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ABSTRACT 
 
 
Genomic tiling microarrays have become a popular tool for interrogating the transcriptional 
activity of large regions of the genome in an unbiased fashion. There are several key parameters 
associated with each tiling experiment (e.g., experimental protocols and genomic tiling density). 
Here, we assess the role of these parameters as they are manifest in different tiling array 
platforms used for transcription mapping. First, we analyze how a number of published tiling-
array experiments agree with established gene annotation on human chromosome 22. We observe 
that the transcription detected from high-density arrays correlates substantially better with 
annotation than that from other array types. Next, we analyze the transcription-mapping 
performance of the two main high-density oligonucleotide array platforms in the ENCODE 
regions of the human genome. We hybridize identical biological samples and develop several 
ways of scoring the arrays and segmenting the genome into transcribed and non-transcribed 
regions, with the aim of making the platforms most comparable to each other. Finally, we develop 
a platform comparison approach based on agreement with known annotation. Overall, we find 
that the performance improves with more data points per locus, coupled with statistical scoring 
approaches that properly take advantage of this, where this larger number of data points arises 
from higher genomic tiling density, and the use of replicate arrays and mismatches. While we do 
find significant differences in the performance of the two high-density platforms, we also find 
that they complement each other to some extent. Finally, our experiments reveal a significant 
amount of novel transcription outside of known genes, and an appreciable sample of this was 
validated by independent experiments.  
 
 
NOTES: 
 
Gene Expression Omnibus (GEO) accession numbers are provided for the array data. 
Supplementary material is provided.
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INTRODUCTION 

 

Mapping transcribed regions of the human genome in an unbiased fashion is a crucial step 

towards understanding at a molecular level the organization of hereditary information and the 

specific functions of each human cell or tissue type. To this end, a number of approaches using 

genomic tiling microarrays have been tested and published over the last few years, including key 

studies by Kapranov et al. (2002), Rinn et al. (2003), Schadt et al. (2004), Bertone et al. (2004), 

and Cheng et al. (2005). While the strategies differ substantially in most of their details, they all 

share a basic array design concept: to construct an array whose probes (the molecules attached to 

the microarray at the manufacturing) cover all of the non-repetitive sequence of the genome or 

genomic region under investigation.   

 

Kapranov et al. (2002) used a high density oligonucleotide array design containing perfect match 

probes of length 25 bp and corresponding mismatch probes. The arrays were synthesized in situ 

(directly on the supporting array material) using physical masks, and covered chromosomes 21 

and 22 with probe starting positions spaced every 35 bp (genomic distance). They were 

hybridized with samples representing 11 cell lines. The data was later reanalyzed (Kampa et al., 

2004) and a more sophisticated approach to genomic segmentation was introduced. We refer to 

this setup as the Affymetrix tiling array platform. 

 

Rinn et al. (2003) mapped transcribed regions of chromosome 22 with an array of PCR products 

(amplicons), tiled end-to-end with a probe size range of 300-1,400 bp. This array represents the 

PCR tiling array platform and was hybridized with placenta poly(A)+ RNA (Rinn et al., 2003) 

and later with RNA from two cell lines (White et al., 2004). 

 

Schadt et al. (2004) used tiling arrays where the probes were synthesized on the array using the 

Agilent ink-jet technology (Shoemaker et al., 2001). They tiled chromosomes 20 and 22 with 60-

mers uniformly spaced every 30 bp. The statistical treatment of the data was presented in Ying et 

al. (2003). 

 

Bertone et al. (2004) used oligonucleotide microarrays with 36 bp probes spaced every 46 bp to 

map transcribed regions of the entire non-repetitive portion of the human genome. The arrays are 

synthesized in situ using maskless technologies developed by NimbleGen Systems. We refer to 

this as the MAS (maskless array synthesis) tiling array platform (Singh-Gasson et al, 1999). 
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Cheng et al. (2005) used an updated version of the Affymetrix platform with a tighter spacing of 

the probes, every 5 bp, and covering 10 chromosomes of the human genome. Transcript maps 

were generated for polyadenylated cytosolic RNA from eight cell lines (and for one of these cell 

line, also non-polyadenylated RNA). 

 

These different studies produced a wealth of data. However, the experiments represent very 

different choices in array design and manufacturing, RNA extraction and hybridization 

conditions, and data processing methods. As such, comparing the results from these studies is not 

trivial.  

 

Here, we outline some of the key parameters differentiating the various studies. The array design 

parameters include the length and genomic spacing of the probes, the use of mismatch probes and 

whether to cover one or both genomic strands. For the oligonucleotide tiling experiments 

referenced above, the probe length varies between 25-70 bases. The genomic spacing of the 

probes is measured between probe initiation points, and can range from the smallest possible 

distance of one single base up to the length of the probe, or even further. At the design stage it is 

important to minimize potential cross-hybridization, self-pairing, and other probe sequence 

artifacts such as DNA secondary structure formation (SantaLucia and Hicks, 2004). Genomic 

regions considered as repeats (by, e.g., RepeatMasker (A.F.A. Smit and P. Green, unpublished)) 

are usually omitted from the design due to potential cross-hybridization. If some flexibility is 

allowed in the design process, probes may be chosen so as to achieve better probe 

thermodynamics. This is possible for arrays interrogating genes (Mathews et al, 1999; Hughes et 

al, 2001; Rouillard et al, 2003), but for tiling arrays with high genomic density probe optimization 

options are limited (Bertone et al., 2006).  

 

The experimental protocols for extraction, labeling, and hybridization of the RNA sample to the 

array vary considerably. Choosing the type of target RNA (i.e., tissue or cell line, poly(A)+ or 

total RNA), and the reactions and conditions to use in the hybridization will affect the results. The 

number of technical and biological replicates is an additional crucial parameter, more replicates 

potentially enables greater certainty and detail in the interpretation of the results.   

  

Once the tiling arrays have been designed, manufactured, hybridized with labeled RNA, and the 

hybridization intensities have been extracted, there are a number of ways to transform the raw 
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intensities into a score for each probe. This is usually done employing statistical methods such as 

a sign test or the t-test. Exactly what methods are available depends on the design features of the 

array, such as the presence of mismatch probes. The segmentation of the genome into transcribed 

and non-transcribed regions is then performed based on the scores. 

 

Our goal is to assess different tiling microarrays that are currently used for transcription mapping, 

an area where no detailed comparison thus far has been performed, and ultimately to aid the 

ENCODE consortium when choosing strategy for the multiple tissue whole-genome transcription 

mapping of the human genome (The ENCODE Project Consortium, 2004). Previous work on 

comparing gene-based microarrays include papers by Tan et al (2003), Jarvinen et al (2004), Mah 

et al (2004), Park et al (2004), and Yauk et al (2004). Most of these indicate differences in the 

gene expression results from different microarray platforms, which have been attributed to 

differences in data processing or inadequate choice of comparison metrics (Larkin et al, 2005).   

