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ABSTRACT

Genomic tiling microarrays have recently become a popular approach for interrogating the
transcriptional activity of large regions of the genome in an unbiased fashion. There are a number
of key variables affecting the behavior of these arrays. probe length, mismatch probes, the
experimental protocol, the number of replicates, and the overall genomic tiling density. Here we
assess the role of these variables as they are manifest in a number of different platforms. First, we
analyze the degree to which the transcription measured in several published tiling-array
experiments agrees with established gene annotation on human chromosome 22. We observe that
the transcription from very high-density tiling arrays correlates substantially better with annotation
than that from other array types. Next, we perform an in-depth analysis of the transcription
mapping performance in the ENCODE region of the human genome using the two main high-
density array platforms. To best enable this comparison, we hybridize identical biological samples
to the arrays. We then devel op and evaluate a number of ways of scoring the arrays and
segmenting the genome sequence into transcribed and non-transcribed regions, with the aim of
making the platforms most comparable to each other. Finally, we develop a comparison approach
based on looking for agreement with known annotation. Overall, we find that the most important
variable in the experiment is simply the raw number of counts: higher density of the
oligonucleotides on the array and the use of more array replicates, which enables greater statistical
resolution in the scoring process, are crucial for the performance in terms of agreement with
known annotation. In concordance with previous studies, our experiments reveal a significant
amount of novel transcription (outside of known genes), often supported by both platforms. We
validate experimentally a subset of the nove transcribed regions and find that a majority of the
assayed regions from both technologies are, in fact, transcribed. [[ SHOULD WE SAY AFFY IS
BETTER?|]

NOTES:

Gene Expression Omnibus (GEO) accession numbers are provided for the array data.
Supplementary material is provided.



INTRODUCTION

Mapping transcribed regions of the human genomein an unbiased fashion isacrucial step towards
understanding at a molecular level the organization of hereditary information and the specific
functions of each human cell or tissue type. To this end, a number of approaches using genomic
tiling microarrays have been tested and published over the last few years (Kapranov et a., 2002;
Rinn et al., 2003; Schadt et al., 2004; Bertone et al., 2004; Cheng et al., 2005). While the strategies
differ substantially in most of their details, they all share abasic array design idea: to construct an
array whose praobes (the molecules attached to the microarray at the manufacturing) cover al of the
non-repetitive sequence of the genome or genomic region under investigation.

There are five main papers describing tiling microarray-based transcript mapping of regions or the
whole of the human genome, employing four different microarray platforms that all have proven
valuable for mapping transcribed regions.

(i) Kapranov et al. (2002) used a high density oligonucleotide array design containing perfect
match probes of length 25 bp and corresponding mismatch probes with a single mismatch to the
human genome sequence. The arrays were synthesized in situ (directly on the supporting array
material) using physical masks. In Kapranov et al., the arrays covered chromosomes 21 and 22
with probe starting positions spaced every 35 bp (genomic distance), and were hybridized with
samples representing 11 cell lines. The datawas later reanalyzed (Kampaet a., 2003) and amore
sophisticated approach to genomic segmentation was introduced. We refer to this setup as the
Affymetrix (or Affy, for short) tiling array platform.

(i) Rinn et al. (2003) mapped transcribed regions of chromosome 22 with an array of PCR
products (amplicons), tiled basically end-to-end with an amplicon (probe) size range of 300-1,400
bp. Thisarray represents the PCR tiling array platform and was hybridized with placenta poly(A)+
RNA (Rinn et a., 2003) and later with RNA from two cell lines (White et a., 2004).

(iii) Schadt et al. (2004) used tiling arrays where the probes were phosphoramitide synthesized and
attached to the array by the Agilent ink-jet technology (Shoemaker et al., 2001). They tiled the
entire non-repetitive parts of chromosomes 20 and 22 with 60-mers spaced on average every 30
bp.

(iv) Bertone et al. (2004) used oligonucleotide microarrays with lower densities and longer
oligonucleotides (36 bp, spaced every 46 bp) than Kapranov et al. to map transcribed regions of
the whole non-repetitive part of the human genome. The arrays lack mismatch probes and are
synthesized in situ using maskless technologies developed by NimbleGen Systems. This approach
has a so been used to map transcribed regions of rice (Li et al., 2005) , fruit fly (Stolc et d., 2004),
and arabidopsis (Stolc et al., 2005). Werefer to this asthe MAS (maskless array synthesis) tiling
array platform (Singh-Gasson et a, 1999).

(v) Cheng et al. (2005) used an updated version of the Affy platform with an even tighter spacing
of the probes, every 5 bp, and covering 10 chromosomes (approximately 30%) of the human
genome. Transcript maps were generated for polyadenylated cytosolic RNA from eight cell lines
(and for one of these cell line, al'so non-polyadenylated RNA).



Several parameters affect the outcome of a particular tiling experiment. These five papers represent
different choicesin array design and manufacturing, RNA extraction and hybridization conditions,
and data processing methods.

