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Abstract

Motivation

Global surveys of protein folds in genomes measure the usage of essential molecular
parts in different organisms. In a recent survey, we showed that the occurrence of
protein folds in 20 completely sequenced genomes follow a power-law distribution;

i.e., the number of folds (F) with a given genomic occurrence (V) decays as F (V )= aV -b, with
a few occurring many times and most occurring infrequently. Clearly, such a distribution re-
sults from the way in which genomes have evolved into their current states.

Results
Here we develop and discuss a minimal, analytically tractable model to explain these ob-

servations. In particular, we demonstrate that (i) stochastic gene duplication and (ii) overall
acquisition of new folds are sufficient to accurately replicate the power-law distributions. Fur-
thermore by optimizing the model using genomic data, we gain a quantitative insight into
otherwise unattainable data. In particular, as the rate at which genomes acquire new folds is
directly related to the power-law exponent-b, we can easily estimate this rate by measuring the
gradient of the distribution on a log-log graph. In addition, extensions to the model suggest
that gene deletion and selective pressure are important to the fate of individual genes, but do
not significantly affect the final power-law distribution. That is, although gene deletion and
selective pressure will affect the choice of the most common fold type in an organism, it will
not change the overall power-law distribution found across different genomes. Finally, we gain
an indication of the initial sizes of genomes, from the starting states of the simulations. We find
that the power-law dependence of the fold distribution is independent of the composition of
the starting genome.
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Availability
Additional data pertaining to this work is found at http://www.partslist.org/powerlaw.

Introduction
The power-law behavior is frequently found in many different population distributions.

Also referred to as Zipf ’s law, a well-documented example is the usage of words in text docu-
ments.1 By grouping words that have similar occurrences, it was noted that a small selection
such as “the” and “of” are used many times, while most occur infrequently. When the size of
each group is plot against its usage, the distribution is described by a power-law function: the
number of words (F) with a given occurrence (V) decays with the equation F = a/V -b. The
distribution is linear when plotted on log-log axes, where-b describes the slope. Such distribu-
tions are also found for the relative sizes of cities, income levels and the number of papers
published by scientists in a field of research.1

Significantly, the power-law behavior is also prevalent in many aspects of genomic biol-
ogy.2 It is found in the usage of short nucleotide sequences,3-7 the populations of gene fami-
lies,8,9 the occurrence of protein superfamilies and folds in genomes10,11 and several biological
networks.12-14 The distribution extends even further to the number of distinct protein func-
tions associated with a particular fold, the number of protein-protein interactions that are
made by each fold type, and the variations in expression levels between genes present in the
yeast genome. These observations have been made in at least 20 prokaryotic and eukaryotic
genomes, and so are likely to be universal to most other genomes that are yet to be analyzed.
Given the prevalence of this behavior, we suggest that all of these biological distributions arise
because of a common mechanism for genomic evolution, primarily by duplicating existing
genes to increase the presence of particular types of proteins.11

The current study focuses on the distribution of protein folds in different organisms (Fig.
1A). Most proteins encoded in a genome have a defined three-dimensional structure that can
be classified into distinct protein folds. Although these folds are defined by the topology of the
peptide chain, it is possible to determine whether two proteins adopt the same fold by se-
quence comparison. So even if structures are unavailable for all the genes, we can classify them
into equivalent folds by sequence similarity. Using these classifications, one way of representing
the contents of a genome is to count the number of times different folds occur and then group
together those with similar occurrences (Fig. 1B). Like word usage, the number of folds (F)
with a certain genomic occurrence (V) decays according to the power-law function; we display
the distribution for the E. coli genome in Figure 1A, and plots for 19 further organisms is
available from our supplementary website.

There have been several efforts to understand this nonuniform distribution of protein
families. A number of models suggested that the observation of non-uniform population dis-
tributions of protein families depends on the ”designability” of the protein structure; that is,
the relative size of a family depends on the fraction of all sequences that could successfully fold
into any particular protein fold.15,16 Others have modelled the occurrence of non-uniform
distributions by simulating the evolution of genomes. In the model of Huynen and van
Nimwegen,9 families expand or shrink in size through successive multiplications by a random
factor, which represents duplication or deletion events depending on its value. More recently,
Yanai et al17 introduced a model in which a genome evolves from a set of precursor genes to a
mature size by iterative gene duplications and gradual accumulation of modifications through
point mutations. When an individual family member acquires enough random mutations, it
breaks away to form a new family.

We recently presented an equally minimal, but more biologically realistic model.11 Here
genomes evolve through stochastic gene duplications and steady acquisition of new protein
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folds, either by ab initio creation or horizontal gene transfer.18-22 Simulations replicated the
genomic distributions very accurately, and provided insight into the rate at which different
organisms acquired new folds and the origins of a common ancestral genome. Although our
work focused on the distribution of protein fold populations, the model applied equally well
for other gene classifications such as sequence families, and SCOP superfamilies.23 The behav-
ior also applies for alternative protein classification systems such as Interpro families and pro-
tein superfamilies.

The purpose of the current work is two-fold. First, we propose new models based on our
previous model by fully incorporating two additional processes in evolution: gene deletion and
selective pressure. These major biological processes were beyond the scope of our previous
work, and it is important to test their effects on the outcome of the model. Second, we provide
full analytical and numerical analyses; in doing so we explore the mathematical and biological
significance of the model, and explore the relative effects that the different evolutionary pro-
cesses (gene duplication, acquisition, deletion and selective pressure) have on the final appear-
ance of different genomes. In the previous paper, our results are only based on simulations. In
contrast, the analytical approach is also employed in this work.

Minimal Model: Gene Duplication and New Fold Acquisition
Suppose that the initial genome consists of N0 distinct folds at time t = 0, i.e., the number

of genes equal the number of folds. The growth of the genome in our model occurs by ran-
domly duplicating existing genes, and by incorporating new folds into the genome at a con-
stant rate. Both of these processes are assumed to operate independently and continually over
time. We assume that at every instant, all genes are equally likely to be chosen for duplication
and that on average, one duplication event happens per unit time. As a result, large folds, i.e.,
ones that are coded by many genes, are more likely to grow over time than smaller folds. We
assume that R new folds of size 1 are always incorporated in to the genome per unit time, i.e.,
the acquisition of new folds is not stochastic.

Figure 1. The occurrence of protein folds in genomes. A) The structural contents of a genome can be
represented by counting the number of times different protein folds occur and grouping together those with
similar occurrences. B) The relationship is described by a power-law function.
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Let F(m, t) be the expected number of folds of a given size m at time t. The fold histogram
determines both the expected total number of distinct folds F (t) and the expected total num-
ber of genes G(t):

F (t) =
∞∑

m=1

F (m, t)

G(t) =
∞∑

m=1

mF (m, t)
(1)

Under these growth assumptions, the Markovian dynamics governing F(m, t) are given by:

∂F (m, t)
∂t

=
(m − 1)F (m − 1, t)

G(t)
− mF (m, t)

G(t)
(m > 1)

∂F (1, t)
∂t

= R − F (1, t)
G(t)

(2)

Although duplication occurs at the gene level, it is more convenient mathematically to work
directly with the fold histogram F(m, t).

The intuition behind these equations is as follows. If the gene selected for duplication that
originally is a member of a fold of size m – 1, then after duplication that fold will now be a fold
of size m, and the population of F(m – 1,t) and F(m, t), will decrease and increase, respectively,
by one. The probability for this particular gene selection is (m – 1)F(m –1,t)/G(t).

These equations ensure the appropriate expected growth rates for the total number of
folds. A direct summation of (2) leads to:

∂F (t)
∂t

=
∂

∂t

∑
m=1

F (m, t)

= R

(3)

and hence: F(t)= N0 + Rt. Similar manipulations show that the expect number of genes also
grows as required: G(t)= N0 +(R +1)t. It is important to note that evolution equations enforce
the correct overall normalization for the histogram; there is no need to impose normalization
conditions separately.