 

We start our microarray comparison by analysing a set of already published chromosome 22 

transcription experiments. Overall, this study indicated that high-density oligonucleotide arrays 

perform significantly better than amplicon (PCR) arrays.  

 

We then describe a direct comparison of the two in situ-synthesized oligonucleotide-based 

platforms MAS (Bertone et al, 2004) and Affymetrix (Kapranov et al, 2002) on the manually 

picked part of the ENCODE regions of the human genome (http://www.genome.gov/10005107). 

We hybridized identical biological samples to the arrays and developed a unified data processing 

scheme based in statistical treatment of the data. Using this approach, we compare the results 

from the two platforms with each other and with the recently generated Gencode gene annotation 

(Guigo et al., 2003; Ashurst et al., 2005; http://genome.imim.es/gencode/).   

 

 

 

RESULTS AND DISCUSSION 

 

 

Pilot Study: Comparison of Public Chromosome 22 Tiling Data 

 

We carried out an initial comparison of previously published transcription maps of chromosome 

22 generated from PCR-based tiling arrays (Rinn et al., 2003; White et al., 2004) and two 
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oligonucleotide tiling array platforms, MAS and Affymetrix (Bertone et al., 2004; Kapranov et 

al., 2002) (Figure 1). These maps were generated from 15 separate experiments (tissues or cell 

lines). We used the RefSeq annotation (Pruitt et al., 2005) as a benchmark since Gencode 

annotation is not yet available for the entire chromosome 22. For each experiment, we measure 

the consistency between gene annotation and transcribed regions identified by individual studies. 

The transcription data from oligonucleotide arrays agrees better with the RefSeq exon annotation 

than the data from PCR arrays, an observation that holds true across all experiments. The results 

have to be interpreted with some care since they were not obtained with the same biological 

samples or scoring schemes. Nonetheless, we conclude that PCR-based arrays are clearly less 

useful for a detailed transcription mapping study, possibly because of their lower genomic 

resolution. Spotted arrays (e.g., PCR-based) also have a significantly lower feature resolution on 

the array compared with arrays with in-situ synthesized probes. Therefore, we focus our 

subsequent experimental and analysis efforts on the oligonucleotide tiling microarrays.  

 

 

APPROACH 

 

Oligonucleotide Array Designs and Hybridizations   

 

An oligonucleotide array containing 36 bp oligonucleotides that tile both strands of the 

nonrepetitive sequence of the ENCODE regions end-to-end (allowing some positional shifts to 

reduce self-complementarity) was prepared using maskless photolithography, MAS (maskless 

array synthesis). The MAS arrays cover both strands of the ENCODE regions ENm001-ENm011 

(11.6 Mbases). An Affymetrix ENCODE array, which covers one strand of the entire ENCODE 

region on one array, tiled with 25-mer oligonucleotides with an average distance between 

oligonucleotide starts of 21 bases was obtained from the manufacturer. This array has both 

perfect match (PM) and mismatch (MM) probes.  

 

As outlined in Table 1, five different hybridization experiments were carried out: Two different 

RNA targets (placenta poly(A)+ RNA and NB4 total RNA) were hybridized to the two different 

array types. (We follow the nomenclature of Royce et al. (2006), i.e., target or sample is the RNA 

extracted from a biological entity (tissue or cell line) and which is hybridized to the probes on the 

microarray.) The Affymetrix arrays were hybridized according to the manufacturer's 

recommendation. The MAS arrays were hybridized using two different experimental protocols, 
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MAS-B, described in Bertone et al. (2004), and MAS-N, a variant of the manufacturer's 

recommended protocol. The placental RNA was hybridized using both MAS protocols, the NB4 

RNA only with MAS-N. 

 

 

Generating Comparable Maps of Transcriptionally Active Regions (TARs) 

 

(i) Development of consistent scoring schemes 

 

To bring the outcomes from the two technologies MAS and Affymetrix into a comparable form, 

we developed ways of scoring them similarly. For each spot on the microarrays, a hybridization 

intensity was collected. For oligonucleotide tiling arrays, it is usually advantageous to aggregate 

the intensities from probes that are adjacent to each other in genomic space (Kampa et al., 2004; 

Cheng et al., 2005; Royce et al., 2005). This is done by applying a sliding genomic window 

encompassing multiple probes and converting the intensities within the window into a score, 

which is assigned to the middle probe. The windowed approach is logical since we are ultimately 

interested in obtaining a set of regions whose intensities are significantly higher than the 

background, and we expect those regions to be of the same length as exons (150-200 bp on 

average, depending on exon type) rather than of single probes (25-36 bp in this study). 

 

We developed new ways of scoring the MAS arrays, and describe these in terms of three levels of 

scoring: single probe intensities, robust statistics within a sliding window, and robust statistics 

using paired data within a sliding window (Cawley et al., 2004). 

 

Single probe intensities 

Single probe intensity scoring uses the raw intensities from the arrays. By wisely choosing 

methods and parameters to deal with the genomic segmentation (see below) it is possible to 

obtain reasonable results from this approach (Bertone et al., 2004). In this approach, both intra- 

and inter-array normalization of the microarray data may be particularly important (Royce et al., 

2005).  

 

Robust non-parametric statistics within a sliding window 

We employed the sign test for scoring MAS array data. The sign test is attractive since it is 

statistically robust and it does not assume normally distributed data. Comparing each intensity 
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within a sliding genomic window of a specified size with the array median, yields a measure or a 

score of the significance of the intensities (see Methods for details). It is easy to include multiple 

replicates in this scheme: each probe is simply compared to the median intensity of its own array, 

and no inter-array normalization is necessary. The number of available score levels is restricted, 

however, due to the discrete values introduced by the counting (it is a binomial), and it may not 

be sufficient in situations in which discerning the top scores (say, top 5%) from near-top scores is 

important. With an average genomic spacing of 36 bp between the starts of two adjacent probes, 

the window (160 bp) encompasses five probes. We also applied the sign test on the Affymetrix 

data as a part of our comparison.    

 

Robust non-parametric statistics using paired data within a sliding window 

When paired data is available, such as the perfect match (PM) and mismatch (MM) probe 

intensities on Affymetrix arrays, the paired Wilcoxon signed rank test is a more powerful option 

than the standard sign test. It was first used with tiling microarrays by Cawley et al. (2004) to 

score ChIP-chip data, and it is also immediately applicable to transcription data as is shown in 

Kampa et al. (2004) and Cheng et al. (2005). All pairwise PM-MM differences within the 

window are calculated and a p-value, which essentially measures how significantly the 

distribution of PM-MM differences is skewed to either side around zero, is calculated, along with 

the corresponding point estimate (the pseudomedian). While this approach is analogous to the 

standard sign test, it has considerably greater statistical power.  

 

The MAS arrays did not contain proper mismatch probes. Instead, we tried to simulate these 

using the complementary strand oligo of the MAS arrays as the “mismatch” probe. We call this 

approach the Fwd-Rev scoring, and it is justified on the MAS-B (placenta) data since the 

correlation between forward and reverse strand probes is close to the correlation between PM and 

MM probes for the Affy placenta data (Table 2; below).  