The array design parameters include the length and genomic spacing of the probes, aswell as
considerations concerning the use of mismatch probes or, depending on what experimental
protocol is used, whether to cover one or both genomic strands. For the oligonucleotide tiling
experiments referenced above, the probe length varies between 25-70 bases. Arrays with longer
probes can be hybridized at a higher temperature and are thus supposedly less prone to pick up
cross-hybridization, while providing aless detailed hybridization map (sensitivity/resolution trade-
off). The genomic spacing of the probes is measured between probe initiation points, and could be
anything from the smallest possible distance of one single base up to the length of the probe, or
even alittle more (there is no agreed upper spacing limit as to where an array design ceasesto be a
tiling array). At the design stage it is important to minimize potential cross-hybridization, self-
pairing, and other probe sequence artifacts such as DNA secondary structure formation
(Santalucia and Hicks, 2004). For instance, genomic regions considered as repests (by, e.g.,
RepeatMasker (A.F.A. Smit and P. Green, unpublished)) are usually omitted from the design due
to potential cross-hybridization, and if some flexibility is alowed in the design process, probes
may be chosen so as to achieve better probe thermodynamics. In arrays interrogating annotated
genes only thisis afeasible approach (Mathews et al, 1999; Hughes et a, 2001; Rouillard et a,
2003), but for tiling arrays with high genomic density the options for probe optimization are
usualy limited. Factors pertaining to the manufacturing include what technique is used to attach
the probes to the supporting material, the spacing of the probes on the array dide or chip (the so-
called feature density), and how easily new array designs can be implemented (the so-called design
flexibility).

The experimentd protocols for extraction, labeling, and hybridization of the RNA sampleto the
array vary considerably. Choosing what type of target RNA (tissue or cell ling; poly(A)+ or total
RNA; etc.) to extract and hybridize, and what reactions and conditions, such as temperature and
salt concentration, to use in the hybridization will have an effect on the result. The number of
technical and biological replicatesis another crucial choice, where more replicates possibly
enables greater certainty and detail in the interpretation of the results.

Once thetiling arrays have been designed, manufactured, and hybridized with labeled RNA and
the corresponding hybridization intensities have been extracted, there are a number of waysto
transform the raw intensities into a score for each probe. Thisis usually done employing statistical
methods such as a sign test or the t-test, possibly within in a genomic window and including
replicate arrays in the process. Exactly what methods are avail able a so depends on the design
features of the array, such as the presence of mismatch probes. The segmentation of the genome
into transcribed and non-transcribed regions is then performed based on the scores.

Our goal is to assess different tiling microarrays used for transcription mapping, an area where no
detailed comparison so far has been performed. Previous work on comparing the outcome of gene-
based microarrays include papers by Tan et a (2003), Jarvinen et al (2004), Mah et a (2004), Park
et a (2004), and Yauk et a (2004). Most of these indicate differences in the gene expression
results from different microarray platforms, which have been attributed to differencesin data
processing or inadequate choice of comparison metrics (Larkin et al, 2005).



Here, we set out to identify the strengths and weaknesses of different tiling microarray platforms,
with particular focus on technologies that are able to provide a detailed and comprehensive
transcription map of large genomic regions.

We start by performing a pilot study on a set of aready published chromosome 22 transcription
data from several tiling microarray platforms. This study indicated that amplicon (PCR) arrays are
less suitable to pick up existing annotation when compared to high-density oligonuclectide arrays.

We then describe how we enabled a direct comparison of the two oligonucleotide-based platforms
with a demonstrated ability to cover entire genomes at a high genomic probe density with a
reasonable number of arrays, MAS (Bertone et al, 2004) and Affy (Kapranov et al, 2002): We
hybridized identical biological samplesto the arrays and developed a unified data processing
pipeline. Our microarray experiments are presented in detail, and we describe a number of
statistically based scoring schemes and various genomic segmentation methods, some novel and
some that have been used previously. We assess the different scoring and segmentation
procedures, and the use of replicate arrays, and we a so address the significance of the probe
length, the genomic density of probes, and mismatch probes.

We compare the results from the two oligonucleotide tiling microarray strategies with each other
and with the recently generated Gencode gene annotation (http://genome.imim.es/gencode/), and
discuss possible implications for further transcription mapping studies.

RESULTS AND DISCUSSION

APPROACH

Preiminaries

The ultimate goal of our study is to provide guidance when choosing strategy for the multiple
tissue whole-genome transcription mapping of the human genome that will take place in next
phase of the ENCODE project (The ENCODE Project Consortium, 2004), which aims at
elucidating the functional role of every nucleotide base in the human genome. We achieve this goa
by bringing the concepts presented in the works published by Kapranov et a. (2002), Rinn et al.
(2003), Bertone et al. (2004), and Cheng et al. (2005), into a unified framework to make the
approaches as comparable as possible. Specifically, we compared two different high-density
oligonucleotide array formats, MAS and Affy. They were hybridized with placenta poly(A)+ and
NB4 total RNA samples resulting in five different sets of data (Table 1).