The complete analytical solution for the coupled equations (2) can be found by standard
methods. Full details are included in Appendix A.

The biological interpretation of the analytical solution is best appreciated by examining
two important limiting cases. If there is no acquisition of new genes (R = 0), the solution
simplifies considerably:

F (m, t) = N0φ
−1

(
1 − φ−1

)m−1
(4)

where φ(t) relates the passage of time to the expected number of genes:

φ(t) =
G(t)
N0

= 1 +
(R + 1)t

N0
, (5)

Therefore, gene duplication alone leads to an exponential distribution of fold occurrence: log F
(m, t) = m log (1 – φ-1) + ψ(t), with ψ(t) independent of m.

The other revealing limit concerns the behavior for large times (t → ∞)when new genes
are acquired at a nonzero rate (R ≠ 0). The asymptotic limit is given by:

F (m, t) → Amφ(t) = Am

(
1 +

(R + 1)t
N0

)
as t → ∞ (6)
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with coefficients Am that depend only on R and N0, and not on time:

Am =
RN0

R + 2

m−1∏
i=1

i

R + 2 + i (7)

Consequently, the probability distribution of fold sizes, i.e., the normalized histogram, is de-
termined by solely by the Am:

p(m, t) =
F (m, t)∑

i F (i, t)
→ Am∑

i Ai
=

R + 1
R + 2

m−1∏
i=1

i

R + 2 + i (8)

and furthermore this asymptotic probability distribution depends only on R—the dependence
on initial cluster size N0 is removed by the normalization.

An examination of the leading large m behavior of Am reveals that

log Am ∼ −(R + 2) log m (9)

Therefore, for large m, the terminal probability distribution (8) resembles a power-law
with exponent R + 2. For small m, the coefficients decrease less rapidly with m and do not
resemble power-law dependence. This observation is relevant for estimating R from empirical
data or even numerical results.

It is also worth pointing that a power-law distribution that decays too slowly will lead to an
infinite expected number of genes. A power-law distribution will that holds asymptotically for

large m: N(m) ~ 1/mα has to be described by an exponent α > 2 for the sum G(t) =
    m=

∞

∑
1
mN (m) to

converge. The asymptotic limit of the exact solution, a power-law with exponent R + 2, satisfies
this condition.

For nonzero R and times other than zero and infinity, the fold distribution will not be
strictly exponential, nor will it conform to the limiting distribution (8). For small times, the
analytic solution confirms what would be expected intuitively: the histogram behavior is domi-
nated by duplication events involving the initial N0 genes. To characterize the “crossover” be-
havior of the solution from the exponential to approximate power-law regime we have calcu-
lated the similarity of the exact probability distribution at different times to both the best
fitting exponential distribution and to the limiting asymptotic distribution (8). The difference
between any two probability distributions is measured by the sum of squared differences (the
standard L2 metric).

We have characterized the crossover time Tc for a range of values for both R and N0 and find
that the crossover time displays two distinct regimes. Within each regime it is approximately
inversely proportional to R and directly proportional N0: Tc ~ N0/R, with a different proportion-
ality constant for each regime. Details of this analysis can be found in Appendix B. The numeri-
cal results indicate that crossover occurs roughly when the number of new fold introductions:
RTc, becomes comparable to the initial genome size N0, as might be expected intuitively.

So far, we have assumed that the starting genome contains just one copy of each fold. In
fact, it is reasonable to expect the initial genome to have several copies of particular fold types
(for example those involved in protein synthesis) when the evolutionary process described by
the model was initiated. By definition, genomes in our model have a comparatively small start-
ing state, and so the difference between the most and least common folds would be minimal,
i.e., some occurring three or four times at most. However, it is nonetheless of interest to inves-
tigate the effect that the appearance of the initial genome would have on the final distribution.

The solution we have derived for a particular initial genomic configuration—N0 distinct
folds consisting of one gene—can be extended to describe the evolution of an arbitrary initial
fold distribution Ninit(m) that is made up of N0 genes: ∑m mNinit(m) = N0. The solution is similar
to the special initial condition of N0 distinct folds and is presented in detail in Appendix C.
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One important conclusion may be drawn from the generalized model: all initial distribu-
tions ultimately lead to the same limiting distribution determined by the Am. Just as before, the
dependence on the initial fold distribution Ninit(m) decays with time, leading to the same
asymptotic distribution as was found for an initial distribution of N0 folds of size 1 in (9),
reflecting the dominance of fold introduction over gene duplication for large times. Of course,
the details of how and when the crossover happens will depend on the particular form of
Ninit(m).

Extended Model: Including the Effects of Random Gene Deletion
Gene deletion is a major factor in evolution and is discussed briefly by Qian et al.11 In this

section we incorporate an additional parameter, Q, that represents gene deletion.

Figure 2. Three models: A) minimal model with uniform initial distribution, B) minimal model with an
arbitrary initial distribution, C) gene deletion, and D) selective pressure.
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The most natural extension of (2) that accounts for random gene deletion at rate Q would
be the following:

∂F (m, t)
∂t

=
(m − 1)F (m − 1, t)

G(t)
− mF (m, t)

G(t)
+ Q

(m + 1)F (m + 1, t)
G(t)

− Q
mF (m, t)

G(t)
(m > 1)

∂F (1, t)
∂t

= R − (1 + Q)
F (1, t)
G(t)

+ Q
F (2, t)
G(t)

(10)

The terms proportional to Q encode the dynamics for gene deletion, which are very simi-
lar to gene duplication: on average, Q deletions occur for every duplication event and the gene
to be deleted is chosen randomly from all the genes in the genome. In this way the population
of a given bin m can either decrease due to gene deletion if the gene to be deleted is from bin m
itself, or it can increase as a result of a deletion in the neighboring bin m +1.

In this extended model, gene growth occurs at the uniform rate one would expect: G(t) =
N0 + (1 + R – Q )t. In contrast, the behavior of the expected number of folds is more compli-
cated:

∂F (t)
∂t

=
∂

∂t

∑
m=1

F (m, t)

= R − Q
F (1, t)
G(t)

(11)

Folds of size 1 that are deleted disappear from the genome so F(t) depends explicitly on the
population of F(1,t); unlike the Q = 0 case, the dynamics of F(t)can not be determined without
knowing the full solution to (10).

The extended model is much more complicated mathematically, primarily because the
difference equations are now second order. In the minimal model, the behavior of larger folds
depends only on the behavior of smaller folds, so the full solution can be constructed induc-
tively starting from the solution for m = 1. With gene deletion operating as well, the dynamics
of different fold sizes are coupled together. In many respects, these dynamics are like those
describing diffusion phenomena; when Q = 0 the genome exhibits growth due to drift, or
directed movement alone, while nonzero Q introduces diffusive, or non-directional movement
as well.

Analytic Results
We were able to derive a full analytical solution only in the absence of any new fold

introduction: R = 0. In this case, only stochastic gene deletion and duplication operate. We will
restrict our discussion to when gene duplication occurs at a higher rate than gene deletion,
which requires 0 < Q < 1, so the genome will still grow in size, at least in terms of number of
genes: G(t) = N0 +(1 – Q)t. Note that since R = 0, equation (11) shows that the number of folds
will actually decrease with time. Losing folds while gaining genes is possible if the larger folds
make up for the loss of genes from smaller folds.

An analytic solution exists for an initial distribution of N0 different folds of size 1 and is
worked out in detail in Appendix D. Once again, the distribution is exponential. Figure 3A
shows histograms F(m,t) corresponding to three values of Q and a fixed time.