  

(ii) Segmentation of genomic regions 

 

After obtaining one score value per oligonuclotide probe, the next step is to construct a 

transcription map based on these scores, i.e., to segment the genomic regions into transcribed and 

non-transcribed regions. We call the transcribed regions TARs ("Transcriptionally Active 

Regions"; Rinn et al, 2003), regardless of overlap with genes, exons, or other genomic features. 
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(Note, an alternate term, transfrag ("Transcriptional Fragment"), was introduced by Kampa et al. 

(2004)).  

 

Maxgap/minrun segmentation 

In Bertone et al. (2004), TARs were generated by requiring at least 5 adjacent probes with a raw 

intensity in the top 10% of all intensities of that slide. Thus, the threshold above which to 

consider a probe “positive” was the intensity value corresponding to the 90th percentile, and any 

probe that was below the threshold immediately terminated the transcribed region. In the 

Affymetrix series of publications (Kapranov et al., 2002; Cheng et al., 2005), the threshold for 

generating TARs was based on setting a maximum false positive rate of the hybridization levels 

of negative bacterial controls, thus enabling an optimized percentile cutoff for each array set and 

biological sample. Furthermore, gaps were allowed, such that a maximum stretch of a certain 

number of nucleotides (called maximal gap, or maxgap for short) with a score below the 

threshold was allowed between probes whose scores were above the cutoff. Typically, the 

maxgap parameter allows one or two probes to be below the cutoff, while still being incorporated 

into the TAR. The total length of a TAR is then required to be of at least a certain length (a 

minimal run, or minrun), usually corresponding to at least two probes.  

 

HMM segmentation 

As an alternative to the maxgap/minrun segmentation, a hidden Markov model (HMM) (Rabiner, 

1989; Li et al., 2005; Ji and Wong, 2005) was employed to predict TARs, given the derived probe 

scores (above). Each probe can be in one of four HMM states (TAR, non-TAR, and two 

intermediate transition states), emitting the assigned score (i.e., the emission spectrum is 

continuous). The parameters of the HMM can be estimated by learning from the sequences of 

probes which fall into regions with known transcription characteristics (e.g., according to gene 

annotation). The HMM can then be applied to sequences of probes bearing the same scoring 

protocol to determine the most likely corresponding state sequence, in order to identify TARs 

(Viterbi decoding).  

 

 

Platform Comparison  

 

We have analyzed the five microarray tiling experiments, representing the MAS and Affymetrix 

platforms, introduced in Table 1 at multiple stages throughout the data processing. 
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(i) First, we calculate a correlation coefficient between the raw hybridization intensities of 

technical replicates within each platform, to assess the level of basic experimental reproducibility. 

We also assess the overlap of preliminary TAR sets generated from technical replicates using 

single probe intensities.   

 

(ii) Before proceeding to the next level, the TAR sets to be compared must be determined. This 

includes decisions about what scoring algorithm, what segmentation method, and what 

corresponding parameter settings to use for each of the five experimental data sets. In summary, 

the input data type (e.g., PM only or PM-MM), the number of replicates, the scoring algorithm 

and, if applicable, its corresponding genomic window size define the scoring scheme, which 

together with the segmentation algorithm and its parameters specify a particular TAR set. 

 

(iii) The resulting sets of transcribed regions are compared with each other, both within and 

across microarray platforms and biological samples, and the degree of overlap between detected 

transcription and gene annotation is measured. For the annotation comparison, we have chosen to 

use the Gencode annotation, which aims at finding and verifying all protein-coding genes in the 

ENCODE regions. There are two main measurements: how much of the known annotated exons 

are covered by a detected transcribed region ("sensitivity"), and the degree to which the detected 

transcription falls within known exons ("positive predictive value", PPV). The PPV is defined as 

the number of nucleotides in TARs that overlap with exonic regions, divided by the total number 

of nucleotides in the TAR set (this is sometimes referred to as "specificity" (Burge and Karlin, 

1997)). The sensitivity is defined as the number of nucleotides in annotated exons that overlap 

with TARs, divided by the total number of nucleotides in annotated exons. We do not expect a 

sensitivity of 100% since in any given tissue or cell line at any given time point, far from all 

annotated genes will be expressed. Also, we do not expect a PPV of 100% since Gencode, 

although arguably the most comprehensive and accurate gene annotation available, is incomplete. 

 

(iv) The transcription status is assessed for all 1342 annotated splice variants of all 264 known 

genes in the Gencode annotation of regions ENm001-ENm01. For each splice variant, the scores 

of all exon overlapping probes are collected and the transcription status assessed using the sign 

test (by comparing each individual score with the median score) (Bertone et al, 2004). A gene is 

considered transcribed if at least one of its splice variants is deemed transcribed at the chosen 

significance level. We also assess for each transcript (with at least two exons) how many of its 
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exons are considered transcribed, based on the median intensity score of each exon within the 

transcript. Ideally, either all exons or no exons should be transcribed. We call this concept the 

multi-exon coherence, and a suitable quantitative measure is the percentage of transcribed 

transcripts that display all their exons as "on".     

 

(v) Finally, we perform experimental validation of the results in placenta (MAS-B and Affy), 

using reverse transcriptase-PCR on a subset of the novel TARs (including both TARs unique to a 

platform and TARs present in both). We also perform experimental validation of a number of 

genes with differing transcription status in the two platforms, including as a negative control a set 

of genes that are considered off in both platforms. 

 

The results are available at http://tiling.gersteinlab.org/platformcmp. 

 

 

 

OUTCOMES 

 

Conclusions about Optimal Scoring and Segmentation Systems    

 

We first examined the effect of the segmentation threshold on the size of the resulting TAR sets. 

The results are in Figure 2a and Figure S1, and, as expected, the lower the segmentation threshold 

the greater the size of the TAR sets. The step-like pattern in these figures is because of the finite 

number of available scores. For the minrun/maxgap segmentation, the maxgap parameter was set 

to 50 for the Affymetrix data and 80 for the MAS data, thus including in a TAR a probe whose 

score is below the score threshold, if it is flanked on both sides by probes with scores above the 

threshold. Other maxgap settings were tested but the results did not improve in terms of gene 

annotation agreement (data not shown). The minrun parameter was set to 50 bp, i.e., the minumun 

length of a TAR is 50 bp. Thus, at least four probes have to be included in an Affymetrix TAR 

and three for the MAS array TARs. 

 

Different scoring schemes give different results, and also differ from the results obtained using 

single probe intensity scores, when comparing to the gene annotation. As is clear from Figure 2b 

(and Figure S2a), the standard sign test provides the best performance for MAS-B (placenta) if a 

sensitivity at or above 25% is required, but its improvement in terms of PPV when increasing the 

segmentation threshold is modest. The Fwd-Rev scoring is more sensitive to the choice of 
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threshold, and it performs better than the sign test scoring for segmentation thresholds above the 

94th percentile. For the standard sign test, we also tried applying different weights to the probes 

within a window, e.g., multiplying each score with a discretized Gaussian, but no improvement in 

performance was recorded (Figure S2). 

