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Protein–protein interactions are one of the most
important regulatory mechanisms in cells; they underlie
intercellular communication, signal transduction and the
regulation of gene expression. Indeed, most cellular
processes are coordinated by specific protein interactions.
The completion of the Human Genome Project led to the
realization that the genome is composed of fewer protein-
coding genes than had been previously believed [1,2]. It is
now thought that the complexity underlying the biology
of higher organisms could arise not from the number of
their proteins, but rather from the combinatorial
interactions among them [3].

Many large-scale protein-interaction datasets have
been published, each attempting to completely
characterize the ‘interactome’ – the set of all protein
interactions in a cell [4–7]. (See supplementary material
website for a summary of the different techniques,

http://genecensus.org/integrate/interactions.) These
datasets, although extensive, miss many of the
interactions, and report spurious interactions as well (e.g.
Ref. [7]). To use these datasets to build robust and
statistically significant protein-interaction networks, it
will be essential to quantify the intrinsic error rates in
these experiments. This will be challenging, because it is
difficult to define a basis protein-interaction dataset with
which to validate the experimentally identified
interactions. Yet it is critical, because in yeast, for
example, there are a possible 18 million protein
interactions (given 6000 proteins), of which only a small
fraction is relevant biologically. With so many potential
interactions, even a very small false-positive rate can
create a large amount of spurious interactions that
swamp out the real ones.

Recently, some papers have attempted to evaluate the
quality of these interaction datasets, by either
integrating additional annotation (e.g. synexpression
among interacting proteins) or through comparison with
reference interaction sets [8–11]. The conclusions from
these studies were that the interaction datasets contain
false positives and are missing many true protein
interactions.

Our paper provides two complementary analyses of the
reliability of protein-interaction datasets. First, we use
information provided through X-ray crystallography of
several macromolecular complexes to provide validated
interactions that serve as a basis set for comparison with
the interaction databases. Second, on a somewhat larger
scale, we compared the interactions in the known
complexes in the curated MIPS database, with those that
had been determined using genome-wide approaches.
(See supplementary material for more extensive
discussion of MIPS complexes.)

Assessing interactions with the 3D structures of threeAssessing interactions with the 3D structures of threeAssessing interactions with the 3D structures of threeAssessing interactions with the 3D structures of three
complexescomplexescomplexescomplexes
Interactions discovered using structural biology of large
complexes provide an excellent test set to assess the
quality and coverage of protein-interaction datasets. Over
the past two years, the structures of several large,
conserved protein complexes have been determined, and
from these structures a list of verified protein–protein
interactions can be extracted. The structures that we
selected (RNA polymerase II, the proteasome and the
Arp2/3 complex) were solved independently of the
experimental interaction datasets, and the 3D structures



were determined after most of the biochemical and
genetic studies were published. Thus, the structures
provided objective and verified interactions to assess the
reliability of biochemical and genetic protein-interaction
studies.

The 3D structures of RNA polymerase II, the
proteasome and the Arp2/3 complex, which have 10, 14
and 7 subunits, respectively, were examined to identify
stable protein–protein interaction interfaces, defined as
more than 800 Å2 of contacting surface area. This 800 Å2

threshold was chosen based on the lower limits of the
interaction interfaces of binary protein–protein
complexes in the structural database (PDB) [12]; the
'average' protein-interaction interface is 1600 Å2 [13].

For RNA polymerase II, of the 45 possible interactions
that could exist among its ten subunits [(10 × 9)/2), 13
clear protein–protein interactions were found in the
crystal structure [14,15]. Of the 21 possible interactions
that could occur among the Arp2/3 subunits, six exist in
the crystal structure [16]. Of the 91 possible interactions
that could occur among the subunits in the proteasome,
14 were observed in the crystal structure [17]. The
ribosome was eliminated as a candidate for our analysis
because it is mostly held together by protein–RNA
interactions, confounding attempts to verify all the
protein–protein interactions.