Remarkably, the normalized distribution of fold size (the probability distribution) is inde-
pendent of the gene deletion rate Q:

p(m, t) =
F (m, t)∑∞
i=1 F (i, t)

=
N0

N0 + t

[
t

N0 + t

]m−1 (12)
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Hence gene deletion does not affect the shape of the distribution at all when R =0, only
the overall normalization is changed. This can also be seen directly from Figure 3B.

Although an exact analytical solution does not seem possible for arbitrary R and Q, it is
nonetheless possible to derive analytic expressions for the higher moments of the fold distribu-
tion. Appendix E discusses how this is done and particular, includes an expression for the
second moment that will prove useful when fitting the model to genomic data.

Figure 3. The effects of gene deletion: A) fold histogram F(m, t) for N0 = 100 and t = 1000 plotted for
Q = 0, 0.4, 0.8 and R = 0; B) normalized large-time limiting fold distribution and C) the total number
of folds as a function of time when R = 1.0 and Q = 0, 0.2, 0.4, 0.6; D) normalized large-time fold
distribution and E) the total number of folds as a function of time for fixed overall gene growth: 1 + R
– Q = 1.6 and Q = 0, 0.2, 0.3, 0.4; F) analytic approximation, shown using solid lines, for parameters
plotted in (A).
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Numerical Results for Nonzero R and Q < 1
Numerical solution of (10) reveals for that large times, the normalized histograms of fold

size approach a time-invariant limit that depends solely on R and Q. Figure 3B shows the
probability distributions for a fixed rate of new fold acquisition, R =1.0, and increasing rates of
gene deletion: Q = 0, 0.2, 0.4, 0.6. The power-law character of the distributions is retained
even for large values of Q. Quite reasonably, higher rates of gene deletion encourages the domi-
nance of smaller folds, leading to a more rapid decline of p(m) with fold size m. Common folds
require repeated gene duplication and an avoidance of gene deletion events to proliferate. As
the probability of avoidance is proportional to 1 – Q, the probability of multiple avoidance is
suppressed as a power of 1 – Q.

Figure 3D explores the effect of deletion when the overall gene growth rate is kept con-
stant: 1 + R – Q = 1.6. In this way, we can contrast the effects of deletion and fold acquisition
in a controlled manner. Note that a commensurate increase in R does not overcome an increase
in Q, as large folds are suppressed more than small folds. This means that the exponent that
best describes the power-law decay is not merely a function of R – Q.

On the other hand, the effect of gene deletion is not dramatic; not only is similarity to a
power-law retained the actual change in exponent is not large. Even for fold of large size, there
isn’t much difference between the curves even for a fairly large gene deletion rate. In practice,
this makes it difficult to estimate Q statistically from the shape of fold histograms derived
empirically from genomic data. While the effective gene introduction rate: 1 + R – Q, should
be easy to deduce from the data, an identification of Q itself from the rate of decay would
require reliable occurrence data for very large folds.

When there is no gene deletion, the expected number of folds increases linearly with time
at rate R. Equation (11) suggests gene deletion will lead to a less simple time dependence for
F(t). Perhaps surprisingly, F(t) remains, to a good approximation, linear in time, with a slope
that is no longer R, as can be seen in the numerical results of Figure 3C. Here F(t) is plotted for
fixed R = 1.0 and different values of the gene deletion rate: Q = 0.0, 0.2, 0.4, 0.6. In fact, the
slope in each of these cases is less than R and decreases with Q, which is consistent with the
analytic solution for F(t) when R = 0, derived in Appendix D (see equation (42)).

If again we choose parameters that fix the growth rate for the expected number of genes (1
+ R – Q), a commensurate increase in both R and Q leads to a greater increase in the expected
number of folds, as can be seen in Figure 3E. This is entirely reasonable: in our model, the new
folds that are continually acquired at rate R are all distinct, so a genome with large R and Q will
end up with many small folds, each coded by only a few genes. In contrast, a genome with
small R and Q will lead to fewer but larger folds.

Analytic Approximation Based on Perturbation Theory
The numerical results show that gene deletion, even for fairly large values of Q does not

dramatically change the growth pattern of the genome, certainly qualitatively and to some
extent, even quantitatively. Moreover, the analytic results when R = 0 showed that gene dele-
tion is remarkably benign: in the absence of new gene acquisition, but with gene duplication
operating, gene deletion does not change the probability distribution of fold occurrences, but
does change expected total number of folds in the genome.

Here we consider an analytic approximation that attempts to capture the effects of gene
deletion perturbatively by constructing an approximation around the Q = 0, R > 0 solution as
an expansion in powers of Q. The perturbation expansion has to be handled carefully since a
naive expansion, one that considers contributions only up to some finite power of Q, will not
converge for all fold sizes m. The failure of conventional perturbation theory is explored in
Appendix F.
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To go beyond naive perturbation theory, we have adopted the following approach: (1) the
dominant contribution at every order (or power) of Q is identified, (2) the dominant contribu-
tion is approximated, and (3) the resulting new infinite series in Q is summed exactly to arrive
at an approximate solution that remains finite for all Q and m. The details are presented in
Appendix F. Although not rigorous, this type of rescue or augmentation of perturbation theory
is practiced routinely and often quite successfully on a variety physical models, such as models
of phase transitions from statistical physics.24

This approach leads to the following approximation for the limiting fold distribution:

pm =
R + 1 + QR

R + 2 + QR

m−1∏
i=1

i

R + 2 + QR + i
(13)

Note that the approximation includes as a special case the exact distribution derived pre-
viously for Q = 0 (8). In fact, the approximate distribution for Q nonzero is obtained from the
exact solution for Q = 0 by the substituting R → R + QR. This correspondence also makes it
clear that for large m, the Q ≠ 0 probability distribution will resemble a power law with expo-
nent R + QR +2, just as Q = 0 distribution approached a power-law with exponent R + 2.

The true test of the effectiveness of the approximation rests with a comparison to the
numerical results, which is done in Figure 3F. There seems to be good qualitative agreement,
and fairly good quantitative agreement as well, even for Q =  0.4. As expected from the nature
of the approximation, there is better agreement for large m in all cases. An approximation for
the expected number of folds F(t) within the same framework is given in Appendix F.

The Effects of Selection Pressure
Selective pressure plays an important role in evolution. It is well known that different

genes have different duplication rates due to the selective pressure.25 So far we have assumed
that when genes are duplicated, or deleted, the target gene is chosen with equal probability
from all the genes in the genome. A more realistic model would of course allow for favoritism
in the selection process: presumably, genes that are useful or necessary are less likely to be
deleted and perhaps more likely to be duplicated than genes that are less important. Note,
however, that our model is not a differential survival model.

We explore the effects of selection pressure by extending the minimal model to allow for
different duplication rates among genes. Suppose now that genes are not only identified with
particular folds but also by their duplication types. For simplicity, assume that there are only
two types: type “A” and type “B”, and that “B” genes are γ times more likely to be chosen for
duplication than “A” genes. There will still be one duplication event, on average, per unit time,
so the total expected number of genes will remain the same, but the allocation of the total
between types “B” and “A” will depend on γ. We will assume that γ > 1, so it is the “B” types
that are more likely to be duplicated.

To keep track of the fold population we now need two histograms: FA(m, t ) and FB(m, t )
to distinguish between the duplication types. The full fold histogram is the sum of both sub-
histograms: F(m, t) = FA(m, t) + FB(m, t). Similarly, let GA(t) and GB(t) represent the total
number of genes for each type and define a new variable Gγ(t):

Gγ(t) = GA(t) + γGB(t) (14)
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The evolution equations that extend (2) are:

∂FA(m, t)
∂t

=
(m − 1)FA(m − 1, t)

Gγ(t)
− mFA(m, t)

Gγ(t)
(m > 1)

∂FA(1, t)
∂t

= RA − FA(1, t)
Gγ(t)

∂FB(m, t)
∂t

= γ
(m − 1)FB(m − 1, t)

Gγ(t)
− γ

mFB(m, t)
Gγ(t)

(m > 1)

∂FB(1, t)
∂t

= RB − γ
FB(1, t)
Gγ(t)

(15)

Note that we allow new folds to be acquired at different rates for each type: RA can be different
from RB although we will restrict our numerical examples to the when they are equal.