 

For the Affymetrix data, Figure 2c (placenta) and Figure S3 (NB4) reveal that the use of 

mismatch probes improves performance, in particular for the NB4 total RNA experiment, and 

that the Wilcoxon scoring performs very well. Figure 2c shows that for sensitivities up to 35%, 

using mismatch probes is a better strategy than doubling the genomic density of the probes, and 

also that it is better to use a single array with a PM-MM setup than two replicates with PM probes 

only. 

 

Figure 2d and Figure S3 show that the more elaborate scoring models using replicates outperform 

the single probe intensity scoring in terms of sensitivity and PPV for both MAS and Affy.   

 

These two points (elaborate scoring with replicates and the advantage of using mismatches) are 

further illustrated in Figure 2e, where the positive predictive values (PPV) of the TAR sets when 

choosing a segmentation threshold that corresponds to a sensitivity of 30% have been plotted.    

 

The analysis of different segmentation algorithms reveals that the TAR sets generated by the non-

parametric HMM segmentation (Viterbi decoding) are biased towards a high sensitivity (Figure 

2b and Figure S2) where it performs on par with the minrun/maxgap algorithm.        

 

 

Results from comparison pipeline 

 

(i) Replicate comparison of unprocessed hybridization intensities 

 

As is shown in Table 2, we obtained Pearson correlation coefficients of 0.83 and 0.96 for placenta 

MAS-B and MAS-N data, respectively, measured on pairwise comparison of the raw 

hybridization intensities of the arrays. The figure for Affymetrix was 0.96, and NB4 results were 

similar. We also note that the correlation of PM and MM probes for Affy placenta is close to the 

correlation of Fwd and Rev probes for MAS-B. Comparing the preliminary TAR sets, generated 
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from single arrays, across technical replicates (Table S1) again indicates that the MAS-B data is 

the most variable.  

 

(ii) Choosing TAR sets to include in comparison 

 

For each of the five experiments, the best-performing scoring and segmentation algorithm was 

chosen, and the segmentation threshold was tuned to generate TAR sets of roughly equal size, as 

measured in number of bases. The chosen sets are presented in Table 3 (and its extended version 

Table S2), and the points corresponding to these sets in Figure 2a and Figure S1 have been 

circled. To enable a comparison of the TAR sets, MAS array TARs on the two strands were 

merged into one set of unstranded TARs for each biological sample (Affymetrix TARs do not 

have strand information). For MAS, the standard sign test scoring was chosen, and for 

Affymetrix, the Wilcoxon signed rank test (pseudo-median). The segmentation thresholds range 

from the 87th to the 93rd percentiles for the various sets. The resulting sizes of the sets included in 

the subsequent comparison range from 629 kb to 701 kb (between 2545 and 4674 TARs). The 

total number of bases in exons in the analyzed regions (ENm001-ENm011) is 1001 kb, which 

means that the chosen sets can reach a sensitivity of 63-70% at most (as discussed above). The 

length distributions of all five TAR sets are unimodal and decay roughly exponentially (Figure 

S6).  

 
(iii) Compare TAR sets with each other and to Gencode annotation and conserved regions 

 

Figure 2d and Figure S3 reveal that the agreement with annotation is better for the Affy sets than 

for the MAS sets, both placenta and NB4. While similar sensitivity levels are achievable, the Affy 

TAR sets reach significantly higher PPVs. Likewise, the agreement is larger for the placenta sets 

(MAS-B, MAS-N, and Affy) than for the NB4 sets (MAS-N and Affy). This is also summarized 

in Table 3. 

 

Figure 3a shows the overlap between the placenta and NB4 TAR sets from the different 

experiments. As a measure of the overlap between the sets we calculate a ratio R = |∩|/|U| for 

each pairwise comparison, where the numerator represents the size of the intersection and the 

denominator represents the size of the union of the two sets under comparison. For two sets that 

agree completely, R equals 1. We find that the MAS-B placenta TAR set agrees better with the 

Affy placenta TAR set (R=0.22) than the MAS-N TAR sets do with Affy (R is 0.16-0.17). 

Between 62% and 72% of the nucleotides in the placenta sets are exclusive to a particular 
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experiment (pairwise comparison MAS-B vs. Affy and MAS-N vs. Affy). For the NB4 total RNA 

TAR sets (MAS-N and Affy), more than 70% of the nucleotides in either TAR set are exclusive 

to that set.  

 

As shown in Figure 3b, the overlap across the different biological samples within each 

experimental technology is larger than the overlap within the same biological sample between the 

two experimental technologies. An extreme example is the MAS-N placenta and NB4 sets which 

agree much better (dashed-dotted brown line; R=0.67) than NB4 MAS-N and Affy (solid black 

line; R=0.16). Restricting the overlap calculations to the subset of TARs that overlap conserved 

or exonic regions, or both (i.e., moving to the right in Figure 3b; Figure S8) yields higher values 

of R for the within-biological sets comparisons (black) and for the within-Affy comparisons 

(solid brown), but not for the within-MAS comparisons (non-solid brown). Consequently, there is 

no enrichment for conserved regions or known genes within the common parts of the MAS TAR 

sets.   

 

The bimodal distribution in Figure 4 shows that most Gencode unique exons are either fully 

covered by a TAR (>90% of exon nucleotides overlap with a TAR) or not covered at all (<10%). 

This is true for all TAR sets (Figure S9). We notice a slight 3' bias for the Affymetrix poly(A)+ 

data (but not for the MAS data), detecting 32% of the 3' exons and 25% of the 5' exons entirely. 

 

Table 4 and Figure S10 show a comparison of each of the five TAR sets to a set of conserved 

elements, generated from the union of conserved regions called by the Threader Blockset Aligner 

(TBA) (Blanchette et al., 2004) and MLagan (Brudno et al., 2003). The union set of conserved 

elements covers approximately 10% of the ENCODE regions. We find that most of the novel 

(intergenic) TARs do not overlap with conserved regions. Only 7-8% of Affymetrix novel TARs 

and 1-2% of MAS novel TARs overlap fully (>90%) with conserved regions. 

 

(iv) Transcription status of known genes and exons 

 

The transcription status of all known splice variants (transcripts) of the 264 Gencode genes in the 

regions ENm001-ENm011 was assessed, and the results are shown in Table 5. A gene is 

considered as "transcribed" if at least one of its transcripts is detected at significance level 

p<0.001. If a transcript has less than 10 probes it will be unable to reach a p-value below 0.001, 

and if this is true for all splice variants of a gene, that gene is in the "Too few probes" category. In 
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total 158 (69.3%) genes are considered transcribed according to both platforms, and 221 (83.7%) 

according to at least one platform (similar percentages on the transcript level). In Table 6, the 

multi-exon coherence (either all exons on or all exons off) is assessed and found to be better for 

Affy. For both placenta and NB4 there is an enrichment of multi-exon coherence in transcripts 

that are considered as transcribed in both platforms. One example is the Affy NB4 set for which 

in total 15.5% of all transcripts have all their exons transcribed, while 26.9% of the transcripts 

that are on in both NB4 sets have all their exons transcribed. The difference in score distribution 

between exons and introns is assessed (Figure S7), and for all five sets exons are indeed 

overrepresented at the high end of the score spectrum, but also many introns have high scores.   