Except for the pilot study, the present study was performed on regions ENm001-ENmO11 of the
human genome defined by the ENCODE consortium. Currently, the ENCODE project isin its pilot
phase, focusing on 44 regions that together encompass 30 Mb of the human genome (whereof
ENmMOO01-ENmO11 covers 11.6Mb or 39%). Roughly 15 Mb correspond to well-studied gene loci
such as the CFTR and beta-globin loci, and the other 15 Mb consist of regions randomly chosen by
stratifying the genome according to the density of known genes and the degree of non-exonic
conservation. In the ENmO001-011 regions, the total number of known Gencode genesis 264,
corresponding to 1342 different splice variants, for an average of 5.1 splice variants per gene. The



number of unique exons (requiring at least one of the start and end positions to differ) is 4147,
which trandates to 6.7 exons per transcript (8938 non-unigque exons).

We follow the nomenclature of Royce et al. (2006), i.e., probes refer to the molecules attached to
the microarray at the time of manufacturing, and target or sample isthe RNA extracted from a
biological entity (tissue or cell line) and which is allowed to hybridize to the probes on the
microarray.

Pilot study: comparison of public chromosome 22 tiling data

We carried out an initial comparison of previously published array-based transcription maps of the
(gene-dense and well-annotated) chromosome 22 generated from PCR-based tiling arrays (Rinn et
al., 2003; White et al., 2004) and two oligonucleotidetiling array platforms (Bertone et al., 2004;
Kapranov et a., 2002) (Figure 1). These data sets were generated from 15 separate experiments
(tissues or cdl lines), representing three different microarray platforms (PCR, MAS, and
Affymetrix). We used the RefSeq annotation (Pruitt et al., 2005) as a benchmark since Gencode
annotation is not yet available for the entire chromosome 22. For each experiment, we measure the
consistency between gene annotation and transcribed regionsidentified by individua studies. The
transcription data from oligonucleotide arrays (MAS and Affymetrix) clearly agrees better with the
Ref Seg exon annotation than the data from PCR arrays, an observation that holds true across all
cell lines and tissues (Figure 1). Thus, although the results have to be interpreted with some care
since they were not obtained using the same biological samples or scoring schemes, we conclude
that PCR-based arrays are clearly less useful for adetailed transcription mapping study, in part
because of their lower genomic resolution. PCR-based arrays aso have a significantly lower
feature resolution on the array compared with arrays with in-situ synthesized probes. Therefore,
we focus our subseguent experimenta and analysis efforts on the oligonucleotide tiling
microarrays.

Array design and experimental outline

An oligonucleotide array containing 36 bp oligonucl eotides that tile both strands of the
nonrepetitive sequence of the ENCODE regions end-to-end (allowing some positional shifts to
reduce self-complementarity) was prepared using maskless photolithography, MAS (maskless
array synthesis). The MAS arrays cover both strands of the ENCODE regions ENmM001.ENmO011
(11.6 Mbases). An Affymetrix ENCODE array, which covers one strand of the entire ENCODE
region on one array, tiled with 25-mer oligonucleotides with an average distance between
oligonucleotide starts of 21 bases was obtained from the manufacturer. This array has both perfect
match (PM) and mismatch (MM) probes.

In total, five different hybridization experiments were carried out (Table 1): Two different RNA
targets (placenta poly(A)+ RNA and NB4 total RNA) were hybridized to the two different array
types, MAS and Affymetrix. The Affymetrix arrays were hybridized according to the
manufacturer's recommendation (experiment id: Affy). The maskless arrays were hybridized using
two different experimental protocols, the protocol described in Bertone et al., 2004 (experiment id:
MAS-B) and avariant of the manufacturer's recommended protocol (experiment id: MAS-N). The
protocols differ at many stages, e.g., the Bertone protocol generates cDNA while the other MAS
protocol generates cRNA, which is also chemically fragmented prior to hybridization (see



Methods for afull description). The placental RNA was hybridized using both MAS protocols
whereas the NB4 sample was only hybridized according to the MAS-N protocol (Table 1).

Generating comparable maps of transcriptionally activeregions (TARS)

To bring the data generated using the two different technologies into a comparable form, we
developed ways of applying similar post-processing procedures to the data. Specifically, we
applied aframework for scoring hybridization intensities and for segmenting thetiles into
transcribed and non-transcribed regions. This framework congtitutes an extension of previously
published methods for scoring of hybridization intensities and segmentation of genomic regionsin
an oligonuclectide tiling microarray transcription mapping experiment.

(i) Development of consistent scoring schemes

For each spot on the microarrays, a hybridization intensity was collected. It is usually
advantageous, for oligonuclectide tiling arrays, to aggregate the intensities from probes that are
adjacent to each other in genomic space (Kampaet a., 2003; Cheng et a., 2005; Royce et al.,
2005). Thisisdone by applying a sliding genomic window encompassing multiple probes and
converting the intensities within the window into a score, which is assigned to the probein the
middle of the window. Using a windowed approach intuitively makes sense as we are ultimately
interested in obtaining a set of regions whose intensities are significantly higher than the
background, and we would expect those regions to be of the same length as exons (150-200 bp on
average, depending on exon type) rather than of single probes (25-36 bp in this study).