The equations for the total number of genes of both types follow from the full dynamics
(15) and are given in Appendix G. These confirm that the overall duplication rate is still one
gene per unit time.

Once again, analytical solutions are possible for the two special parameter values addressed
previously: (1) when there is no introduction of new folds, so RA = RB = 0; and (2) the limiting
distribution when t → ∞. When there is no introduction of new folds, a simple extension of
the methodology employed in Appendix A establishes that the each of the sub-histograms
FA(m, t) and FB(m, t) follows an exponential distribution for all times. The full histogram is
consequently a sum of exponential distributions:

p(m, t) =
FA(m, t) + FB(m, t)∑

i FA(i, t) + FB(i, t)

=
NA

0

NA
0 + NB

0

e−u
[
1 − e−u

]m−1 +
NB

0

NA
0 + NB

0

e−γu
[
1 − e−γu

]m−1
(16)

The number of distinct folds of each type, present at t = 0 is given by     N
A
0  and     N

B
0 . The

variable u(t) is a rescaled time variable related to Gγ(t); the exact form of the dependence ap-
pears in Appendix G but is unimportant for the present discussion.

Of greater interest is the other special case: the ultimate evolutionary fate of the genome.
The analytic behavior for large times is much easier to derive than an exact solution itself. For
large t, Gγ(t) will grow linearly with time: Gγ ~ t, according to a constant Cγ that depends on the
rate of fold acquisition and the differential rate of duplication (see Appendix G for details).

In a similar fashion, we define coefficients   Cm
A and   Cm

B , akin to the coefficients Am of the
solution to the minimal model (7), that describe the ultimate linear growth of the histogram
bins: FA(m, t) ~   Cm

At, and similarly for FB(m, t). The normalized probability distribution corre-
sponding to this limit is given by:

p(m, t) =
CA

m + CB
m∑

i C
A
i + CB

i

=
Cγ

Cγ + 1
RA

RA + RB

m−1∏
i=1

i

Cγ + i + 1
+

Cγ

Cγ + γ

RB

RA + RB

m−1∏
i=1

iγ

Cγ + γ(i + 1)

(17)

The important conclusion to be drawn from (17) is that powerlaw-like distributions de-
scribe the ultimate fate of the genome even when there are different rates of gene duplication.
The probability distribution is the sum of two powerlaw-like distributions, each similar to the
powerlaw-like distributions of the minimal model, but characterized by its own effective expo-
nent. Figure 4 shows a comparison of the predicted distribution and numerical results when RA
= RB = 0.5 for γ = 1, which is corresponds to the minimal model, and γ = 10, so type “B” genes
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are ten times more likely to be selected for duplication. The two distributions are remarkably
close to each other, even when there is an order of magnitude difference between the relative
duplication rates of type “B” genes. We have found that the parameter  has much less of an
effect than differences between the gene introduction rates RA and RB.

We have also briefly considered the case of more than two duplication types. When there
is no introduction of new folds into the genome equation (6) generalizes: the subhistogram for
each duplication type is exponential. Furthermore, we have confirmed numerically that the
terminal distribution is not dramatically affected by selection pressure, even when there are
several families with significantly different rates of duplication. One particular example, in-
volving four duplication types appears in Appendix G.

Fitting the Models to Genomic Data
Clearly, of greatest interest is to observe how our model compares with the genomic distri-

butions. We start with the minimal model, for which we require estimates for the parameters t,
N0 and R for each organism.

Fitting the minimal model requires estimating three parameters: t, N0 and R. We have
determined these parameters separately for each organism by insisting that the minimal model
match the number of folds: F , the number of genes: G, and the second moment of the actual
fold histogram: H2, to those predicted by the minimal model. The fitting procedure is greatly
simplified by the linear relation that exists between the variables (N0, t ) and (F, G ):

N0 = (R + 1)F − RG

t = G − F
(18)

Figure 4. The effect of selective pressure on the model. Larger values of γ indicate larger differences in
duplication rates between favored and unfavored protein folds. Large time limit for the fold probability
distribution for γ = 1 and γ = 10. Numerical results are plotted as symbols; analytic results from Equation
(16) as lines.
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The estimation of R is aided by recasting the expression for H2 (Eq. 47 in Appendix D) so that
t no longer appears explicitly. Instead, the second moment can be expressed so that it depends
directly on F, G and the unknown R:

H2

G
=

R + 1
R − 1

− 2
R − 1

[
G
F

R + 1 − RG
F

] 1−R
1+R

(19)

This equation is well behaved and can be easily solved numerically. What threatened to be a
coupled, nonlinear three dimensional estimation problem is actually nothing more than a single
nonlinear equation and two linear equations. We have verified that this fitting procedure accu-
rately recovers parameters values from distributions generated both numerically and from the
exact solution.

The results appear in Table 1. As a measure of the quality of the fit, we also report the
mismatch of between the third moment predicted by the minimal model and observed in the
data, as a percentage of the observed value; a positive value indicates that the model moment is
larger. Plots of the actual fits appear in Figure 5.

The parameter values are in fact very similar to those obtained in our previous work. The
mismatch values range -13.1% to 9.9% and indicate that the distributions resulting from our
model closely resembles the genomic distribution.

Table 1. Fit of the minimal model using genomic data from 20 organisms

Mismatch of
of Third

Genome Genes Folds G/F t N0 R Moment (%)

M. genitalium 481 200 2.40 281 7 0.69 9.9

M. pneumonia 688 277 2.49 411 15 0.637 3.6

R. prowazeki 834 322 2.59 512 26 0.576 -13.1

C. trachomatis 894 344 2.60 550 29 0.574 -8.0

T. pallidum 1031 367 2.81 664 31 0.505 -14.1

C. pnemoniae 1052 390 2.70 662 34 0.538 -10.2

A. aeolicus 1522 357 4.26 1165 68 0.249 -3.0

H. pylori 1553 477 3.26 1076 52 0.395 0.6

B. burgdorferi 1638 559 2.93 1079 13 0.506 4.5

H. influenzae 1709 457 3.74 1252 70 0.31 0.9

M. jannaschii 1715 358 4.79 1357 34 0.239 3.8

M. thermoautotrophicum 1869 374 5.00 1495 35 0.227 -10.5

P. horikoshii 2064 450 4.59 1614 91 0.223 -5.7

A. fulgidus 2420 419 5.78 2001 72 0.173 -3.2

Synechocystis sp. 3169 558 5.68 2611 108 0.172 0.3

M. tuberculosis 3918 491 7.98 3427 118 0.109 -2.2

B. subtilis 4100 584 7.02 3516 153 0.123 -12.4

E. coli 4289 610 7.04 3679 141 0.127 -5.2

S. cerevisiae 6269 575 10.9 5694 128 0.078 2.8

C. elegans 19099 605 31.6 18494 120 0.026 -18.4
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Our attempts to fit the models that included gene deletion were not that informative.
This is partly because, as we have seen already, the gene deletion parameter Q does not have a
dramatic effect on the shape of the distribution. We had difficulties even trying to fit distribu-
tions generated numerically from the extended model. Unlike the equations describing the
minimal model, these coupled equations are also nonlinear. Furthermore, since there is no
exact analytic expression for F (t), one of the variables itself has to be calculated numerically
(We found that our analytic approximation for the number of folds given in Appendix F was
not accurate enough to carry out the root-finding). We have found that naive multidimen-
sional root-finding algorithms are either unable to distinguish between many approximate
solutions, or find no solution at all at with increased sensitivity. The same difficulties were
encountered in trying to discern evidence for selection pressure—there was too little depen-
dence on the selection parameter γ to allow reliable estimation.