An assumption in our analysis is that the protein
interactions defined on the basis of the structural biology
of stable macromolecular complexes provide an objective
set of interactions. This assumption is supported by two
observations. First, many macromolecular assemblies –
particularly, RNA polymerase II, Arp2/3 and the
proteasome – are very stable and can be purified to
homogeneity without loss of subunits. In fact, the RNA
polymerase II complex is even stable in high
concentration of chaotropic agents, such as urea [18].
Therefore, the subunit–subunit interactions found in the
crystal structure are unlikely to have formed randomly.
Second, many crystallized proteins are enzymatically
active. For example, it is known that the crystallized form
of the active RNA polymerase II elongation complex has
the same repertoire of specific protein interactions as
does the native form [19]

False positives and negatives
For each of the three protein complexes, a list of
biochemically and genetically defined interactions were
extracted from genome datasets, as well as from the
biochemical and genetic literature. The structural,
biochemical and genetic lists were compared to assess
overlap, consistency and the rates of false positives and
false negatives. For clarification: a false positive (FP) is
defined as an interaction that was documented in one of
the datasets but did not exist in the crystal structure; a
true positive (TP) is an interaction that was documented
in one of the datasets and did, in fact, exist in the crystal
structure; a false negative (FN) is an interaction that had
been tested experimentally and failed to score as an
interaction, but is known to exist in the crystal structure;
and a true negative (TN) is an interaction that had been
tested experimentally and failed to score as an

interaction, and is known not to occur in the crystal
structure.

For each method, we define the false-positive rate as
the number of false-positive interactions reported per
total reported interactions [FP/(FP + TP)], and the false-
negative rate as the fraction of known interactions that
are not identified [FN/(FN + TP)].

Comparing structural and biochemical interactions in the
literature
Before the elucidation of the 3D structures for the three
above-mentioned complexes, many of the subunits had
been subjected to in vitro and in vivo binding
experiments, chemical cross-linking and far-western
analysis (see Table 1 for an overview of data relating to
RNA polymerase II). The aim of these experiments, in the
absence of crystallographic information, had been to
deduce the protein-interaction map for a given complex.
With 3D structures now in hand, we compared the
subunit–subunit interactions defined by these
experiments with the interactions revealed in the crystal
structures.

In one series of experiments with RNA polymerase II
subunits, every recombinant subunit was cloned into
baculoviruses as either a glutathione-S-transferase
(GST)-tagged or an untagged protein. Every combination
of individual GST-tagged subunits and non-tagged
subunits were co-expressed and precipitated, generating
a comprehensive set of inter-subunit pairwise
interactions [20–24]. This is a common and accepted
strategy (‘pull-down’) to define binary protein–protein
interactions. Remarkably, 61% of the interactions in
these experiments were false positives. Some of the false-
positive interactions were even 'validated' by several
different biochemical approaches [20,24] and, in a few
cases, spurious contact sites were also mapped in detail
[24,25]. The false-negative rate was 38%.

Biochemical interactions were also extracted from a
series of far-western experiments in which the RNA
polymerase II subunits were resolved by denaturing gel
electrophoresis, transferred to a solid support, renatured
and over-laid with various purified subunits. Of the
interactions in the RNA polymerase II crystal structure,
44% were not observed with this method, whereas 53% of
the reported interactions were false positives [24,25].

Chemical cross-linking [26] proved a more effective
method for identifying biochemical interactions between
RNA polymerase II subunits. The cross-linking data
contained no false negatives and ten true positives; there
were seven false positives (41%), although for three of
them we did find subunit–subunit contacts in the crystal
structure with a contact area below our 800 Å2 cutoff.

Cross-linking approaches were also used to study the
Arp2/3 and proteasome complexes. For the Arp2/3
complex, 86% of the interactions found by cross-linking
were present in the crystal structure [27,28], whereas the
false-negative rate was 50%. For the proteasome, only
five of the 14 interactions (36%) reported in the cross-
linking study were not present in the crystal structure
[29], whereas the false-negative rate was 79%. The
relative success of cross-linking approaches (25–41%



false-positive rate) suggests that this method could be
preferable to others, particularly for relatively stable
macromolecular complexes. Unfortunately, chemical
cross-linking can be challenging to perform on a genomic
scale, and the efficacy of cross-linking studies is
dependent on the particular protein complexes and the
juxtaposition of the appropriate amino acid residues that
react with the cross-linking reagent.