 

(v) Experimental validation of novel TARs and known genes 

 

Experimental validation of the microarray transcription data is crucial to the interpretation of the 

results. Table 7 shows that we used RT-PCR to assess in total 144 regions experimentally in 

placenta. Of these, 98 were novel TARs (no overlap with known genes). The experiments verified 

the presence of 56.4% (22/39) of the assayed novel TARs that were exclusively found on the 

MAS platform (MAS-B), 66.7% (26/39) of the novel TARs that were exclusively found on the 

Affymetrix platform, and 85% (17/20) of the assessed novel TARs that were common to both. In 

total, 66.3% of all assessed novel TARs were verified. 

 

Forty-three known genes were also validated. Genes that were completely off (i.e., none of their 

splice variants were considered transcribed) according to one of the platforms but not the other 

were assessed. In total 58.8% (10/17) of the MAS-B exclusive genes were verified, and 87.5% 

(7/8) of the Affymetrix exclusive genes were verified. For genes that were considered "off" in 

both platforms, 33.3% (6/18) were found in our experimental validation. 

  

 

DISCUSSION 

 

In this work we have attempted to assess the suitability of two oligonucleotide tiling microarray 

strategies for transcription mapping in human. We tried to overcome the inherent differences 

between the approaches through using the same biological samples and a unified scoring and 

TAR generation procedure, and we have produced, compared, and validated several sets of 
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transcribed regions. We conclude that many factors are significant for the outcome of the 

experiments. Here, we elaborate on some key findings.  

 

 

Arrays are noisy 

 

In the comparison between the two microarray tiling platforms, the Affymetrix platform yielded 

TARs that better agreed with the Gencode annotation (Figures 2d-e, 4, S3). A simple explanation 

for this would be a higher noise level for MAS arrays. Moreover, given that the Pearson's 

correlation coefficients between raw intensities of technical replicates of MAS-N and Affymetrix 

arrays (Table 2; see also Table S1) are similar, it is likely that the MAS-N noise was rather 

systematic than random, while the MAS-B data seem to have a larger component of random 

noise. The systematic noise hypothesis is further supported by the observation that the overlap of 

TARs is larger within platform than within biological sample (Figure 3). The noise could result, 

e.g., from probe sequence artifacts, sample contamination (after it was split into different aliquots 

for the experiments), sub-optimal hybridization parameters, or protocol-dependent labeling 

artifacts (Nazarenko et al, 2002). A related issue is the cross-hybridization. For a transcription 

experiment, the amount of different RNA species present in the sample is large. Since the target 

RNA is derived from the entire genome, cross-hybridization is potentially present at high levels. 

Longer probes can be hybridized at higher temperatures and are thus less sensitive to cross-

hybridization, but at a given temperature these probes are more susceptible to non-specific 

binding. 

 

A comparison of the NB4 total RNA and placenta poly(A)+ TAR sets within the two platforms 

(Tables 2-4 and 6, Figure 3) revealed that the agreement between the platforms, and between the 

results of each platform and annotation, is larger for the poly(A)+ sets. One possible reason is that 

for total RNA, introns may be labeled. This would explain the worse performance of the NB4 sets 

compared to placenta, but not the differences in performance between MAS and Affy arrays. The 

exon and intron score distributions (Figure S7) show that for both placenta poly(A)+ and NB4 

total RNA, exons in general have higher scores than introns. For both MAS and Affy experiments 

there is a slight shift of the total RNA intron score distribution towards higher scores, as 

compared to poly(A)+ distribution, indicating the presence of intron labeling. 
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Counteract the noise: more data, appropriate scoring  

 

Figures 2d-e show that using more replicates enables TAR sets that better agree with annotation. 

Figure 2c shows that the genomic probe density also is important – reducing the genomic density 

of the Affy array to 50% (excluding every other probe on the arrays) worsens the performance, 

specifically for sensitivities below 40-45%. Furthermore, the density determines how well the 

endpoints of the TARs can be defined. The theoretical uncertainty of where a transcribed region 

starts and ends has an upper limit in the genomic distance between two adjacent probes. It also 

influences the results through the scoring procedure where often a genomic window is used for 

the statistical calculations. A window that is significantly larger than the average size of an exon 

is not desired since it would likely contain both probes that represent actual transcription (exons) 

and probes that belong to truly non-transcribed regions (introns). Taken together we conclude that 

the number of recorded data points per genomic unit is a crucial parameter for tiling microarray 

transcription mapping – the more data the better results.  

 

To take advantage of the data, appropriate probe scoring procedures are needed. We tried several 

scoring schemes for our array data and found, in Figures 2d-e, that statistically based scoring 

using replicates and a genomic window can significantly improve the results compared to using 

single probe intensities. Using the standard sign test scoring was ultimately deemed the best way 

to score the MAS data (in particular the more noisy MAS-B data), while the best way to score the 

Affy data was to use the pseudomedian from the Wilcoxon signed rank test. For MAS-B data, 

using a Fwd-Rev scoring algorithm as a surrogate for a true PM-MM scoring, improved 

agreement with annotation for high segmentation thresholds in the maxgap/minrun algorithm 

(Figure 2b). Exploring the Affy data showed that the sign test did not perform particularly well 

using PM-only data as input but quite well using PM-MM (Figure 2c). In fact, the PM-only Affy 

data scored with the standard sign test (ie., identical scoring as the MAS sign test) resulted in a 

sensitivity/PPV behavior very similar to that of MAS – a relatively low agreement with 

annotation, and reduced impact of increasing the segmentation threshold (PPV insensitive to 

threshold increases). These results indicate that mismatches can be very useful. Altogether, we 

conclude that regardless of array design, statistically based scoring taking into account the 

available data in an appropriate way is indispensable in the analysis of tiling microarray data.  

 

In Figure 2d we also analyzed the trade-off between increasing the genomic density of probes 

versus using the array space for MM probes. We found that in the investigated genomic density 
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and sensitivity ranges, it is better to use half of the array features for MM probes (one PM/MM 

probe pair every 42 nts) than to double the genomic density (to 21 nt) and use PM probes only. 

This is true for both scored (sign test; Figure 2c) and unscored (Figure 2d) data. From Figure 2c 

we also observe that using a single array PM-MM setup is actually preferable to using technical 

replicates of PM-only data for sensitivities up to 40% (retaining the genomic density and using 

sign test scoring). These findings suggest that true mismatch probes is a straightforward way to 

significantly improving the signal-to-noise ratio of oligonucleotide tiling arrays. 

