from a number of different starting points,
and the one that gives the best match, measured in terms of
RMS deviation after doing a fit, is taken. One gets different
starting points (or initial orientations) from doing fits based
on different sets of initial equivalences (e.g. random, based
on simple sequence matching, etc.).

Improving Alignment Accuracy

We have tried a number of approaches toward improving
the accuracy of the simple pairwise structural alignment
algorithm presented above.



Using Cβ atoms
The simplest improvement was to use Cβ rather than Cα
atoms for the computation of distances dij . Using Cβ atoms
makes misalignments by one residue in helices and
especially strands more difficult. Misalignments by a single
residue are not serious in terms of matching the overall fold
but give nonsensical alignments in detail. For instance, in
the case of strands they often lead to mismatching of
hydrophobic and hydrophilic residues.

Secondary Structure Dependent Gap Penalties
Because of the similarity between our structural alignment
procedure and normal sequence alignment, it is possible to
incorporate variable, position-dependent gap penalties into
the alignment in a very straightforward fashion. Since we
know the secondary structure of the two proteins we are
aligning (e.g. from DSSP, Kabsch & Sander, 1983) we can
make it more difficult to introduce a gap at a position in a
secondary structure (i.e. strand or helix). This is similar to
sequence  alignment methods that make the penalty for
opening a gap depend on where it starts (Lesk et al., 1986;
Smith & Smith, 1992; Vingron & Waterman, 1994).

We derived specific values for the gap penalties by
empirically testing them on a number of protein families.
We found that as the gap opening penalty is decreased in
secondary structure relative to that in loops and coils, one
obviously increases the number of spurious gaps in strands
and helices. This suggests that very high gap penalties in
strands and helices might work well. However, we also
found that such high gap penalties make it more difficult to
align secondary structural elements (which often vary
slightly in size); in fact, a penalty that is too high leads to
completely mismatching secondary structures. (For
instance, instead of aligning two helices of slightly
different size through introducing a gap into the longer
helix, the program might introduce many gaps into a loop
preceding one helix and align this helix against a loop and
the second against the introduced gaps). The specific
values we chose are a compromise between these two
competing effects. We always set the gap extension penalty
to be a small constant value (0.025 M). We arranged the
gap opening penalties for each structure into a vector α(k),
indexed by the sequence position i or j. Initially, the α(k)
values were set to 2 in sheets and helices and 1 otherwise.
α(k) is then smoothed (by convolution with a gaussian) and
rescaled so that the overall average gap penalty α (k ) is
half the maximum match score M.

As described in figure 3, the introduction of variable gap
penalties makes the dynamic programming rather complex,
though it is still possible to achieve in roughly N2

operations (where N is the average size of the sequences
being aligned).
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Figure 3: The Complexities Introduced by Variable
Gap Penalties. In normal sequence alignment (Needleman
& Wunsch, 1971), one constructs a sum matrix Sij  (shown
below) where each entry represents the best possible score
for an alignment that ends with position i and j
equivalenced. In building up this matrix, one often makes
the assumption (e.g. see Gribskov and Devereux, 1992)
that if i and j are aligned (“•” in figure) the best previous
alignment must have ended in either the previous row (i-1)
or column (j-1) (hashed). This is equivalent to assuming
that the following situation never occurs:

AB-CD
abc-d

This is reasonable for sequence alignment. However, in
structural alignment one often wants pieces in both
structures to be unequivalenced, making it is necessary to
allow for this sort of double mismatch. (This would
happen, say, if one had two proteins with similar overall
folds where the residues corresponding to a peripheral helix
in one locally refolded into a strand in the other.)  One
allows for double mismatches by no longer assuming that if
i and j are aligned the best previous alignment lies in the
hashed region but rather allowing it to occur anywhere in
the block 0 to i-1, 0 to j-1 (outlined box, where the best
previous alignment is shown by an “o”). Especially with
variable gap penalties, this makes the dynamic
programming rather complex. If one does not use any tricks
or make any assumptions, the alignment will be very slow
(O(N4), where N is the length the sequences being
compared). However, by assuming that the gap penalty
always increases with increasing length of gap, one can use
a caching scheme to make the overall performance N2.
This assumption is satisfied if gap penalties in both i and j
directions have the form of α( k) + (l-1)β(k) , where α  is a
gap opening penalty, β is a gap extension penalty, l is the
gap length, and k is a row or column index (i or j)
depending on whether this is a deletion or insertion.