Conclusions
Here we propose two new models based on our previous model by fully incorporating two

major processes in evolution: gene deletion and selective pressure. Both mathematically and
biologically, including these effects are not slight. Mathematically, the derivations clearly show

Figure 5. Minimal model fits for A) C. elegans, B) A. fulgidus, C) M. tuberculosis, and D) M. genitalium using
parameters from Table 1.
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they are not trivial. Biologically, these effects provide a much more realistic model for genomic
evolution than has been presented in any previous publications.9,11,17 Furthermore, we provide
analytical and numerical analyses of the original model and its extensions to explore the math-
ematical and biological significance of the models and to demonstrate the effects that the dif-
ferent evolutionary processes (gene duplication, acquisition, deletion and selective pressure)
have on the final appearance of different genomes.

The field of the power-law distributions is controversial.3-10,12,13 A number of fitting func-
tions other than the power law were proposed to explain the observation. Our argument is that
the question of which fitting function is the best should not be the central problem, because
one can always find a function with more parameters fits the observation better than others.2

Instead, we think biologically meaningful models are more helpful for understanding the ori-
gin of distribution and the analytical and numerical solutions shown in this work are vital for
explaining the observation and further predicting the behaviour of the system.

The full analytical solution to this basic model revealed new facts that were unattainable
from simulations only. As observed previously, gene duplication alone gives rise to an exponen-
tial distribution. However, the combined effect of duplication and acquisition changes the
nature of genomic growth dramatically; beyond a sufficient length of evolutionary time, the
fold distribution undergoes a transition from the exponential form, to a time-invariant limit-
ing distribution that resembles a power law. The rate of fold acquisition (R) and the size of the
initial genome (N0) have distinct effects. Firstly, the cross-over time from the exponential to
power-law phases is proportional to N0 and approximately inversely proportional to R. This
implies that the transition occurs when the number of new fold acquired becomes comparable
to the initial size of the genome. Secondly, the decay rate of the power-law distribution i.e., the
slope on a log-log plot is equal to R + 2 for large fold sizes. In fact, the final appearance of the
distribution is independent of N0, and is unaffected by the nature of the fold distribution in
the starting genome. We find that the decay rate of the power-law distribution i.e., the slope on
a log-log plot is equal to R + 2 for large fold sizes.

Note that we take R as a constant, and we regard this as the average rate of fold acquisition
throughout the entire course of evolution. In reality, the value of R is likely to vary with time
owing to a number of factors such as the decrease of available new protein folds. Further effects
might be the increasing difficulty in horizontally transferring genes as the organism becomes
more complex. These effects would generally lead to a decrease in rate of fold acquisition with
time and this is perhaps reflected in the lower values of R for larger genomes.

We also studied extended models that fully incorporate the effects of random gene dele-
tion and selective pressure. Gene deletion, represented by the parameter Q, does not significantly
alter the qualitative behaviour found in the minimal model. The analytic solution showed that
when there is no fold acquisition (R = 0), the distribution is again exponential and surprisingly,
completely independent of Q. For cases where there is fold acquisition (R > 0), gene deletion
had two main effects: firstly the final genome contained fewer fold types, and secondly all fold
groups had smaller occurrences. Unsurprisingly, the extent of these effects was dependent on
the size of Q. The final distribution nonetheless remains close to a power law, with a decay rate
of R +2 + QR.

The effects of selective pressure were incorporated into the minimal model by introducing
favouritism into the gene selection process. This was done by having two groups of genes, one
with a higher probability of selection than the other. In this case, the two sets of genes effec-
tively evolve with two distributions, each undergoing a transition from the exponential to
power-law phases. Therefore, the final fold distribution is the sum of two power-law distribu-
tions, which in fact still closely resembles the distribution when no selective pressure is present.
This is true even for large differences in duplication probabilities between the two sets of genes.
More generally, we could imagine an array of finer differences in duplication probabilities
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representing the full range of selection pressures for genes of distinct biological functions. For
this, we conjecture that selective pressure, at least when modelled as a duplication bias, will lead
to folds that co-exist and compete for prominence in the genome, each undergoing separate,
but linked distributional transformation.

We compared our minimal model compares with the genomic data by fitting parameter
values. Figure 5 and the mismatch values in Table 1 show, the fits between the model and
genomic data are good. As discussed in our earlier work, the parameters can be interpreted in a
biologically meaningful way.11 We did not use the new models for simulating biological data
for two reasons: (1) they do not greatly affect the final appearance of the distribution; (2) if we
would be trying to fit a model with three additional free parameters, this would detract from
the main results of the paper.

In conclusion, although our model considers a few of the many important processes
underlying genomic evolution, it is significant that a simplistic model based on gene duplica-
tion and fold acquisition leads to distributions close to those observed in genomic data. The
current genomes provide only a snapshot in evolutionary time, but through our model, we
gain a glimpse into the biological processes that are most important. Furthermore, by estimat-
ing parameter values, we obtain quantitative estimates such as the rate of gene acquisition,
which would be otherwise unattainable. Interesting expansions to our model in future may
include allowing parameter values to vary during the course of evolution, and modelling the
evolution of different genomes simultaneously and simulating their divergence into different
organisms.

Appendix A: Analytic Solution of the Minimal Model
It helps to introduce a new parameterization of time:

u = log φ(t) = log
(

1 +
(R + 1)t

N0

)
(20)

with associated derivative:

∂

∂t
=

R + 1
N0eu

∂

∂u
(21)

With this definition, u = 0 corresponds to t = 0.
This new variable helps rid the differential equations (2) of explicit time dependence:

∂F (m,u)
∂u

+
mF (m,u)

R + 1
=

(m − 1)F (m − 1, u)
R + 1

(m > 1)

∂F (1, u)
∂u

+
F (1, u)
R + 1

=
N0R

R + 1
eu

(22)

Note that the equation the special bin F(1,u) does not depend on any other F(m, u), so it can
be solved separately. Once it is known, the solution for any other m can be found by successive
integration:

F (m+1, u) = exp
(
−m + 1

R + 1
u

)∫ u

0

dv

R + 1
mF (m, v) exp

(
m + 1
R + 1

v

)
for m+1 = 2, 3, · · · (23)

The solution for m serves as a “source” for m + 1. The relation (23) follows by multiplying both
sides of (22) by exp 

    
m
R

u+
+( )1

1  and integrating. Note that this solution ensures that F(m > 1, t = 0)
= 0, so the initial conditions are automatically satisfied. Our method of solving the differential
equation is elementary and standard, see reference 26 for more details.
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The solution for m = 1 can be found in the same way:

∂

∂u

[
exp

(
u

R + 1

)
F (1, u)

]
= exp

(
u

R + 1
+ u

)
N0R

R + 1

F (1, u) = N0 exp
(
− u

1 + r

)
+

N0R

R + 2

[
exp u − exp

(
− u

1 + r

)]
(24)

(25)

The full solution follows by successive application of (22). There are two types of integrals
that come up:

exp
(
−m + 1

R + 1
u

) ∫ u

0

dv

R + 1
[m exp v] exp

(
m + 1
R + 1

v

)

=
m

R + 2 + m

[
exp u − exp

(
−m + 1

R + 1
u

)] (26)

exp
(
−m + n + 1

R + 1
u

)∫ u

0

dv

R + 1
(m + n)[

exp
(
− mv

R + 1

)(
1 − exp

(
− v

R + 1

))n]
exp

(
m + n + 1

R + 1
v

)

=
m + n

n + 1

[
exp

(
− mu

R + 1

) (
1 − exp

(
− u

R + 1

))n+1
] (27)

The coefficients that emerge from these integrations define the recursion relations for Am

and   βn
m :

Am+1 =
m

R + 2 + m
Am (28)

βm
n+1 =

m + n

n + 1
βm

n (29)

Figure 6. The normalized Am coefficients (points) and a power-law fit (line), shown as a log-log plot as a
function of size m, for R = 1.
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The full solution to (22), taking into account the initial conditions, is given by:

F (m, t) = N0φ
− 1

1+R

(
1 − φ− 1

1+R

)m−1
+ Am(φ − φ− m

1+r ) −
m−1∑
i=1

Aiβ
i
m−iφ

− i
1+R

(
1 − φ− 1

1+R

)m−i

Am =
RN0

R + 2

m−1∏
i=1

i

R + 2 + i
= RN0

Γ(m)Γ(R + 2)
Γ(R + 2 + m)

βm
n =

n∏
k=1

m + k − 1
k

=
(m + n − 1)!
(m − 1)!n!