Comparing structural and genetic interactions
The yeast two-hybrid (Y2H) method identifies
interactions between two recombinant proteins expressed
in yeast cells. Current estimates suggest that the false-
positive rate could range between 47 and 91% in the
genome-wide Y2H screens [30]. Our analysis of the
structural information for RNA pol II, Arp2/3 and the
proteasome was unable to contribute to the estimation of
the false-positive rate in Y2H screens for two reasons.
First, the structural information was derived from yeast
complexes, and therefore we could not rule out the
possibility that the interaction between two subunits
could be bridged by other, endogenous yeast components.
Second, the Y2H method could also detect transient
interactions not revealed in the structure, but that might
exist during complex assembly.

We were able to use the structural information to
estimate the false-negative rates in Y2H screens. Our
analysis was restricted to the Arp2/3 and proteasome
complexes because the RNA polymerase II subunits were
omitted in the Y2H, as they are known to score positively
in the absence of a protein partner. The individual
proteasomal subunits were screened against the rest of
the yeast proteasome by Cagney and colleagues [31], and
12 interactions between the subunits were revealed. Of
these 12 interactions, eight were also found in the crystal
structure and have contact surfaces that exceeded 800 Å2.
Because the crystal structure revealed 14 interactions
between subunits, this directed Y2H approach missed six
out of 14 interactions (43%). When interactions among
Arp2/3 subunits were tested directly using Y2H screens,
71% of subunit–subunit interactions present in the
Arp2/3 crystal structure were not detected [32].

Comparison with genome-wide two-hybrid
The proteasome and Arp2/3 subunits were also analyzed
as part of several genome-wide Y2H screens. In the first,
carried out by Uetz and colleagues [6,33], five
interactions involving proteasome subunits and other
proteins were uncovered, but not one interaction between
two known proteasomal subunits was found. This dataset
also did not contain any interactions between Arp2/3
subunits. A subsequent two-hybrid screen carried out by
Ito et al. [7] identified 30 interactions between
proteasome subunits and non-proteasome proteins, but
only one intra-complex interaction. This interaction was,
in fact, present in the crystal structure. To reduce the
extent of false positives in their dataset, Ito et al. created
a 'core dataset' that was filtered by taking only data
validated by more than three interaction sequence tags.
This core dataset eliminated protein–protein interaction
data that did not appear at least three times in their

screen. This filtering process eliminated the single correct
proteasome interaction from the dataset. The Ito et al.
screen correctly identified one interaction between Arp2/3
subunits, and this interaction was maintained in the 'core
dataset'.

In summary, we estimate that the false-negative rate
in directed two-hybrid screens ranges from ~43 to 71%,
and the rate was even higher in genome-scale
applications of the Y2H method.

Large-scale pull-down experiments
Biochemical interactions can also be discovered using
‘pull-down’ experiments in vivo. In these experiments, a
protein tag is engineered onto a specific subunit and the
gene for the tagged subunit added back into the cell. The
tagged protein is then purified from cell lysates using
affinity chromatography, and the co-purifying proteins
identified. For multi-protein complexes, this method does
not provide information about binary protein
interactions, but rather describes the collection of
proteins that are stably associated with the tagged
protein. Gavin et al. and Ho et al. reported the results
from large-scale pull-down experiments in two recent
publications [4,5]. For the three complexes we studied,
the in vivo 'pull down' method was quite successful in
identifying subunits that interact within the complex. In
the case of RNA polymerase, two of the ten polymerase
subunits were tagged and the co-purifying proteins
identified. Half of the subunits known to interact directly
with these subunits were detected, for a false-negative
rate of 50%. When a subset of the Arp2/3 and the
proteasome subunits were tagged, there were no false
negatives; all interactions present in the crystal structure
whose contacting surface are >800 Å2 were found in these
datasets. The in vivo ‘pull-down’ experiments seemed to
have fewer false negatives than other methods, although
the rate for RNA polymerase II was 50%.