Figure 4: Suboptimal Paths.  This figure illustrates the
idea of possible suboptimal paths in tracing back through
the sum matrix Sij (see figure 3). Here a sum matrix is
shown for aligning ABCxDE with AyBCDE with a match
score of 2 and gap-opening penalty of -1. To get the
optimum traceback (which is indicated by black boxes),
one starts at the overall maximum and progressively finds
each succeeding maximum in the matrix (e.g. 8 → 6 → 5
→  3 → 2). However, if one perturbs the values in the
matrix by the addition of random noise (e.g. by adding a
series of random numbers Ri , between -2 and 2, to each
matrix element), one may find slightly suboptimal
alignments (indicated by gray boxes) now have favorable
scores. That is, it now possible that 2 + Ri > 3 + Ri+1 for
the highlighted alternates on the second row (2 and 3).
(White boxes have much lower scores and will never be
included, even with the addition of random noise.)

A y B C D E

A 2 0 0 0 0 0

B 0 2 3 1 1 1

C 0 1 2 5 2 2

x 0 1 1 2 5 4

D 0 1 1 2 6 5

E 0 1 1 2 4 8

4mbn VLSEGEWQLVLHVWAKVE---ADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASEDLKKHGVTVLTALGAILKKK
1r69 ----SISSRVKSKRIQLG---LNQAELAQKVGT----------------------------------TQQSIEQLENGK---
1r69 -------SISSRVKSKRIQLGLNQAELAQKVGT----------------------------------TQQSIEQLENGKTK-
1r69 ----SISSRVKSKRIQLG---LNQAELAQKVGT----------------------------------TQQSIEQLENGKTK-
1r69 -------SISSRVKSKRIQLGLNQAELAQKVGT----------------------------------TQQSIEQLENGKTKR
1r69 -------SISSRVKSKRIQLGLNQAELAQKVGT----------------------------------TQQSIEQLENGKTKR
1r69 -------SISSRVKSKRIQLGLNQAELAQKVGT----------------------------------TQQSIEQLENGKTK-
         22244444444444444666666666666                                  666666666666542
              Helix 1        Helix 2                                        Helix 3

4mbn GHHEAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG?
1r69 -------------------------TKRPRF-LPELASALG--VSVDWLLNG----------------------T
1r69 ---------------------------RPRF-LPELASALG--VSVDWLLNG----------------------T
1r69 ---------------------------RPRF-LPELASALG--VSVDWLLNG----------------------T
1r69 ----------------------------PRFlPELASALG---VSVDWLLNG----------------------T
1r69 ----------------------------PRF-LPELASALG--VSVDWLLNG----------------------T
1r69 ---------------------------RPRF-LPELASALG--VSVDWLLNG----------------------T
                                36661555555555  666666666
                                   Helix 4       Helix 5

Figure 5: Sample Suboptimal Alignment. This shows what happens if 434 repressor protein (1r69) is structurally aligned to
myoglobin (4mbn) six times with the addition of noise to the alignment. Each of the six times gives a slightly different
suboptimal alignment for the less well conserved regions of the protein. This allows one to readily distinguish between easy
and hard to align regions of the protein.

Noisy, Suboptimal Structural Alignment
One of the goals in accurate structural alignment is to

separate out those regions that match really well from those
that match only partially well. We achieve this be doing a
number of noisy structural alignments and taking the
consensus. What is meant by a noisy alignment is described
below in detail.