 
 
Conclusions from the array platform comparison 

 

According to our study, the current form of the Affymetrix tiling microarray platform is better 

suited than the MAS platform for detailed transcription mapping of the human genome. This is 

true in the sense that the agreement of the TARs with known annotation is larger (Figure 2), and 

also in the sense that the exons in multiple-exon transcripts are more coherently transcribed 

(Table 6). From our study, we attribute this foremost to the higher genomic density of the probes 

and the presence of mismatch probes, and how these can be used to reduce the impact of non-

specific hybridization. However, we cannot entirely exclude the effects of the differing labeling 

and hybridization protocols. On the other hand, the two technologies are almost equal in their 

ability to detect novel transcription as indicated by our experimental validation of novel TARs: in 

total 66.1% of the novel MAS-B and 72.9% of the novel Affymetrix placenta TARs are validated 

using RT-PCR (Table 7). TARs supported by both platforms are even more reliable and 85% of 

these are validated. The overlap of genes that are considered transcribed by the different 

platforms is substantial. Experimental validation of a subset of the genes considered transcribed 

by only one of the two platforms indicated that the Affymetrix setup is ahead of MAS in this 

respect as well, although the sample sizes are relatively small. It is also clear that if a gene is not 

detected by either platform, it is less likely to actually be transcribed. Our validation study shows 

that the two technologies are complementary, since much transcription detected by only one array 

platform is in fact verified as transcribed. They also reinforce each other, in the sense that array-

based transcriptional evidence (or lack thereof) from both platforms yields more reliable results.  

 

While the results obtained from the Affy arrays agree better with the annotation and the validation 

results, the advantage of the MAS technology is that it allows for rapid manufacturing of 

customized designs and cost-effective production of small array series. Using true mismatches in 
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the MAS design may improve the results for MAS arrays as well, but there are currently no 

results publicly available. We conclude that oligonucleotide tiling microarrays are suitable to 

detect novel transcribed regions, and that the use of replicates and statistically based scoring 

schemes significantly improves the performance for all investigated oligonucleotide tiling 

microarray-based transcription mapping experiments 

 

 

 

METHODS 

 

Array designs 

 

Affymetrix arrays 

 

Arrays were designed and manufactured by Affymetrix, Inc., using a physical mask. Probes are 

25 bp long with an average genomic spacing of 21 bp, and they cover one genomic strand with 

the exception of repeat regions, as defined by RepeatMasker (A.F.A. Smit and P. Green, 

unpublished). Each probe is present in a “perfect match” and a “mismatch” version. The 

mismatch probe contains a single substitution at the middle probe position (A->T, T->A, C->G, 

G->C). Each array contains in total approximately 1,400,000 features.   

 

MAS arrays 

 

Arrays were designed by us and manufactured by NASA using a NimbleGen maskless array 

synthesizer. Probes are 36 bp long with an average genomic spacing of 36 bp. Positional shifts 

were allowed to avoid self-complementarity at the probe ends (defined as at least 4 consecutive 

complementary nucleotides within the 6 5'/3' nucleotides). The probes cover both genomic 

strands with the exception of repeat regions. The design was done on the Ncbi v34 of the human 

genome build, and each array contains almost 390,000 features.  

 

 
RNA extraction and array hybridization 
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Cell culture 

 

The human NB4 cells were cultured in RPMI  medium containing 20mM L-glutamine (Media 

Tech) and supplemented with 10% fetal bovine serum (Invitrogen), 100 IU/mL penicillin (Media 

Tech) and 100µg/mL Streptomycin (Media Tech). Cells were maintained at 370C under 5% 

CO2/95% air in a humidified incubator. 

 

RNA samples 

 

Total RNA from the human NB4 cells was extracted using Qiagen RNA extraction kit according 

to the manufacturer’s instructions. Human placental poly (A)+ mRNA (obtained from total RNA) 

was purchased from Ambion (Austin, TX). 

 

Protocols 

 

The Supplementary Material contains a detailed description of all three experimental protocols 

(MAS-B, MAS-N, Affy). The MAS-N protocol yields in-vitro transcribed, biotin-labeled,  single-

stranded cRNA, fragmented to an average size of 50-200 bp before hybridization. The MAS-B 

protocol yields Cy3-aminoallyl-labeled unfragmented single-stranded cDNA. The Affymetrix 

protocol yields end-labeled (bio-ddATP) double-stranded cDNA, fragmented to an average size 

of 50-100 bp before hybridization. 

 

 

Scoring schemes 

 

To obtain the desired statistical resolution, MAS array scoring was done pooling the data from all 

three biological samples (for both placenta and NB4). For placenta, this corresponds to seven 

measurements for each probe, and six for NB4. For Affymetrix, three technical replicates were 

used, corresponding to six measurements for each probe (three PM and three MM probes). 

 

Sign test using array median intensity 

 

The intensity of every probe within the window is compared to the median intensity of the slide 

and assigned a '1' if it is above and '0' otherwise. The number of ones within the window is 
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counted and the probability p of finding at least this number of '1's under the null hypothesis that 

half of the probes should be above the median, is calculated. The score assigned to the probe in 

the middle of the window is then defined as score = -log(p). Window sizes of 90-240 bp were 

tried, choosing 160 (5 probes) for the MAS data in this study. No inter-array normalization is 

performed since each intensity is compared to the median intensity on its own array only. A 

variant of this scoring approach is to weight the probes within the window differently, such that 

the central probe(s) becomes more important. For instance, the intensities within the window can 

be multiplied with a discretized gaussian envelope. Several parameter settings were tried (Figures 

S2-S5). 

 

Paired Wilcoxon signed rank sum test 

 

Inter-array normalization is undertaken through dividing each intensity with the array median 

(median normalization). Within a window, all pairwise differences between the intensities of a 

perfect match probe and its corresponding mismatch probe are calculated and ranked. A sign is 

assigned to each rank number depending on whether the PM or the MM intensity was greater, and 

a p-value is calculated from the sum of this signed ranking (keeping track of the rank sum of all 

negative ranks and the rank sum of all positive ranks). The p-value, which is a measure of how 

significantly the distribution of PM-MM differences is skewed to either side around zero, can 

then be used to compute the final score for the probe in the middle of the window (Kampa et al, 

2004; Royce et al., 2005). The corresponding point estimate, the pseudomedian, is obtained by 

taking the median value of all the pairwise averages of PM-MM values within the window. The 

Affymetrix scores used in this study were calculated by Affymetrix using a window size of 101 

nucleotides, corresponding to on average 5 probes in the window. For MAS arrays, the paired 

Wilcoxon signed rank test was applied using the probe corresponding to the reverse strand of the 

exact same genomic locus as mismatch probe (instead of a designed mismatch probe).   