We developed new ways of scoring the MAS array hybridization data, and describe thesein a
framework of three levels of scoring: (a) single probe intensities, (b) robust statistics within a
dliding window, and (c) robust statistics using paired datawithin a sliding window (Cawley et dl.,
2004). In addition to the diding window approach, the use of replicate arrays is beneficial in order
to reduce the hybridization noise; the more replicates the greater the statistical power in the
scoring. Hence, it isimportant to construct scoring models that easily can take into account
replicate experiments.

(a) Single probe intensities

Thisis simply using the raw intensities from the arrays, possibly normalized. By wisely choosing
methods and parameters to deal with the genomic segmentation (see below) it is possible to obtain
reasonable results from this approach (Bertone et a., 2004). Both intra- and inter-array
normalization of the microarray data may be important, depending on the actual structure of the
data, to insure commensurability of the data used (Royce et al., 2005).

(b) Robust non-parametric statistics within a sliding window
We employed the sign test for scoring the MAS array data. It is an attractive test sinceit is

statistically robust, which is important because the array data are inherently noisy, and it does not
assume that the data are normally distributed. By comparing each intensity within a sliding
genomic window of a specified size with the array median, it will yield a measure or a score of
how significant the intensities are (see Methods for details). It is easy to include multiple replicates
in this scheme: each probeis simply compared to the median intensity of its own array, and no
inter-array normalization is necessary. On the other hand, the number of available score levelsis
restricted due to the discreteness introduced by the counting (it is a binomial distribution), and it
may not be sufficient in situations where discerning the top scores (say, top 5%) from the near-top
scores isimportant.



With an average genomic spacing of 36 bp between the starts of two adjacent probes, a window
size of 160 bp encompasses five probes (allowing for some positiona shifts). Using asmaller
window (90 bp) results in insufficient statistical resolution (not enough score levels available). A
larger window size (240bp) enables greater statistical resolution, but is not suitable to pick up
transcribed regions the size of an average exon (150-200 bp). Clearly, the resolution of the array
(genomic spacing of probes) isimportant in order to obtain both statistical power and reasonably
distinct borders between transcribed and non-transcribed regions.

When thereis paired data available, such as the perfect match (PM) and mismatch (MM) probe
intensities of Affymetrix tiling arrays, the paired Wilcoxon signed rank test is a more powerful
option than the standard sign test. It was first used with tiling microarrays by Cawley et a. (2004)
to score ChlP-chip data, and it is also immediately applicable to transcription dataasis shown in
Kampaet al. (2004) and Cheng et al. (2005). All pairwise PM-MM differences within the window
are calculated and a p-value, which essentially measures how significantly the distribution of PM-
MM differences is skewed to either side around zero, is calculated. While thisis analogous to the
standard sign test (above), it has considerably greater statistical power and it can aso be argued
that the mismatch setup is able to account for at least some of the cross-hybridization occurring on
the array. For the transcription mapping reported in Kampa et al. (2004) and Cheng et al. (2005),
the corresponding point estimate, called the pseudomedian, was used instead.

Given that the maskless arrays did not contain proper mismatch probes, we tried using the
complementary strand oligo of the MAS arrays as a*“mismatch” probe (to mimic the PM/MM
setup). This use of this approach, which we call the Fwd-Rev scoring, isjustified on the MAS-B
(placenta) data, since the correlation between forward and reverse strand probesis close to the
correlation between PM and MM probes for the Affy placenta data (Table 2, and below).

Theinput datatype (e.g.: PM only, or PM and MM; the number of replicates), the agorithm (e.g.:
the standard sign test), and, if applicable, the corresponding genomic window size (e.g.: 160 nt)
together specify a scoring scheme.

(i) Segmentation of genomic regions

Having obtained one score value per oligonuclotide probe, the next step is to construct a
transcription map based on these scores, or, in other words, to segment the genomic regions into
transcribed and non-transcribed regions. A couple of specific names have been used to denote
transcribed regions derived from microarray tiling experiments: the term “transcriptionaly active
region” (TAR) wasfirst used by Rinn et . (2003) and also in Bertone et al. (2004), while
“transfrag”, which stands for transcription unit or fragment, was introduced by Kampa et al. (2004)
and later used in Cheng et al. (2005). Here, we will mostly use theterm TAR, which pertains to
any kind of tiling array-derived transcribed region regardless of overlap with genes, exons, or
other genomic features.

M axgap/minrun segmentation

In Bertone et a. (2004), transcribed regions were generated by demanding at least 5 adjacent
probes with araw intensity in the top 10% of all intensities of that dlide; any such region was
called aTAR. Thus, the threshold above which to consider a probe “positive” was the intensity
value corresponding to the 90 percentile, and any probe that was below the threshold immediately
terminated the transcribed region. In the Affymetrix series of publications (Cheng et al., 2005;
Kapranov et a., 2002), the threshold for generating TARs was based on setting a maximum false
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positive rate of the hybridization levels of negative bacterial controls, thus enabling an optimized
percentile cutoff for each array set and biological sample. Furthermore, gaps were allowed, such
that a maximum stretch of a certain number of nucleotides (called maximal gap, or maxgap for
short) with a score below the threshold was allowed between probes whose scores were above the
cutoff. Typicaly, the maxgap parameter allows one or two probes to be below the cutoff, while
still being incorporated into the TAR. Thetotal length of a TAR is then demanded to be of at least
acertain length (aminimal run, or minrun), which depending on the tiling density and the actual
value of the minrun parameter corresponds to at least two, and possibly more, probes for each
TAR or transfrag. The threshold, the minrun value, and the maxgap value are the three parameters
that need to be specified for the maxgap/minrun segmentation algorithm.