In normal dynamic programming, one builds up a sum
matrix Sij  from the similarity matrix s ij , where each entry
in S ij  represents the best possible score one would get by
starting at the beginning of the alignment and creating an
alignment that ends by equivalencing position i in the first
sequence with position j in the second sequence. As shown
in figure 4, to find the overall optimum path, one usually

imagines tracing back through this sum matrix starting
from the entry with the maximum score. At each aligned
point (i, j), one selects as the next aligned point the entry in
the previous part of the matrix with the highest score — i.e.
the point k,l  such that Skl  is maximum and k<i and l<j .
Consequently, at each step in the traceback one is in a
sense optimizing a score. If one deviates off this optimal
path, one gets a suboptimal path or suboptimal alignment.
One way to systematically deviate off this path is to do the
traceback in a Monte-Carlo fashion, always choosing the
next point if it is much higher than its neighbors, but
sometimes choosing a non-optimal neighbor (in a
Boltzmann fashion) if it has nearly the same score. If this is
done one will get a variety of different suboptimal but still
relatively high-scoring tracebacks through the matrix.



The same effect can be achieved in a somewhat simpler
fashion by adding an element of random noise to both the
match score s ij  (and the gap opening and extension
penalty). Here we take the noise to be between  ±  7.5 % of
the maximum match score M.

To highlight the most accurately aligned regions of a
structure, we can generate a number of these noisy sub-
optimal alignments. Then we can take only the part of the
alignment that is the same for each. This is shown for one
particular case in figure 4, where the 434 repressor protein
is aligned with myoglobin. The most similar helices are
clearly conserved in the different suboptimal alignments.

Multiple Structural Alignment

We found it possible to form a multiple structural
alignment from evaluating the results of all pairwise
alignments (Gerstein & Levitt, submitted). We have tried to
do this in a fairly straightforward fashion. After doing all
pairwise alignments, we have picked the structure that is on
average closest to all other structures. This is in the sense
the “median” structure in the “cluster” of all the structures.
We then align everything to this.

This presents one obvious problem: If position i in the
median structure (i-in-median) aligns with position j in a
second structure (j-in-2) and with position k in a third
structure (k-in-3), we would align all three positions
together. However, this is only really a true multiple
alignment if k-in-3 aligns to j-in-2 in a pairwise fashion.
Consequently, one possible internal check on the multiple
alignment is to see whether at each position it is consistent
with each automatically generated pairwise alignment.

Another (better) way check our multiple alignments is to
compare them to manually produced multiple structural
alignments. This simultaneously checks internal
consistency and also whether the individual pairwise
alignments are correct. In figure 5 we show sample
multiple structural alignments of two protein families, the
dihydrofolate reductases and the globins. These are
checked against manual alignments (from Gerstein et al.,
1994). We compare a manually generated multiple
alignments against an automatically generated one by
“aligning” them as best we can and then counting the
number of mismatches. We only count mismatches in
structurally conserved regions as certain regions of the
protein structure, particularly some surface loops, are
impossible to align correctly. As is evident our multiple
alignment procedure is relatively successful in getting the
alignment of both proteins correct.

Conclusion

We have described an approach toward generating an
accurate multiple structural alignment of a family of
protein structures. This approach is an extension of a
previously described method for pairwise structural
comparison. It incorporates secondary-structure dependent

gap penalties and a core consensus alignment from a
number of noisy alignments. We show that an accurate
multiple structural alignment is achieved for two protein
families, one all-α  and another α/β , using the very
straightforward approach of taking the median structure
and aligning everything to it.