 

 

Segmentation of genomic regions 

 

Maxgap/minrun segmentation 

 

The transcribed regions were generated from scored data. The maxgap parameter was set to 50 

for Affymetrix data and 80 for MAS data. The minrun parameter was set to 50 for both 
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approaches,. Other maxgap/minrun parameter settings were also tested (data not shown). We 

evaluated segmentation thresholds of 70-99th percentile.  

 
HMM segmentation 

 

The emission and transition probability distributions of the four-state HMM for each dataset were 

learned according to the scores of those probes which fall into known gene regions, where the 

score characteristics in the exon regions were used to estimate the parameters for the TAR state, 

and those in the intron regions for the non-TAR state. The parameters for the two intermediate 

transition states were obtained by investigating those probes containing both exon and intron 

regions. These emission distributions were fitted with mixed-Gaussian distributions to generate a 

continuous model. The Viterbi algorithm was utilized to identify TARs. 

 

 

Assessing Transcription of Annotated Genes 

 

The transcription status was assessed using the sign test as described for all annotated splice 

variants of all known genes in the Gencode annotation of regions ENm001-ENm011, accepting 

the exons with labels "VEGA_known", "VEGA_Novel_CDS", 

"VEGA_Novel_transcript_gencode_conf", and "VEGA_Putative_gencode_conf". For the 

exon/intron-based investigations (Table 6, Figure S7), the median probe score for each feature 

was used, with a percentile threshold for on/off calls as defined for each experiment in Table 3.   

 

 

Choosing primer pairs for validation 

 

Primer pairs were generated using Primer3 (Rozen and Skaletsky, 2000). Primers assessing novel 

TARs were required to define a genomic region with no overlap with any Gencode gene. When 

assessing known genes, the exon with the highest p-value based transcription score was chosen. 

Primer3 settings were as default or more stringent, e.g., GC content within 35-65%, primer size 

was forced to be between 20 and 28 nucleotides, and the resulting PCR products to be between 

100 and 200 bp. Validation candidates were checked using UCSC In Silico PCR 

(http://genome.ucsc.edu/cgi-bin/hgPcr) against the Ncbi v35 human genome build to ensure that 

exactly one PCR product was possible; those that generated no or multiple hits were discarded. 
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Three regions that did not contain any verified or predicted transcription were chosen to act as 

negative controls. The experimental protocol of the PCR validation is in Supplementary Material.  

 

 

Accessing data and results      

 

The MAS ENCODE array platform has GEO (Gene Omnibus Expression, 

http://www.ncbi.nlm.nih.gov/geo/) accession number GPL2105; the corresponding data series has 

GEO accession number GSE2720 (placenta and untreated NB4). The Affymetrix anti-sense 

ENCODE array platform has GEO accession number GPL1789; the corresponding data series has 

accession number GSE2671 (placenta) and GSE2679 (untreated NB4). The TAR sets, the 

gene/transcript/exon transcription status, the validation results, and the raw data are available at 

or from http://tiling.gersteinlab.org/platformcmp.  
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FIGURE LEGENDS 

 

 

Figure 1:  

 

Comparing human chromosome 22 transcription data sets with gene annotation. Transcription 

data sets were derived from previously published  studies. They were generated from three 

different microarray platforms: PCR (red squares), MAS (blue diamond), and Affymetrix (green 

circles); in total 15 separate experiments (tissues or cell lines), each represented by a point in the 

figure . We used the RefSeq annotation as a benchmark to assess the quality of the data from each 

experiment. X-axis, the fraction of exonic probes that were identified to be transcribed in 

individual experiments (sensitivity). Y-axis, the fraction of transcribed probes overlapping with an 

exon (specificity). The PCR tiling array data were from placenta, fibroblast and B-cells (Rinn et 

al., 2003; White et al., 2004), the MAS data from liver (Bertone et al., 2004), and the Affymetrix 

sets were collected from Kapranov et al. (2002) representing 11 different cell lines. Arrow, the 

Affymetrix data from U87 cell line is not representative since a long section of chromosome 22 is 

identified as transcriptionally silent, suggesting this particular experiment probably did not work 

or something unusual about U87. 

 

 

Figure 2: 

 

(A) Number of nucleotides in placental TARs as a function of segmentation threshold 

(percentiles). TARs were generated with the maxgap/minrun algorithm based on the scored 

hybridization intensity data using a genomic window and technical replicates: MAS-B scored 

with standard sign test (green); MAS Fwd-Rev scoring using reverse strand as “mismatch” 

(orange), pseudomedian; Affymetrix scored using pseudomedian from PM-MM (blue). The data 

points corresponding to the data sets used in the Comparison section are circled: thresholds are 

90th percentile for Affy and 91th percentile for MAS-B (sign test scoring). X-axis, the percentile 

score threshold for calling a probe “positive”. Y-axis, the number of nucleotides in TARs (in 

megabasepairs). The dashed line corresponds to the number of nucleotides in exons in the 

analyzed region (1,001,238 nts). (B)  Positive predictive value (PPV) versus sensitivity for three 

different ways of scoring and segmenting the MAS-B data, varying the segmentation threshold 

from 70th percentile (to the right in the figure) to 99th percentile (to the left) for the MAS-B set 
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scored with standard sign test (green); scored using reverse strand as “mismatch” (Fwd-Rev 

scoring, orange); and the result from HMM segmentation (Viterbi decoding) of sign test-scored 

data (grey triangle). Sensitivity (x-axis), defined as the percentage of bases in Gencode exonic 

regions that are covered by a TAR. PPV (y-axis), defined as the percentage of bases in the TARs 

that overlap with a Gencode exonic region. (C) PPV versus sensitivity for two different ways of 

scoring the placenta Affy data, using 3 replicates (6 array features) unless otherwise stated: 

Wilcoxon signed rank test (blue circles), and standard sign test (using PM-MM values: cyan 

triangles; using  PM-only values: yellow squares). The result from reducing the genomic density 

of the Affy array to 50% (ie., removing the data from every second probe) is also shown, using 

PM-MM values (3 replicates: cyan triangles, dashed line; single replicate only: grey triangles, 

dashed line).  (D) PPV versus sensitivity for MAS-B and Affy placenta data, varying the 

segmentation threshold from 70th percentile (to the right in the figure) to 99th percentile (to the 

left). The average results of TARs generated from raw intensities from single arrays for Affy (PM 

only (blue squares), and PM-MM (blue triangles; solid line actual genomic density, dashed line 

50% genomic density)) and MAS-B (green squares) are plotted, as well as scored results for Affy 

(blue circles) and MAS-B (green circles). Sensitivity (x-axis), and PPV (y-axis), defined as above.  

The data points corresponding to the data sets used in the Comparison section are circled. The 

hatched area marks where a sensitivity of 30% is achieved for the various sets. (E) PPV for 

placental TAR sets when choosing a segmentation threshold that yields approximately 30% 

sensitivity (hatched area in (B)). Note that the actual sensitivity varies slightly between the sets. 