(30)

with the understanding that an empty product is unity, i.e.,      ∏ =i 1
0  f (i) = 1.

Note that the coefficients Am and   βn
m  do not depend on time, and furthermore  has no

dependence on R or N0. The product of coefficients Ai    βm
i
−1 can be simplified:

Aiβ
i
m−i =

(m − 1)!
(m − i)!

∏i−1
j=1(R + 2 + j) (31)

but it will be useful keep these coefficients separate when considering the solution for more
general initial conditions. Note that we use the standard definition for the gamma function
Γ(x); see Appendix H.

Appendix B: Crossover Behavior
For nonzero R and times other than zero and infinity, the fold distribution will not be

strictly exponential, nor will it conform to the limiting distribution (9). For small times, we
would intuitively expect the histogram to be dominated by duplication events involving the
initial N0 genes. This is confirmed by the behavior of the analytic solution for small t:

F (m, t) ≈N0

(
1 − t

N0

)(
t

N0

)m−1

+ Am

[
1 +

R + 1
N0

t −
(

1 − t

N0

)m]
−

m−1∑
i=1

Aiβ
i
m−i

(
1 − t

N0

)i (
t

N0

)m−i
(32)

From this approximation, it is clear that the terms involving N0 dominate for small times.
Consequently, the fold distribution will resemble an exponential distribution more than the
limiting distribution early on in the evolution of the genome. It is also clear that the histogram
F(m, t) will not approach the limiting distribution uniformly; the rate of convergence will
depend on cluster size.

There are many possible ways of characterizing this transformation of the fold distribution,
each suggesting a different notion of a “‘crossover” time. We have looked at the convergence of
the probability distribution as a whole. To quantify the extent to which the actual distribution
p(m) resembles a second distribution, say pA(m), we adopt the sum of the squared differences as
our metric:

ηA =
∑
m

(p(m) − pA(m))2

∑
m

p(m) =
∑
m

pA(m) = 1

(33)

(34)

Figure 7 tracks the evolution of p(m) according to this metric when R = 1.0 and N0 = 100. At
each time, the closeness of p(m) to the limiting distribution (9) is shown, as is the closeness to
the best fitting exponential distribution for that time, obtained by a least-squares regression of
log p against m. For times greater than t ≈ 70, the distribution of fold sizes resembles the final
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distribution more than any exponential distribution, this defines the crossover time for this set
of parameters. The sum extends to cluster sizes large enough to ensure numerical convergence.

Figure 8 plots the crossover time as a function of R for two values of N0. The range of R is
chosen so that new fold acquisitions occur less frequently than (or as often as) gene duplica-
tion. The crossover time displays two distinct regimes. Within each regime it is approximately
inversely proportional to R and directly proportional N0. A different proportionality constant
applies in each regime: Tc ~ N0/R. These numerical results confirm that crossover occurs roughly
when the number of new fold introductions: RTc becomes comparable to the initial genome
size N0. The details of the dependence are not that important, as they are no doubt strongly
affected by the choice of metric.

Figure 7. Crossover from exponential to large-time limiting distribution for R = 1.0 and N0 = 100.

Figure 8. Crossover time for N0 = 100 and N0 = 50, plotted as a function of A) R, and B) 1/R.
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Appendix C: Arbitrary Initial Distribution
The solution for an arbitrary initial distribution: Ninit(m), requires solving (2) subject to

different boundary conditions at t = 0; the terms proportional to Am are the same, the term
proportional to N0 is replaced by the superposition of new terms describing the propagation of
each bin of initial histogram:

F (m, t) =
∞∑
i=1

Ninit(i)ψi(m, t) + Am(φ − φ− m
1+r ) −

m−1∑
i=1

Aiψi(m, t)

ψi(m, t) =

⎧⎨
⎩

0 if m < i

βi
m−iφ

− i
1+R

(
1 − φ− 1

1+R

)m−i
for m ≥ i

(35)

with the same definitions for Am and   βn
m  as before. These are derived by following by succes-

sive integration in the same way as was done in Appendix A.
The fact that ψi(m,t) = 0 for m < i reflects the fact that there is no gene deletion; genes that

start in bin i may either stay put or advance to bins corresponding to larger fold sizes, but will
never populate bins of fold size less than i.

One important conclusion may be drawn from the full solution: all initial distributions
ultimately lead to the same limiting distribution determined by the Am. Just as before, the
dependence on the initial fold distribution Ninit(m) decays with time, leading to the same
asymptotic distribution as was found for an initial distribution of N0 folds of size 1 in Appen-
dix A. Of course, the details of how the crossover happens will depend on the particular form
of Ninit(m).

Appendix D: Solution to the Extended Model When 0 < Q < 1
and R = 0

As one done in the solution for the minimal model, define φ(t):

φ(t) = 1 +
(1 − Q)t

N0
, (36)

and keep the association: u = log φ(t). In terms of the time-like variable u, the fundamental
evolution equations (10) now are:

(1 − Q)
∂F (m,u)

∂u
= (m − 1)F (m − 1, t) − (1 + Q)mF (m, t) + Q(m + 1)F (m + 1, u) (m > 1)

(1 − Q)
∂F (1, u)

∂u
= −(1 + Q)F (1, u) + QF (2, t)

(37)

Substituting the ansatz: F(m, u)= f(u)gm-1(u) into the equation for m > 1 leads to the
following relation:

(1 − Q)
[
∂ log f

∂u
g + (m − 1)

∂g

∂u

]
= (m − 1) + (1 + Q)mg + Q(m + 1)g2 (38)

Since neither g(u)nor f (u) depend on m, this identity can only be satisfied if:

(1 − Q)
∂g

∂u
= 1 − (1 + Q)g + Qg2

(1 − Q)
∂ log f

∂u
= −(1 + Q) + 2Qg

(39)
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These equations can be solved by integration, together with the restriction that f(t = 0) = 1 and
g(t = 0) = 0. It is easy to verify that the ansatz also works when m = 1.

F (m, t) = N0f(t)gm−1(t)

f(t) = φ−1

[
1 − Q

1 − Qφ−1

]2

= φ

[
N0

N0 + t

]2

g(t) =
1 − φ−1

1 − Qφ−1
=

t

N0 + t

φ(t) = 1 +
(1 − Q)t

N0

(40)

In fact, it is easy to solve for F(t) in this special case:

∂F (t)
∂t

= −Q
F (1, t)
G(t)

= −Q
f(t)
φ(t)

(41)

which can be integrated directly:

F (t) = N0
N0 + (1 − Q)t

N0 + t
(42)

The large-time asymptotic limit for F(t) is (1 – Q)N0 folds, which reflects the fact that
some of the initial N0 folds will ultimately be lost due to gene deletion. Equation (42) leads to
a simple relation between the number of folds and the number of genes:

F (t) =
G(t)

1 + t/N0

(43)

Although F(t) and G(t) both depend on Q, their ratio does not.
The solution (40) we have derived for 0 < Q < 1 is also the solution for Q = 1, which

means that gene deletion and duplication occur at the same rate. Equations (42) and (43) for
the total number of folds F(t) are still valid for Q = 1, but now the expected number of genes is
constant: G(t) = N0. Although we will not do so here, analytic solutions can be derived when
deletion dominates duplication so the genome shrinks in size.