HMM segmentation
As an alternative to the maxgap/minrun segmentation, a hidden Markov model (HMM) (Rabiner,

1989; Li et al., 2005; J and Wong, 2005) was employed to predict and score TARS, given either
the raw intensity data of each probe, or the derived scores (see above). Each probe can bein one of
the four HMM states (TAR, non-TAR, and two other intermediate transition states), emitting the
assigned intensity/score (i.e., the emission spectrum is continuous). The parameters of the HMM
can be estimated by learning from the sequences of probes which fall into regions with known
transcription characteristics (e.g., according to gene annotation). The HMM can then be applied to
sequences of probes bearing the same scoring protocol to determine the most likely corresponding
state sequence, in order to identify TARs. For the HMM segmentation approach, the decoding
algorithm (e.g.: Viterbi decoding) needs to be specified.

Description of comparison pipeline

We have analyzed the five microarray tiling experiments (Table 1) at multiple stages throughout
the data processing pipeline.

(i) Thefirst comparison is on the level of the raw data. A necessary but not sufficient condition for
asuccessful microarray experiment is satisfactory hybridization reproducibility between technica
replicates. We calculate a simple correlation coefficient between the hybridization intensities of
technical replicates within each platform, to assess the level of basic experimental reproducibility.

(i) Before proceding to the next level, a decision has to be made as to what TAR sets to compare.
As outlined in the previous section about TAR map generation, this includes decisions about what
scoring algorithm, what segmentation method, and what corresponding parameter settings to use
for each of the five experimental data sets.

(iii) Theresulting sets of transcribed regions are compared with each other, both within and across
microarray platforms and biological samples, and the degree of overlap between detected
transcription and exon annotation is measured. There are two main measurements. how much of
the known annotated exons are covered by a detected transcribed region ("sensitivity"), and the
degree to which the detected transcription falls within known exons (" positive predictive vaue",
PPV). The PPV is defined as the number of nucleotidesin TARS that overlap with exonic regions,
divided by the total number of nuclectidesin the TAR set (in papers focused on gene finding this
is sometimes referred to as "specificity™). The sensitivity is defined as the number of nucleotidesin
annotated exons that overlap with TARS, divided by the total number of nucleotides in annotated
exons. For the annotation comparison, we have chosen to use the Gencode annotation. The
Gencode project is apart of ENCODE and aims at finding all potential protein-coding gene
candidates in the ENCODE regions, and to experimentally verify or reject these candidates using
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paired-exon PCR and RACE. Although not perfect, we believe that the Gencode set of genes
constitutes the most comprehensive and accurate gene annotation available for the ENCODE
regions. Furthermore, we assess the degree of evolutionary conservation of the TARs by matching
them with a set of conserved regions. The overlap is calculated both for TARS that fall within
known transcribed regions (i.e., within Gencode exons) and for TARs that fall outside of those
regions (novel TARS).

(iv) The transcription status was assessed for all annotated splice variants of all known genesin
the Gencode annotation of regions ENmM001-ENmO11 (accepting the exons with labels
"VEGA_known", "VEGA_Novel CDS', ")WEGA_Novd _transcript_gencode conf", and
"VEGA_Putative_gencode conf"). For each splice variant, the scores of all exon overlapping
probes were collected and the transcription status assessed using the sign test (by comparing each
individual score with the median score) (Bertone et a, 2004). A gene was considered transcribed if
at least one of its splice variants was deemed transcribed at the chosen significance level. We also
assess the multi-exon coherence of each transcript, based on the median intensity score of each
exon within the transcript.

(v) Asafinal step, we performed experimental validation of the resultsin placenta (MAS-B and
Affy), using reverse transcriptase-PCR of a subset of the novel TARS, both TARS unique to either
platform and TARSs that were present in both. We aso performed experimental validation of a
number of genes with differing transcription status in the two platforms, including as a negative
control a set of genes that were considered off in both platforms. PCR primers were chosen using
Primer3 (Rosen and Skaletsky, 2000) so that any primer pair only had exactly one genomic match.

OUTCOMES
TAR generation pipeline

For the minrun/maxgap segmentation, the minrun parameter was set to 50 bp, which means that the
minumun length of a TAR is 50 bp. Thus, at least four probes have to be included in an Affymetrix
TAR and three for the MAS array TARs. Roughly 5% of all unique Gencode exons are shorter
than 50 nucleotides and the loss in sensitivity due to this parameter setting will be comparable.

The maxgap parameter was set to 50 for the Affymetrix data and 80 for the MAS data, effectively
alowing theinclusion ina TAR of a probe whose score is below the score threshold, if it is
flanked immediately on both sides by probes with scores above the threshold. Other maxgap
settings were tested but the results did not improve in terms of gene annotation agreement (data not
shown).