In conclusion, we have used a small test set of
structure-based interactions to assess the quality of
several protein-interaction datasets, and have quantified
significant sources of error. Can the results of our
structural analysis of complexes be generalized? We
cannot be sure. With regard to the analysis of the 3D
structures of large complexes, it is possible that inter-
subunit interactions distinct from those seen in the
crystal might occur, but these complexes were selected to
be quite stable. It is also likely that the discrepancies
between the information in the crystal structure and the
biochemical literature results from protocols used in
high-throughput studies, which are acknowledged to
generate unvalidated data in the interest of speed and
efficiency. Even if these 3D complexes represent special
cases, our analysis deserves some attention, because it is
probably the first objective assessment of the protein-
interaction datasets.

Broadening the comparisons to 174 complexesBroadening the comparisons to 174 complexesBroadening the comparisons to 174 complexesBroadening the comparisons to 174 complexes

Complexes in the MIPS database
Our structure-based analysis of the 31 proteins within
the three complexes points to the potential for significant
errors in large-scale protein-interaction datasets. To



broaden our study, we looked at a larger set of complexes
listed in the MIPS database. This comprises complexes
that are manually annotated from the yeast literature.
From the MIPS complexes catalogue, we identified 174
protein complexes that contain 2–81 proteins each. The
structures of the complexes in the MIPS complexes
catalog are generally not known; consequently, it is
impossible to perform 3D-structure-based analyses.
However, we can still use them as a quality control for
the genome-wide datasets, and their use broadens our
analysis by orders of magnitude.

A theoretical minimum and maximum number of
interactions within these complexes can be calculated.
For example, the maximum number of interactions would
arise if each protein in these complexes interacted with
every other in the complex (an unreasonable assumption
for the very large complexes). Among the 174 protein
complexes that we selected, there would be a theoretical
maximum of 8250 interactions among all the proteins.
The theoretical minimum number of interactions among
the proteins in all the MIPS complexes would be 834,
because the lowest possible number of interactions in a
complex is the number of proteins itself minus one (when
the proteins are arrayed like beads on a string, thus all
proteins in the complex are connected to at least one and
at most two other proteins). Our estimations also
presume that the complexes are maintained by protein
interactions and not by other molecules, such as RNA as
in the case of the ribosome. Of course, the number of true
interactions among these proteins somewhere in the
middle of this range, probably closer to the minimum.

Overlap between MIPS complexes and genome-wideY2H
interaction datasets
In Table 2, we present a comprehensive overview of the
overlap between the MIPS complexes and the other
datasets. Each dataset is defined on a different subset of
genes, which makes comparison between the sets
difficult. Moreover, when we look at the intersections
between the datasets we find that they are fairly small
(Fig. 2). This arises for two reasons: (1) the different
subsets of genes, and (2) the different interactions for the
same sets of proteins in each dataset. Consequently, in
the analysis we consider both how many interactions and
how many genes are shared between the datasets and the
complexes. This allows us to separate the two effects.

We can use the Uetz data as an example. Within the
174 MIPS complexes, there are 871 distinct proteins, and
the Uetz dataset overlaps with a subset of 179 proteins.
Of these, there are 78 proteins involved in 50 known
intra-complex interactions (i.e. where the observed Uetz
interactions correspond to a protein-pair in a MIPS
complex, generating a true positive). However, these 78
proteins are also involved in 14 interactions that connect
different MIPS complexes, thus potentially representing
newly discovered or false-positive interactions. The
remaining 101 of the 179 proteins are only involved in
interactions not found in any MIPS complex, again
representing new interactions or false positives.

How many of the MIPS complex interactions do the
Uetz data miss? This, of course, depends on how many

interactions we count in the MIPS complexes. We can
estimate that the 78 proteins that are both in the Uetz
data and the MIPS complexes must be connected by
between 102 and 333 existing interactions (using
minimum and maximum numbers of interactions for
complexes; see above and the website for a detailed
derivation of these values). Thus, the Uetz data missed
between 52 (= 102 − 50) and 283 (= 333 − 50) existing
interactions, implying a false-negative rate between 51%
(= 52/102) and 85% (= 283/333).

One can analyze the other two-hybrid datasets in a
similar fashion. The Ito data has a false-negative rate of
76–96%; the corresponding values for the Ito ‘core’ data
are 45–74%.