Appendix E: Analytical Results for Higher Moments
Higher moments of the distribution, defined as Hn(t) = ∑m mnF(m, t), for n ≥ 2 in the

extended model satisfy the following differential equation:

G(t)
∂Hn

∂t
= RG(t)+

∞∑
m=1

F (m)
[
m(m + 1)n − (1 + Q)mn+1 + Q(m − 1)nm

]
(44)

In particular, the equations for the second and third moment are:

(45)G(t)
∂H2

∂t
= RG(t) + 2(1 − Q)H2(t) + (1 + Q)G(t)

G(t)
∂H3

∂t
= RG(t) + 3(1 − Q)H3(t) + 3(1 + Q)3H2(t) + (1 − Q)G(t) (46)

Higher moments depend on all lower moments except for the zeroth moment, the expected
number of folds F(t). This is fortuitous, since equation H for F(t) could not be solved analyti-
cally due to its explicit dependence on the population of smallest folds: F(1,t).
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The solution for the second moment is given by:

H2(t) =

⎧⎨
⎩

N0 exp
(

2(1−Q)
1+R−Qu(t)

)
+ N0

1+R+Q
R−1+Q

[
exp u(t) − exp

(
2(1−Q)
1+R−Qu(t)

)]
R �= 1 − Q

N0 exp (u(t))
[
1 + u(t)

2R

]
R = 1 − Q

(47)

where the variable u(t) is related to the expected number of genes:

u(t) = log
[
1 +

(R + 1 − Q)t
N0

]
(48)

This result will be important in fitting actual genomic data to the models.

Appendix F: Perturbation Theory Approximation
for the Extended Model

As before, relate time and the number of genes through φ(t):

φ(t) = 1 +
(R + 1 − Q)t

N0
, (49)

This extends the previous definition (36); the variable u is still defined as before:
u = log φ(t).

Recall that when Q = 0 and R > 0 the long-term behavior of F (m, t) is determined by the
coefficients Am, as shown in equation (30). Assume that the large-time solution in the presence
of gene deletion is determined by new coefficients Bm:

F (m, t) → Bmφ(t) = Bm exp (u) as t → ∞ (50)

Substituting this ansatz into the fundamental equations (10) leads to:

(1 + R − Q)B1 = RN0 − (1 + Q)B1 + 2QB2

(1 + R − Q)Bm = (m − 1)Bm−1 − (1 + Q)mBm + Q(m + 1)Bm+1
(51)

Motivated by the numerical results, we will develop the perturbation around a new vari-
able γm:

Bm = γmAm (52)

that relates Bm to the Q = 0 solution (Am) as closely as possible. Using the explicit form of Am

from (30) in (51) leads to:

γ1 = 1 +
2

(R + 2)(R + 3)
γ2

γm = γm−1 + Q
(1 − m)

R + 1 + m
γm + Q

m(m + 1)
(R + 1 + m)(R + 2 + m)

γm+1

(53)

It is easy to see that when Q = 0, γm =1, which means Bm = Am for all m. The perturbation
theory approach expands γm for each m as a power series in Q:

γm =
∞∑
i=0

Qiγ(i)
m (54)
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From the solution when Q = 0 we immediately know the first term in the expansion:     γ m
( )0  = 1.

The remaining terms are determined order-by-order by substituting into (53) and collecting
terms with the same power of Q:

γ
(i)
1 = 1 +

2
(R + 2)(R + 3)

γ
(i−1)
2

γ(i)
m = γ

(i)
m−1 +

(1 − m)
R + 1 + m

γ(i−1)
m +

m(m + 1)
(R + 1 + m)(R + 2 + m)

γ
(i−1)
m+1

(55)

The first-order (i = 1) equations are easy to solve since the zeroth-order solutions are just
unity:

γ
(1)
1 = 1 +

2
(R + 2)(R + 3)

γ(1)
m = γ

(1)
1 +

m∑
i=2

g(i)

g(i) =
2 + 2R + R2

1 + R + i
− 2 + 3R + R2

2 + R + i

(56)

An important limitation of the perturbation expansion is revealed by the first order solu-
tion. Consider the behavior of the sum:

m∑
i=2

g(i) ≈
∫ m

2
dxg(x)

= (2 + 2R + R2) log
m + R + 1

R + 3
− (2 + 3R + R2) log

m + R + 2
R + 4

(57)

For large m, the sum increases in magnitude logarithmically with m:

m∑
i=2

g(i) ≈ −R log m (58)

This means that no matter how small Q is, for large enough m the first order expansion
will fail. This reflects a limitation of the perturbation expansion itself for this problem—
stopping the expansion at any finite order will lead to a series valid only up to some maxi-
mum size m.

The only way to obtain a consistent expansion is to sum all orders of the series. Unfortu-
nately, the equations (55) are difficult to solve exactly, and even if they were possible to solve, it
would be even more difficult to carry out the summation. However, it isn’t difficult to figure
out the dominant contribution at each order. It helps to first look at the equations for i = 2:

γ(2)
m = γ

(2)
m−1 + g(m)

m∑
i=2

g(i) +
m(m + 1)

(R + 1 + m)(R + 2 + m)
g(m + 1)

=⇒γ(2)
m = γ

(2)
1 +

m∑
i=2

g(i)
i∑

j=2

g(j) +
m∑

i=2

i(i + 1)
(R + 1 + i)(R + 2 + i)

g(i + 1)

(59)

The first summation dominates the second in the above equation; the first grows like log2 m,
while the second grows like m log m.
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The same pattern emerges at all orders—the dominant contribution can be isolated as:

γ(i)
m ∼ γ

(i)
1 +

m∑
j1=2

g(j1)
j1∑

j2=2

g(j2) · · ·
ji−1∑
ji=1

g(ji)

≈ γ
(i)
1 +

1
i!

⎛
⎝ m∑

j=2

g(j)

⎞
⎠

i (60)

The sum of the dominant contributions remains finite:

γm ∼ exp

⎡
⎣Q

m∑
j=2

g(j)

⎤
⎦ ∼ exp (−QR log m) (61)

and suggests that for large m, γm will decay as a power-law with exponent QR.
Motivated by this observation, and recalling that for large m, Am ~ 1/mR+2 (from equation

(8)), we suggest the following approximation for Bm, valid for all values of m, not just when m
is large:

Bm = C
RN0

R + 2 + QR

m−1∏
i=1

i

R + 2 + QR + i
(62)

where C is a constant that is independent of m. The above expression for Bm is derived by
replacing R by R + QR in the denominator of the product that defines Am (equation (8)) This
is really nothing more than informed guesswork; this is the simplest expression for Bm that
recovers a power-law with exponent R + QR for large m and reduces to Am when Q = 0.

In order to determine F (t), the total number of folds at time t, equation (11) has to be
solved using the approximate solution (62). First, the a choice has to be made for the constant
C—since the equation is an approximation, there is freedom in the choice. One way is to
enforce the consistency of equation (53) for m = 1:

γ
(1)
1 =

B1

A1
= C

R + 2
R + 2 + QR

= 1 +
2

(R + 2)(R + 3)

=⇒C =
(

1 +
2

(R + 2)(R + 3)

)(
1 +

QR

R + 2 + QR

) (63)

As F (t) is directly affected by B1, it is natural to focus on m = 1. Note that for small Q, C ≈ 1 +
2 / (R + 2)(R + 3).