 

 

Figure 3:  

 

TAR set agreement. (A) Overlap of TAR sets, measured in number of overlapping nucleotides 

(kilobases). All three placenta TAR sets (MAS-B, MAS-N, Affy) and both NB4 TAR sets (MAS-

N and Affy) . R is a measure of the size of the overlap. R = |∩| / |U| (calculated pairwise for the 

three placenta TAR sets). (B) Size of TAR set overlap, expressed in R, for comparisons within 

biological samples but across different array platforms (black lines), and comparisons within 

array platforms but across the biological samples (brown lines). Values in leftmost column of the 

graph are calculated with no further constraints. Second column, only TARs overlapping with 

conserved regions are included. Third column, only TARs overlapping with Gencode exons are 

included. Fourth column, only TARs overlapping with both conserved and exon regions included.      
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Figure 4: 

 

Distribution of Gencode exon coverage by placenta TARs: all exons (MAS-B, green squares, and 

Affy, blue squares); 5’ exons (Affy, blue circles); 3’ exons (Affy, blue triangles). X-axis, the 

fraction to which an exon is covered by a TAR; 0.0-1.0 split up in 10 bins. Y-axis, the percentage 

of exons covered by a TAR to the fraction represented on the x-axis.   
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TABLES 
 
 
Table 1 
 
Outline of hybridization experiments. 
 
--Experiment ID-- Sample Number of technical replicates Hybridization protocol 
    batch1+batch2+batch3 
Placenta MAS-B Poly(A)+ 3+2+2   Bertone et al. (2004) 
Placenta MAS-N Poly(A)+ 3+2+2   derived from manufacturer's 
Placenta Affy Poly(A)+ 3+2+2   manufacturer's 
NB4 MAS-N total RNA 2+2+2   derived from manufacturer's 
NB4 Affy total RNA 2+2+2   manufacturer's 
 
 
 
 
 
Table 2  
 
Correlation of hybridization intensities. Average of absolute values of Pearson correlation coefficients (R), 
calculated from unprocessed hybridization intensities (excluding internal standards and grid alignment 
probes). Between arrays: between technical and between biological replicates. Within arrays: for 
Affymetrix arrays, between corresponding perfect match (PM) and mismatch (MM) values; for MAS 
arrays, between probes representing forward/leading (Fwd) and reverse/lagging (Rev) strands of the same 
genomic location. 
 
--Experiment ID-- ---------------- Between arrays -------------- ---------- Within arrays ------------- 
  techn. repl. biol. repl.  PM vs MM Fwd vs Rev 
Placenta  MAS-B 0.829  0.820  -  0.627 
Placenta  MAS-N 0.955  0.953  -  0.046 
Placenta Affy 0.961  0.937  0.774  - 
NB4 MAS-N 0.959  0.957  -  0.045 
NB4 Affy 0.981  0.983  0.917  - 
 
 
 
 
 
Table 3 
Characteristics of TAR sets used in comparison (data for ENCODE regions ENm001-ENm011) 
           
--Experiment ID-- Scoring method and  --Number of TARs and nucleotides-- Mean/ Gencode cmp. 
  Segmentation parameters ----Stranded------ ---Unstranded--- Median Sens. PPV  
  threshold/minrun/maxgap #TARs #bases #TARs #bases length (%) (%) 
Placenta  MAS-B Sign test win.160 91/50/80  4079 955k 2545 684k 269/180 24.6 35.9 
 MAS-N Sign test win.160 92/50/80  3853 768k 3248 701k 216/144 22.3 31.7 
 Affy PM-MM P-median 90/50/50  - - 3694 629k 170/105 37.0 58.6 
NB4 MAS-N Sign test win.160 93/50/80  3520 697k 2936 632k 216/144 19.1 30.2 
 Affy PM-MM P-median 87/50/50  - - 4674 629k 135/91 26.5 41.8 
 
Gencode exon regions    2563 1018k 2482 1001k 403 
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Table 4 
 
Percentage of genic and intergenic TARs that overlap with conserved regions (>90% of TAR length within 
conserved region) or that do not overlap with conserved regions (<10% of TAR length within conserved 
region).  
    Intergenic TARs Genic TARs 
   Overlaps 
   conserved 
--Experiment ID-- region: NO YES NO YES 
Placenta MAS-B  84%   2% 50%   8% 
Placenta Affy  77%   8% 41% 24% 
NB4 MAS-N  85%   1% 54%   8% 
NB4 Affy  79%   7% 49% 19% 
 
 
 
Table 5 
 
Transcribed placental genes (and in brackets: transcripts) in MAS-B and Affy experiments. A gene is 
considered as transcribed if at least one of its transcripts (splice variants) is transcribed at significance level 
p<0.001, using the sign test to score all transcripts. Probes that to at least 50% are within an exon of the 
transcript are considered. If a transcript/gene has less than 10 probes it will be unable to reach a p-value 
below 0.001, and is in the "Too few probes" category. Total number of genes (transcript) is 264 (1342). 
 
     Affy 
   Yes  No  Too few probes 
 Yes  158 (871) 37 (155)  15 (58) 
MAS-B No      9 (13)  24 (61)    7 (13) 
 Too few probes     2 (51)    7 (36)    5 (44) 
 
 
 
Table 6 
 
Multi-exon coherence of transcripts with more than one exon. Percentage of transcripts where all, some, or 
no exons are considered transcribed according to median intensity of each exon. Exons were called on/off 
based on their median intensity compared with the experiment-specific score thresholds used for TAR 
generation (segmentation), specified in Table 3. The transcription status of entire transcripts was generated 
as in Table 5. 
 
 
--Experiment ID-- All exons Some exons No exons 
All transcripts (1298 transcripts): 
Placenta MAS-B 6.3%  60.7%  33.0% 
Placenta MAS-N 3.4% 56.8%  39.8% 
Placenta Affy 36.8% 47.6%  15.6%   
NB4 MAS-N 1.9% 51.7%  46.4% 
NB4 Affy 15.5% 60.9%  23.7% 
Intersection of placenta MAS-B and Affy transcribed transcripts (869): 
Placenta MAS-B 7.8% 68.9%  23.2% 
Placenta Affy 50.1% 48.3%  1.6% 
Intersection of NB4 MAS-N and Affy transcribed transcripts (543): 
NB4 MAS-N 2.9% 72.9%  24.1% 
NB4 Affy 26.9% 61.9%  10.7% 
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Table 7 
 
Results of experimental validation (reverse transcriptase PCR) in placenta of 144 regions: 98 novel TARs, 
43 exons from known genes, 3 negative controls. 
 
Set Transcription status Overlap with Number Number 
 MAS-B Affy known exon? assessed positive 
TAR on off no  39 22 (56.4%) 
TAR off on no  39 26 (66.7%) 
TAR on on no  20 17 (85%) 
Exons on off yes  17 10 (58.8%) 
Exons off on yes    8 7 (87.5%) 
Exons off off yes  18 6 (33.3%) 
Neg ctrl off off no    3 1 (33.3%) 
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