As expected, the segmentation threshold directly influences the size of the resulting TAR sets
(Figure 2a). The step-like pattern in this figure is because of the finite number of available scores.

Different scoring schemes give different results, and also differ from the results obtained using
single probe intensity scores (Figure 2b and, in Supplementary material, Figures S2, $4, and Sb).
Asisclear from Figure 2b and Figure S2a, the standard sign test provides the best performance for
MAS-B (placentad) if a sensitivity at or above 25% is required, but its improvement in terms of
PPV when increasing the segmentation threshold is modest. The Fwd-Rev scoring is more
sensitive to the choice of threshold, and it performs better than the sign test scoring (Figure 2b) for
segmentation thresholds above the 94" percentile. For the standard sign test, we tried applying

10



different weights to the probes within awindow, e.g., multiplying each score with a discretized
Gaussian, but no improvement in performance was recorded (Figure S2 in Supplementary
material).

The more elaborate scoring models using replicates outperform the single probe intensity scoring,
asisseen for both Affymetrix and MAS data in Figure 2d and Figure S3, where the resulting TAR
sets are compared to the Gencode annotation. For the Affymetrix data, it is also clear that the use
of mismatch probes improves performance, in particular for the NB4 total RNA experiment
(Figure S3). These two points (elaborate scoring with replicates and the advantage of using
mismatches) are further illustrated in Figure 2e, where the positive predictive values (PPV) of the
TAR sets when choosing a segmentation threshold that corresponds to a sensitivity of 30% have
been plotted.

The analysis of different segmentation a gorithms reveals that the TAR sets generated by the non-
parametric HMM segmentation (Viterbi decoding) are biased towards a high sensitivity (Figure 2b
and Figure S2) where it performs on par with the minrun/maxgap segmentation algorithm.

Results from comparison pipeline
(i) Replicate comparison of unprocessed hybridization intensities

For the MAS arrays, we obtained Pearson correlation coefficients of 0.83 and 0.96 for placenta
using Bertone and our variant of the manufacturer's protocol, respectively, measured on pairwise
comparison of the raw hybridization intensities of the arrays. The corresponding result for
Affymetrix was 0.96, and NB4 results were similar (Table 2). We a so note that the correlation of
PM and MM probes for Affy placentais close to the correlation of Fwd and Rev strand probes for
MAS-B.

(i) Choose TAR sets to include in comparison

For each of the five experiments, the best-performing scoring and segmentation algorithm was
chosen, and the segmentation threshold was tuned to generate TAR sets of roughly equal size, as
measured in number of bases (Table 3; circled data pointsin Figure 2a and Figure S1). To enable a
comparison of the TAR sets, MAS array TARS on the two strands were merged into one set of
non-stranded TARs for each biological sample (TARs from the Affymetrix arrays do not have
strand information). For MAS, the standard sign test scoring was chosen, and for Affymetrix, the
Wilcoxon signed rank test (pseudo-median). The segmentation thresholds range from the 87" to
the 93 percentiles for the various sets. The resulting sizes of the sets included in the subsequent
comparison is in the range of 629kbp to 701kbp, yielding between 2545 and 4674 TARs. The total
number of bases in exons in the analyzed regions (ENmMO01-ENmO011) is 1001kbp, which means
that the chosen threshold levels can yield at most a sensitivity of 0.63-0.70. Thisis a theoretical
upper bound on the sensitivity reflecting the fact that not all genes are transcribed at all timesin all
tissues. Assuming further that approximately 25% of the detected transcription is novel and/or
noncoding, and thus not present in the Gencode annotation, we expect to see a sensitivity not
surpassing 0.47-0.53 while the positive predictive value has an upper bound at 0.75. The TAR
length distributions are similar for the five sets in that they are all unimodal and decay roughly
exponentially (Figures S6-S7).

(iii) Compare TAR sets with each other and to Gencode annotation and conserved regions

11



The overlap between the placentaand NB4 TAR sets from the different experimentsis shownin
Figure 3a. As ameasure of the overlap between the sets we calculate aratio R = |N|/|U] for each
pairwise comparison. For two sets that agree completely, R equals 1. Wefind that the MAS-B
placenta TAR set agrees better with the Affy placenta TAR set (R=0.22, overlap size is 236k) than
the MAS-N TAR set does with Affy (R is0.17 for placentaand 0.16 for NB4). Between 62% and
72% of the nucleotides in the placenta TAR sets are exclusive to a particular experiment (pairwise
comparison MAS-B vs. Affy and MAS-N vs. Affy). For the NB4 total RNA TAR sets, the overlap
was 177k (Figure 3a), meaning that more than 70% of the nucleotidesin either NB4 TAR set are
exclusive to that set.

The overlaps across the different biological samples but within the experimental technologies are
larger than the overlaps within the biological sets across experimental technologies, Figure 3b. An
extreme exampleis the placentaMAS-N and NB4 MAS-N sets which agree much better (dashed-
dotted brown linein Figure 3b; R=0.67) than NB4 MAS-N and NB4 Affy (solid black linein
Figure 3b; R=0.16). Restricting the overlap calculations to the subset of TARSs that overlap
conserved or exonic regions, or both (i.e., moving to the right in Figure 3b; see also Figure S8),
yields higher values of R for the within-biological sets comparisons (black lines) and for the
within-Affy comparisons (solid brown line), but not for the within-MAS comparisons. Thus, there
is no enrichment for conserved regions or known genes within the common parts of the MAS TAR
sets.