Overlap between MIPS complexes and genome-wide 'pull-
down' interaction datasets
In contrast to the Y2H experiments where proteins are
studied outside their normal cellular milieu, the
comprehensive in vivo pull-down experiments capture the
protein in its natural state. Consequently, one might
expect the pull-down experiments to be somewhat more
sensitive and miss fewer existing interactions.

The right panel in Table 2 shows the comparison
between the two pull-down experiments (Gavin et al. [4]
and Ho et al. [5]) with the MIPS complexes catalog, using
a similar approach as for the Y2H. Overall, the false-
negative rates of the Ho and Gavin datasets, are 50% and
85%, thus confirming our expectation. However, these
datasets also contain 1578 (77% of 2042) and 2975 (63%
of 4718) interactions between different MIPS complexes,
respectively, thus representing either newly discovered or
false-positive interactions.

Thus, it appears that the pull-down methods are very
sensitive; they discover real interactions at a high rate,
but the datasets are probably populated by false
positives.

The relatively low false-negative rates in the in vivo
pull-down experiments are remarkable, even with the
caveat that the experimenters had the benefit of prior
knowledge of the contents of the MIPS database. So, why
is this approach apparently superior? First, MIPS is
mostly populated by stable complexes, which are
amenable to pull-down methods because they can remain
intact for hours during affinity chromatography. Second,
the pull-down experiments probe the complexes in an
active state; presumably the proteins retain their
structural integrity during the purification process. Why
does the TAP-tagging approach used in the Gavin et al.
paper appear to be superior to that used in the Ho et al.
paper in reducing the false-negative rate? We speculate
that it is because in the TAP-tagging approach, the
engineered genes are introduced into the yeast genome
using homologous recombination, and are expressed at
normal levels from their natural promoter. The TAP-
tagged proteins can therefore incorporate into the normal
cellular environment. These features all contribute to the
relative success of this method. By contrast, the method
used by Ho and colleagues, which involved
overexpression of the engineered protein, could have
increased the level of proteins that were not associated



specifically, and made the interpretation of the results
more difficult.

Data integrationData integrationData integrationData integration
We have seen that both genome-wide and smaller
conventional interaction datasets can be noisy and
inaccurate. If the noise is not systematically biased, it
should be possible to improve the accuracy of the datasets
by integrating the information within them. The recent
trend is to combine a variety of experimental information
– including transcription co-expression, co-localization,
essentiality data and functional annotations – to help
predict and validate protein–protein interactions [8–
10,34–38]. In general, data integration, combining
multiple independent sources, should increase the degree
to which the known complex interactions are found (i.e.
increasing the coverage) while decreasing the number of
errors in the data [10,34,35].

We attempted to quantify the improvements in
merging datasets by using the structural information for
RNA polymerase II. As described in Table 1, the false-
positive rates in each of the RNA polymerase II datasets
ranged from 41 to 67%. We combined the various
interaction datasets for RNA polymerase II using a
simple Bayesian network (Table 1 and supplementary
material), where we essentially multiplied the probability
of interaction across the various datasets. The combined
data has a false-positive rate of 30%, which is lower than
that for any of the individual datasets. Moreover, the
combined data gives a complete coverage of the 45
possible subunit–subunit pairs in the RNA polymerase II
structure, whereas the individual interaction studies only
cover 6–35 of them. In other words, in contrast to the
merged dataset, none of the interaction studies in the
literature provide information on all of these possible
interactions. (In particular, the sum of true positives and
true negatives is 36 in the combined data versus only 23
or less for the individual datasets.)

Similarly, we can show the benefits of data integration
for the genome-wide datasets (Fig. 2). First, for each
genome-wide dataset (e.g. the Gavin TAP-tag set), we
identified the fraction of interactions that contain
information about the MIPS complexes. Then we looked
at all possible pairwise intersections among the genome-
wide sets (e.g. Gavin and Ho) and again looked at how
well they found the MIPS complex interactions. Finally,
we looked at triplet and quadruplet intersections
amongst the datasets (e.g. Gavin and Ho and Uetz). One
can see that as we progress from individual datasets to
pairwise intersections and then to even higher-order
overlaps, the accuracy increased (as measured by the
fraction of interactions that represent protein pairs
within the same MIPS complex). That is, in any
individual dataset, only a small fraction of the
interactions involved a partner within the same MIPS
complex. However, in the final, merged dataset, for
instance, the majority of the interactions were consistent
with the MIPS data.