Availability of Results on the Internet
We make available over the Internet supplementary
material relevant to this paper (e.g. manual and
automatically generated alignments). Go to the following
URL:

http://hyper.stanford.edu/~mbg/Align/
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Figure 2: Schematic showing how pairwise structural alignment works. TOP-LEFT shows two structures (abcde and
αβγ) in a random initial orientation. All pairwise distances are calculated between atoms in abcde to those in αβγ. These are
converted into similarities (see text) and put into a matrix (TOP-RIGHT). Normal dynamic programming is performed on this
matrix to find equivalences between atoms in the two structures (TOP-MID-RIGHT). Unlike sequence alignment, these
equivalences are not globally optimal . To refine them, they are used to fit αβγ onto abcde in a least-squares sense. This gives
the structures a new relative orientation as shown in MID-LEFT. Then the procedure is repeated: all pairwise inter-molecular
distances are calculated between the structures (MID-LEFT), a matrix of similarities is formed (BOT-MID-RIGHT), and
dynamic programming is done (BOT-RIGHT). This gives a second set of equivalences. These are used to refit the structures
(BOT-LEFT),  and everything is repeated iteratively until the procedure converges — i.e. there is no change in the
equivalences between iterations.



DHFR alignment
CORE      *********  **********  ************          *************
MANU 1dhf LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQ-NLVIMGKKTWFSI
MANU 8dfr LNSIVAVCQNMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQ-NAVIMGKKTWFSI
MANU 4dfr ISLIAALAVDRVIGMENAMPWN-LPADLAWFKRNTL--------NKPVIMGRHTWESI
MANU 3dfr TAFLWAQDRDGLIGKDGHLPWH-LPDDLHYFRAQTV--------GKIMVVGRRTYESF

AUTO 1dhf LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQ-NLVIMGKKTWFSI
AUTO 8dfr LNSIVAVCQNMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQ-NAVIMGKKTWFSI
AUTO 4dfr ISLIAALAVDRVIGMENAMPW-NLPADLAWFKRNTLD--------KPVIMGRHTWESI
AUTO 3dfr TAFLWAQDRNGLIGKDGHLPW-HLPDDLHYFRAQTVG--------KIMVVGRRTYESF

MISMATCH                                                     |
CORE             **********      **** **************         ***************
MANU 1dhf VPEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHP
MANU 8dfr VPEKNRPLKDRINIVLSRELKEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIVGGTAVYKAAMEKP
MANU 4dfr ---G-RPLPGRKNIILS-SQPGTDDRV-TWVKSVDEAIAACGDVP------EIMVIGGGRVYEQFLPKA
MANU 3dfr ---PKRPLPERTNVVLTHQEDYQAQGA-VVVHDVAAVFAYAKQHLDQ----ELVIAGGAQIFTAFKDDV

AUTO 1dhf -PEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHP
AUTO 8dfr -PEKNRPLKDRINIVLSRELKEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIVGGTAVYKAAMEKP
AUTO 4dfr -G---RPLPGRKNIILSSSQPGTDDRV-TWVKSVDEAIAACGDVPE-----.IMVIGGGRVYEQFLPKA

AUTO 3dfr -P--KRPLPERTNVVLTHQEDYQAQGA-VVVHDVAAVFAYAKQHLD----QELVIAGGAQIFTAFKDDV

CORE        **********       *       **            *            ********
MANU 1dhf GHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGIK------YKFEVYEKND---
MANU 8dfr INHRLFVTRILHEFESDTFFPEIDYKDFKLLTEYPGVPADIQEEDGIQ------YKFEVYQKSVLAQ
MANU 4dfr --QKLYLTHIDAEVEGDTHFPDYEPDDWE---SVFSEF---HDADAQNSHS---YCFEILERR----
MANU 3dfr --DTLLVTRLAGSFEGDTKMIPLNWDDFT---KVSSRT---VEDTNPALT----HTYEVWQKKA---

AUTO 1dhf GHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKG--I----KYKFEVYEK-N---
AUTO 8dfr INHRLFVTRILHEFESDTFFPEIDYKDFKLLTEYPGVPADIQEEDG--I----QYKFEVYQK-SV--
AUTO 4dfr --QKLYLTHIDAEVEGDTHFPDYEPDDWESVFSE------FHDADA--QNSHSSYCFEILER-R---
AUTO 3dfr --DTLLVTRLAGSFEGDTKMIPLNWDDFTKVSSR------TVEDTNPAL----THTYEVWQKKA---