The agreement with annotation (Gencode exons) is better for the Affy sets than for the MAS sets,
both placenta and NB4. While similar sensitivity levels are achievable, the Affy TAR setsreach
significantly higher PPV's (Figure 2d and Figure S3). Likewise, the agreement is larger for the
placenta sets (MAS-B, MAS-N, and Affy) than for the NB4 sets (MAS-N and Affy) (Table 3 and
Figure 2d and Figure S3). The NB4 sets agree less with annotation than the placenta sets from the
same platform. The NB4 is atotal RNA sample and thus also introns may be labeled and show up
as transcribed, in part explaining this behavior.

Most Gencode unique exons are either fully covered by a TAR (>90% of exon nucleotides overlap
withaTAR) or not covered at al (<10%), asis seen by the bimoda distributionin Figure 4. This
istruefor al TAR sets (Figure S9). Looking separately at the 5' and 3' exons, we notice a 3' bias
for the Affymetrix poly(A)+ data (but not or the MAS data (Figure S9)), detecting 32% of the 3
exons and 25% of the 5' exons entirely.

The TAR sets were also compared with a set of conserved elements, generated from the union of
conserved regions called by Threader Blockset Aligner (TBA) (Blanchette et al., 2004) and
MLagan (Brudno et al., 2003) (Table 6 and Figure S10). The union set of conserved elements
corresponds to alittle over 10% of the human ENCODE regions. We investigated for al five TAR
sets the degree to which the TARs overlapped with a conserved region and find that most of the
novel (intergenic) TARs are not conserved according to this measure. Only 7-8% of Affymetrix
novel (intergenic) TARs and 1-2% of MAS novel TARs overlap fully (>90%) with the conserved
regions.

(iv) Transcription status of known genes and exons

The transcription status of al known splice variants (transcripts) of the 264 Gencode genesin the
regions ENmOO1-ENmO11 was assessed (Table 5) as outlined in the Approach section above. A
geneisconsidered as transcribed if at least one of its transcriptsis transcribed at significance level
p<0.001. If atranscript has less than 10 probesit will be unable to reach a p-value below 0.001,
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and if thisistrue for al splice variants of agene, that geneisin the "Too few probes' category
(Table5). Intotal 158 (69.3%) genes are considered transcribed according to both platforms, and
221 (83.7%) according to at least one platform (210 in MAS-B, 169 in Affy), and similar
percentages are obtained on the transcript level. The coherence of transcription of exonsis
assessed and the results are in Table 6. In general, the multi-exon coherence (all exonson) is larger
for the Affy sets. Furthermore, there is a significant enrichment of multi-exon coherencein
transcripts that are considered as transcribed in both platforms (thisis true for both placenta and
NB4 data). One exampleis the Affy NB4 sets for which in total 15.5% of all transcripts have all
their exons transcribed, while 26.9% of the transcripts that are on in both the Affy and the MAS-N
NB4 sets have dl their exons transcribed.

(V) Experimental validation of novel TARs and known genes

Experimental validation of the microarray transcription datais crucia to the interpretation of the
results. First, we chose 96 novel placenta TARsto verify employing reverse transcriptase PCR; 39
TARs that were exclusively found on the MAS platform (placenta MAS-B), 37 that were
exclusively found on the Affymetrix platform, and 20 that were common to both. All TARs were

TO UPDATE THE NUMBERS...]] 7?22/??7?7? (???7%%) of both the investigated Affymetrix novel
TARs and of theinvestigated MAS novel TARs were verified with this RT-PCR approach, Table
6. [WAITING FOR RESULTS]

Second, a number of known genes were also validated, using the same experimental method and
criteriafor PCR primer picking as above. Genes that were completely off (i.e., none of its splice
variants was considered transcribed according to the criteria outlined in (iv)) according to one of
the platforms but not the other were assessed (in total 17 On-MAS-B/Off-Affy genes and 8 Off-
MAS-B/On-Affy genes) as well as 18 genes that were completely off in both, Table 6. The results
indicate ... ... ... [WAITING FOR RESULTS]

DISCUSSION

In thiswork we have attempted to assess the suitability of two oligonucleotide tiling microarray
strategies for transcription mapping in human. Wetried to overcome the inherent differences
between the approaches through using the same biologica samples and a unified scoring and TAR
generation procedure, and we have produced and compared several sets of transcribed regions. We
conclude that many factors are significant for the outcome of the experiments. Here, we discuss
further some key parameters and findings.