The intersections of the datasets tend to be rather
small; however, together the datasets are complementary
and increase the amount of interactions covered. These

observations are consistent with the results from the
focused analysis of RNA polymerase II.

A summary and a strategyA summary and a strategyA summary and a strategyA summary and a strategy
Our analysis has two main conclusions. First,
biochemical and genetic methods, when applied on a
small or large scale, have and will introduce significant
numbers of spurious interactions into the datasets of
binary protein interactions. Genome-wide screens for
individual protein–protein interactions have yet to
uncover the bulk of protein–protein interactions. The
validity of the interaction datasets can be improved with
the use of structural information about protein
complexes. Thus, it would be difficult to consider mining
the current binary interaction data to model intracellular
networks.

Second, the in vivo pull-down methods, particularly
the TAP-tagging approach in yeast, appears to have a
sufficiently low false-negative rate to warrant a
comprehensive analysis of the yeast genome. In such an
approach, each protein in every complex would be tagged
and associated proteins identified. The false-positive
results would be minimized by considering only the
interactions common to all proteins in the complex.

However, it is not clear whether the relative success of
the TAP-tagging approach will extend to higher
eukaryotes. The TAP-tagging method is particularly
powerful in yeast because the tagged gene is inserted into
the proper location in the genome and under the normal
transcriptional controls. Higher eukaryotes do not have
efficient machinery for homologous recombination and
therefore making TAP-tagged proteins on a genome-scale
is impractical. Expression of the tagged protein in higher
eukaryotes will probably have to be driven from a
heterologous promoter, and the protein expressed in
unnatural amounts. If this is the case, we can perhaps
expect to get error rates equivalent to those obtained by
Ho and colleagues (15–50% false negative and 63–77%
false positive), who used this overexpression approach in
yeast.

Our analysis validates current efforts to create
databases that take into account the inherently
statistical and error-prone nature of the current protein-
interaction literature and genome-wide experiments. If
this is done correctly, one can achieve tremendous benefit
from systematically integrating different datasets.
Moreover, the networks being described by the current
interaction databases need to be described in some sort of
statistical or probabilistic terms to be physically realistic.
Second, it will be important to derive structures for large
protein complexes to provide precise and accurate
information on protein interactions. Indeed, one of the
most enduring values of large-scale structural biology
could be the identification of accurate protein–protein
interactions using complex crystal structures.
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Fig. 1.Fig. 1.Fig. 1.Fig. 1. We systematically compared the interaction datasets with the complexes. In general, we do not know the structure of the complexes in the MIPS catalog,
so we simply counted which interactions from the genome-wide datasets are between proteins that are in the same MIPS complex. The proteins in the dashed
circle all belong to the same protein complex, and the dashed lines between the proteins indicate all theoretically possible protein–protein interactions within
this complex. The red lines indicate the interactions of a genome-wide dataset.
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Fig. 2.Fig. 2.Fig. 2.Fig. 2. The size of the different genome-wide datasets and their possible intersections and their consistency with the MIPS complexes catalog. The bars (relating
to the left y-axis) indicate the number of interactions in each individual dataset and each possible intersection of the datasets (for instance, 'Ito + Uetz' contains
only interactions that are both within Ito and Uetz). The blue line (relating to the right y-axis) shows what fraction of these interactions overlap with protein pairs
within the same MIPS complex. We show this for both the individual datasets (left), pairwise intersections of datasets (middle) and higher order intersections
(three or more datasets). As the degree of intersection among the datasets increases, the fraction of interactions within the same MIPS complex increases. The
different datasets are complementary and cover more interactions than each dataset individually.