Figure 6: Two Sample Multiple Alignments. This figure (adapted from Gerstein & Levitt, submitted) shows sample
multiple alignments for two protein families.  The first is for the dihydrofolate reductase (DHFR) family, and the second, for
the globin family. For each family, in turn, two separate multiple alignments are shown: the one marked “MANU” is a
manually constructed “gold-standard” from Gerstein et al. (1994), and the one marked “AUTO” is automatically generated.
The manually and automatically generated alignments have been aligned as blocks so that they have the fewest possible
mismatches. Mismatches are scored only in the core alignable regions, marked by a character (e.g. “*”) in the “CORE” row.
They are flagged in the automatically generated alignment (by double underlining, changing case, and substituting “-” for
“.”). The DHFR alignment has 1 mismatch in total and has 1dhf as the central structure to which everything is aligned. The
globin alignment has 18 mismatches and has 1mbd as the central structure.



Globin alignment

CORE                  ****************          ********************* *
MANU 2hhb-A ---------VLSPADKTNVKAAWGKVGA----HAGEYGAEALERMFLSFPTTKTYFPHF
MANU 2hhb-B --------VHLTPEEKSAVTALWGKV------NVDEVGGEALGRLLVVYPWTQRFFESF
MANU 2lhb   PIVDTGSVAPLSAAEKTKIRSAWAPVYS----TYETSGVDILVKFFTSTPAAQEFFPKF
MANU 1mbd   ---------VLSEGEWQLVLHVWAKVEA----DVAGHGQDILIRLFKSHPETLEKFDRF
MANU 2hbg   ---------GLSAAQRQVIAATWKDIAG--ADNGAGVGKDCLIKFLSAHPQMAAVFG-F
MANU 1mba   ---------SLSAAEADLAGKSWAPVFA----NKNANGLDFLVALFEKFPDSANFFADF
MANU 1ecd   ----------LSADQISTVQASFDKVKG--------DPVGILYAVFKADPSIMAKFTQF

AUTO 2hhb-A ---------VLSPADKTNVKAAWGKVGA-H---AGEYGAEALERMFLSFPTTKTYFPHF
AUTO 2hhb-B ---------HLTPEEKSAVTALWGKV---N---VDEVGGEALGRLLVVYPWTQRFFESF
AUTO 2lhb   ---------PLSAAEKTKIRSAWAPVYSTT---YETSGVDILVKFFTSTPAAQEFFPKF
AUTO 1mbd   ---------VLSEGEWQLVLHVWAKVEA-D---VAGHGQDILIRLFKSHPETLEKFDRF
AUTO 2hbg   ---------GLSAAQRQVIAATWKDIAG-A-DNGAGVGKDCLIKFLSAHPQMAAVFG-F
AUTO 1mba   ---------SLSAAEADLAGKSWAPVFA-N---KNANGLDFLVALFEKFPDSANFFADF
AUTO 1ecd   ----------LSADQISTVQASFDKVKG--------DPVGILYAVFKADPSIMAKFTQF
            

MISMATCH                    ||                  |          |            ||||
CORE                        *********************          *****************
MANU 2hhb-A --DLS--------HGSAQVKGHGKKVADALTNAVAHV-------D--DMPNALSALSDLHAHKL-
MANU 2hhb-B -GDLSTP---DAVMGNPKVKAHGKKVLGAFSDGLAHL-------D--NLKGTFATLSELHCDKL-
MANU 2lhb   KGLTTA----DQLKKSADVRWHAERIINAVNDAVASM-----DDT-EKMSMKLRDLSGKHAKSF-
MANU 1mbd   -KHLKTE---AEMKASEDLKKHGVTVLTALGAILKK--------K-GHHEAELKPLAQSHATKH-
MANU 2hbg   SGA-----------SDPGVAALGAKVLAQIGVAVSHL-----GDE-GKMVAQMKAVGVRHKGYGN
MANU 1mba   KGKSVA-----DIKASPKLRDVSSRIFTRLNEFVNNA-----ANA-GKMSAMLSQFAKEHVGFG-
MANU 1ecd   -AG-KDL---ESIKGTAPFETHANRIVGFFSKIIGEL------P---NIEADVNTFVASHKPRG-