Equation (11) can be integrated to give an approximation for F (t):

F (t) ≈ N0 + R

(
1 − QC

R + 2

)
t (64)

Using the identity of Appendix H, the normalized coefficients are given by:

pm =
Bm∑∞

m=1 Bm
=

R + 1 + QR

R + 2 + QR

m−1∏
i=1

i

R + 2 + QR + i
(65)
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F (t) = N0 + R

(
1 − QC

R + 2

)
t

C =
(

1 +
2

(R + 2)(R + 3)

)(
1 +

QR

R + 2 + QR

) (66)

In the presence of gene deletion, the approximation for F (t) shows linear growth with time at
a rate less than R. As expected, a greater rate of gene deletion reduces the growth of F (t).
However the approximation predicts that the number of folds will always increase with time,
which can be verified by taking the uppermost limit, Q = 1. For small Q, the constant C itself
can be approximated more simply: C ≈ 1 + 2 / (R + 2)(R + 3).

Figure 9 confirms these observations. The approximation for the expected number of
folds seems to work quite well and could be useful in trying to infer both R and Q from
genomic data. Certainly the impact of gene deletion is easier to identify through F(t)  and
G(t) than through the shape of the histogram F (m, t).

Appendix G: The Effects of Selection Pressure
Recall that we have assumed that there are only two duplication types: type “A” and type

“B”, and that “B” genes are γ times more likely to be chosen for duplication than “A” genes.
There will still be one duplication event, on average, per unit time, so the total expected num-
ber of genes will remain the same, but the allocation of the total between types “B” and “A” will
depend on γ. We will assume that γ > 1, so it is the “B” types that are more likely to be
duplicated.

To keep track of the fold population we now need two histograms: FA(m, t) and FB (m, t)
to distinguish between the duplication types. The full fold histogram is the sum of both sub-
histograms: F(m, t) = FA(m, t) + FB(m, t). Similarly, let GA(t) and GB(t) represent the total
number of genes for each type and define a new variable Gγ(t):

Gγ(t) = GA(t) + γGB(t) (67)

Figure 9. Analytic approximation for the total number of folds compared to numerical results of Figure 3.
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The evolution equations that extend (2) are:

∂FA(m, t)
∂t

=
(m − 1)FA(m − 1, t)

Gγ(t)
− mFA(m, t)

Gγ(t)
(m > 1)

∂FA(1, t)
∂t

= RA − FA(1, t)
Gγ(t)

∂FB(m, t)
∂t

= γ
(m − 1)FB(m − 1, t)

Gγ(t)
− γ

mFB(m, t)
Gγ(t)

(m > 1)

∂FB(1, t)
∂t

= RB − γ
FB(1, t)
Gγ(t)

(68)

Note that we allow new folds to be acquired at different rates for each type: RA can be different
from RB although we will restrict our numerical examples to the when they are equal.

As before, we derive equations for the total number of genes from the full dynamics (68):

∂GA(t)
∂t

=
∂

∂t

∑
m=1

mFA(m, t) = RA +
GA(t)

GA(t) + γGB(t)

∂GB(t)
∂t

=
∂

∂t

∑
m=1

mFB(m, t) = RB + γ
GB(t)

GA(t) + γGB(t)

∂G(t)
∂t

=
∂GA(t)

∂t
+

∂GB(t)
∂t

= RA + RB + 1

(69)

This confirms that the overall duplication rate is still one gene per unit time. The evolution of
Gγ(t) is more complicated:

∂Gγ(t)
∂t

= RA + γRB + 1 + γ

[
1 − G(t)

Gγ(t)

]
(70)

It is possible to establish the distributional properties of the genome without having to
solve (68) explicitly for the special parameter values encountered previously: (1) the case when
there is no introduction of new folds, so RA = RB = 0; and (2) the limiting distribution when
t → ∞. When there is no introduction of new folds, a simple extension of the repeated integra-
tion employed in Appendix A establishes that the each of the sub-histograms FA(m, t) and
FB(m, t) follows an exponential distribution for all times:

FA(m, t) = NA
0 exp (−u(t)) [1 − exp (−u(t))]m−1

FB(m, t) = NB
0 exp (−γu(t)) [1 − exp (−γu(t))]m−1 (71)

The number of distinct folds of each type, present at t = 0 is given by     N
A
0  and     N

B
0 . The

variable u(t) is determined by Gγ(t):

u(t) =
∫ t

0

ds

Gγ(s)
(72)

The full histogram is consequently a sum of exponential distributions:

p(m, t) =
FA(m, t) + FB(m, t)∑

i FA(i, t) + FB(i, t)

=
NA

0

NA
0 + NB

0

e−u
[
1 − e−u

]m−1 +
NB

0

NA
0 + NB

0

e−γu
[
1 − e−γu

]m−1
(73)

The large time behavior of the solution is much easier to derive than an exact solution. For
large t, Gγ(t) will grow linearly with time: Gγ ~ Cγt, according to a constant Cγ that depends on
the rate of fold acquisition and the differential rate of duplication:
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Cγ =
1
2

(RA + γRB + 1 + γ)+
1
2

√
(RA + γRB + 1 + γ)2 − 4γ(RA + RB + 1) (74)

In a similar fashion, we define coefficients   Cm
A  and   Cm

B , akin to the coefficients Am of the solution
to the minimal model (7), that describe the ultimate linear growth of the histogram bins: FA(m, t)
~   Cm

At, and similarly for FB(m, t). The form of the coefficients is very similar to the minimal
model’s Am:

CA
m =

RA

Cγ + 1

m−1∏
i=1

i

Cγ + i + 1

CB
m =

RB

Cγ + γ

m−1∏
i=1

iγ

Cγ + γ(i + 1)

(75)

The normalized probability distribution corresponding to this limit can be found using the
same normalization identity that was helpful in deriving the probability distribution in the
minimal model (Appendix H):

p(m, t) =
CA

m + CB
m∑

i C
A
i + CB

i

=
Cγ

Cγ + 1
RA

RA + RB

m−1∏
i=1

i

Cγ + i + 1
+

Cγ

Cγ + γ

RB

RA + RB

m−1∏
i=1

iγ

Cγ + γ(i + 1)

(76)

We have also briefly considered the case of more than two duplication types. When there is no
introduction of new folds into the genome, the same argument behind equations (72) and (73)
generalizes: the sub-histogram for each duplication type is exponential. Furthermore, we have
confirmed numerically that the terminal distribution is not dramatically affected by selection
pressure, even when there are several families with significantly different rates of duplication.
One particular example, involving a four duplication types appears in Figure 10. In this rather

Figure 10. Large time limit for the fold probability distribution for the minimal model (one duplication
type) and four duplication types: B = 4, C = 8, D = 16. The total rate of new fold acquisition is the same
for both genomes.
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extreme case, types “B”, “C” and “D” are 4.0, 8.0 and 16.0 times more likely to be duplicated
than type “A”. The total rate of new fold acquisition is the same for both genomes.

Appendix H: A Useful Normalization Identity
A series whose terms zm, m =1, 2,··· are defined by a recursion relation:

zm =
m−1∏
i=1

i

α + i
(77)

can be summed exactly as follows.
Rewrite zm as:

zm =
Γ(m)Γ(α + 1)

Γ(α + m)
(78)

with the usual definition for the gamma function:

Γ(z) =
∫ ∞

0
dt tz−1e−t (79)

The integral representation of the beta function B(x, y) provides the key identity to carry
out the sum:

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

=
∫ 1

0
dt tx−1(1 − t)y−1 (80)

Combining these relations leads to:

(81)

∞∑
m=1

zm = α

∫ 1

0

∞∑
m=1

tm−1(1 − t)α−1

= α

∫ 1

0
(1 − t)α−2

=
α

α − 1

(82)

(83)
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