Table 1. Agreement between the various interaction datasets in the literature and the crystal structure of RNA polymerase II
a
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TP 2 10 6 6 7 2 1 7 15 9 10

FN 3 0 2 4 3 2 2 6 9 7 0

TN 6 3 17 14 16 2 2 29 32 25 3

FP 4 7 5 11 9 3 1 3 23 10 7

Coverage 15 20 30 35 35 9 6 45 35 20 36

False-negative rate FN/(FN + TP) [%] 60 0 25 40 30 50 67 46 38 44 0

False-positive rate FP/(TP + FP) [%] 67 41 45 65 56 60 50 30 61 53 41

aThe left side gives statistics for the datasets individually, whereas we group the datasets by method on the right side. We show the count of true positive (TP), false
negative (FN), true negative (TN) and false positive (FP), the coverage (that is, the number of unique subunit-subunit pairs the data covers), the false-negative rate (FN/(FN
+ TP)) as well as the false-positive rate defined as FP/(TP + FP) for each dataset. The table does not contain the Ulmasov and Larkin data referred to in the text since they
both contain only one TP, which is already covered by the Yasui data. Note that for three FPs in the cross linking data, the subunits are actually in contact in the structure,
but with less than our 800 Å2. In addition, we show the corresponding statistics for a dataset that combines the individual datasets using a Bayesian procedure. The
integration of the various data sources both increases the coverage (45 subunit–subunit pairs for the combined data versus 6–35 pairs for the individual data) and lowers
the false-positive rate (30% for the combined data versus 41–67% for the individual data).

If we think of each data source k as evidence ek for or against a protein–protein interaction, we can compute a combined belief in an interaction I from:
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The prior odds are O(I) = 13/(45 – 13) because there are 13 interactions among the 45 possible subunit-subunit pairs in the crystal structure. Assuming conditional
independence of the evidence (meaning that each experiment is only dependent on whether there is an interaction and thereafter they are independent of the outcome of
the other experiments), the likelihood ratio can be written as:
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The likelihood ratio L(ek|I) for experiment k can be computed from the experimental data.



Table 2. The size of the genome-wide datasets and their overlap with the MIPS complexes catalog
a

Yeast two-hybrid

in vivo pull-

down

Dataset Uetz Ito Ito core Ho Gavin

No. proteins 1044 3278 786 1578 1361

No. proteins overlapping with MIPS 179 453 142 331 472
No. proteins linked to partner is in same MIPS complex 78 121 73 214 436

No. proteins not linked to MIPS partner 101 332 69 117 36

No. interactions 981 4393 754 25333 31304

No. interactions between proteins, both in MIPS catalog 64 177 51 2042 4718

No. interactions between proteins, same MIPS complex (TP) 50 78 46 464 1743

No. interactions between proteins, different MIPS complexes (FP or new) 14 99 5 1578 2975

No. MIPS protein pairs missed (FN) 52–283 250–1682 38–131 464 300

FN/(TP + FN) (false-negative rate) 51%–85% 76%–96% 45%–74% 50% 15%

aThe overlap is first shown in terms of the number of proteins, then in terms of the number of interactions (or protein pairs). Note that we
consider the maximum number of possible protein pairs between all subunits for the complexes in the MIPS catalog and the Ho and Gavin
datasets. The number of interactions that overlap with the MIPS catalog is very small for each of the individual genome-wide datasets. This is
partly due to the fact that the genome-wide datasets cover different proteins than those that the MIPS catalog contains. When we normalize
for the protein set shared between the MIPS catalog and the genome-wide dataset in each case, the relative overlap becomes more
substantial. For instance, of the 31304 interactions (protein pairs) in the Ho dataset, 4718 are between proteins that the MIPS catalog contains.
Of these 4718 interactions, 1743 correspond to protein pairs that are within the same MIPS complex (true positives, TP), whereas 2975 are
between proteins in different MIPS complexes (these either represent newly discovered interactions or false positives, FP). The Gavin dataset
missed 300 protein pairs within the same MIPS complex (false negatives, FN). These statistics allow us to measure the sensitivity TP/(TP + FN)
of each genome-wide dataset, that is, the fraction of protein pairs within the same MIPS complex that each genome-wide dataset recovers
(normalized for the set of proteins shared with the MIPS catalog). The Gavin dataset recovers the largest amount of interactions (86%),
followed by the Ho dataset (50%) and the Y2H datasets (Uetz 15%–49%, Ito 4%–24%). The sensitivity of the Ito core dataset (26%–55%) is
higher than for the total Ito dataset.