AUTO 2hhb-A DLS----------HGSAQVKGHGKKVADALTNAVAHVD---D-----.MPNALSALSDLHAHKLR

AUTO 2hhb-B GDL----STPDAVMGNPKVKAHGKKVLGAFSDGLAHLD---N-----.LKGTFATLSELHCDKLH

AUTO 2lhb   KGL----TTADELKKSADVRWHAERIINAVNDAVASMD---D---TEKMSMKLRDLSGKHAKSFQ
AUTO 1mbd   KHL----KTEAEMKASEDLKKHGVTVLTALGAILKKkG---H-----.HEAELKPLAQSHATKHK

AUTO 2hbg   SGA----SDPG-----..VAALGAKVLAQIGVAVSHLGDEGK-----.MVAQMKAVGVRH.kgyG

AUTO 1mba   KGK----S-VADIKASPKLRDVSSRIFTRLNEFVNNAA---N---AGKMSAMLSQFAKEHVG.fG

AUTO 1ecd   AGK-----DLESIKGTAPFETHANRIVGFFSKIIGELP---N-----.IEADVNTFVASHK.prG

MISMATCH                                                         |
CORE           ********************            *******************
MANU 2hhb-A  -RVDPVNFKLLSHCLLVTLAAHLP-A--EFTPAVHASLDKFLASVSTVLTSKYR------
MANU 2hhb-B  -HVDPENFRLLGNVLVCVLAHHFG-K--EFTPPVQAAYQKVVAGVANALAHKYH------
MANU 2lhb    -QVDPQYFKVLAAVIADTVAAG------------DAGFEKLMSMICILLRSAY-------
MANU 1mbd    -KIPIKYLEFISEAIIHVLHSRHP-G--DFGADAQGAMNKALELFRKDIAAKYKELGYQG
MANU 2hbg    KHIKAQYFEPLGASLLSAMEHRIGGKM---NAAAKDAWAAAYADISGALISGLQS-----
MANU 1mba    --VGSAQFENVRSMFPGFVASVAAPP-----AGADAAWTKLFGLIIDALKAAGA------
MANU 1ecd    --VTHDQLNNFRAGFVSYMKAHT------DFAGAEAAWGATLDTFFGMIFSKM-------

AUTO 2hhb-A ---VDPVNFKLLSHCLLVTLAAHLPAEFTPA   VHASLDKFLASVSTVLTSKYR------
AUTO 2hhb-B ---VDPENFRLLGNVLVCVLAHHFGKEFTPP   VQAAYQKVVAGVANALAHKY------H
AUTO 2lhb   ---VDPQYFKVLAAVIADTVAAG--------   -DAGFEKLMSMICILLRSA.------Y

AUTO 1mbd   ---IPIKYLEFISEAIIHVLHSRHPGDFGAD   AQGAMNKALELFRKDIAAKYKELGYQG
AUTO 2hbg   NKHIKAQYFEPLGASLLSAMEHRIGGKMNAA   AKDAWAAAYADISGALISGLQS-----
AUTO 1mba   ---VGSAQFENVRSMFPGFVASVAA--PPAG   ADAAWTKLFGLIIDALKAAG------A
AUTO 1ecd   ---VTHDQLNNFRAGFVSYMKAHTD---FAG   AEAAWGATLDTFFGMIFSKM-------