Experimental considerations, array noise, and technical replicates consistency

In the comparison between the two microarray tiling platforms, the Affymetrix strategy yielded
TARs that better agreed with the Gencode annotation (Figures 2d, 2e, 4, S3). An explanation for
this would be a higher noise level for MAS arrays. The Pearson's correlation coefficients between
raw intensities of technical replicates of MAS and Affymetrix arrays (Table 2) are strikingly
similar, though, which pointsto the MAS array noise being systematic rather than random. This
could for instance be due to probe sequence artifacts, sample contamination (after it was split into
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two aliquots for the MAS and Affymetrix experiments), sub-optimal hybridization parameters or
protocol -dependent |abeling artifacts (Nazarenko et a, 2002). A comparison of the NB4 total RNA
and placenta poly(A)+ sets within the two platforms as presented in Tables 2-4 and 6, and in
Figure 3, reveals that the coherence between the platforms, and between the results of each
platform and annotation, is larger for the poly(A)+ sets. For total RNA, aso introns may be labeled
and it isthus not surprising that the agreement of TARs with gene annotation is lower for total
RNA sets than for poly(A)+ sets given that the evaluation of TAR sets was based on TAR overlap
with exons only, and given that the TAR sets for comparison were generated in order to be of
similar size regardiess of RNA type. While this explains the worse performance of the NB4 sets
compared to placenta, it does not explain the differences in performance between MAS and Affy
arrays. A thorough investigation of the behavior of different types of RNA is presented in Cheng
et a (2005). A related issueis the cross-hybridization. For atranscription experiment, the amount
of different RNA species present in the poly(A)+ or total RNA sampleis large. Even though the
probes, in our case, only represent part of the ENCODE regions, the target RNA is derived from
the entire genome. Thus, cross-hybridization is potentially present at rather high levels. Evenif an
array appears to be flawless (even hybridization over the array surface, no scratches or dust
particles), the derived results are sometimes significantly worse, in terms of, e.g., overlap with
annotated genes (for transcription mapping arrays), than other arrays hybridized with the same
sample RNA at the same time and under the same conditions. A suggestion of an intra-array
measure was recently presented by Kim et al (2006).

Genomic spacing and length of probes

The spacing, or "genomic density”, of the probesis directly related to the size of the objects the
experiment is aimed at detecting viathe size of the sliding genomic window that oftenisused in
the scoring procedure. To gain areasonable statistical power in the scoring and genomic
segmentation approaches, the window must encompass several probes, and the greater the genomic
distance between the probes the greater the required window size. In a transcription mapping
experiment, awindow that is significantly larger than the average size of an exon isnot desired
since it would likely contain both probes that represent actual transcription (exons) and probes that
belong to truly non-transcribed regions (introns). In addition, the genomic probe spacing affects
how well the endpoints of the discovered objects can be defined. The theoretica uncertainty of
where atranscribed region starts and ends depends to some extent on the experimental (e.g.,
fragmentation) and hybridization (e.g., temperature) conditions, but its upper limit is the genomic
distance between two adjacent probes. Initialy, we hypothesized that the probe length would have
asignificant effect on the results, where longer probes would result in cleaner data since longer
probes are more specific to a unique genomic location and thus less sensitive to cross-
hybridization. We did not see any such effect, though this is to some extent dependent on the
hybridization conditions, longer prabes can be hybridized at a higher temperature with the same
expected sensitivity. It isaso true that at a particular temperature longer oligonucl eotide probes
will allow RNA with a greater number of mismatches to hybridize to the oligo, thusincreasing the
risk of cross-hybridization. An interesting idea s to construct an array with probes of variable
length, such that the melting temperatures of all probe sequences on the array liein avery narrow
range (isothermal array).

Therole of mismatch probes
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Using mismatch probes generates significantly better results (Figure 2¢, 2d and Figure S3), in
particular when the target RNA is total RNA as opposed to poly(A)+ RNA. We speculate that the
hybridization noise levels, for instance from labeled introns, are higher for total RNA experiments
and that the MM probes then add crucial information when discerning true hybridization from
background or cross-hybridization. The Affy arrays have mismatch probes, the MAS arrays don't.
A simulation of mismatch probesisto use the reverse strand probes, that are present only on the
MAS arrays, as mismatch probes, and this approach yields indeed improved performance for the
MAS-B data as opposed to single intensities, but generally not compared with standard sign test
scoring (below). It is our belief that the use of true mismatch probesis a straightforward way to
significantly improve the signal-to-noise ratio of oligonucleotide tiling arrays.

Scoring and replicates

We tried several scoring approaches for our array data and found that there were significant
differences between using single probe intensities and a probe score based on replicate arrays.
Using the standard sign test scoring was ultimately deemed the best way of scoring the MAS data,
while the best way of Affy scoring was to use the pseudomedian of the Wilcoxon ranked sign test.
Wetried, unsuccessfully, to improve the MAS scoring through putting more weight on the probes
in the middle of the window. For MAS-B data, using a Fwd-Rev scoring algorithm (Wilcoxon,
pseudomedian), as a surrogate for atrue PM-MM scoring, improved agreement with annotation for
high maxgap/minrun segmentation thresholds. Exploring the Affy data showed that the sign test
performed quite badly on PM data only, while it approached the Wilcoxon test performance on
PM-MM data (Figure 2c). In fact, the PM-only scoring of Affy with the standard sign test (ie.,
identical scoring asthe MAS sign test) resulted in a behavior very similar to that of the MAS —a
relatively low agreement with annotation, and reduced impact of increasing the segmentation
threshold (PPV rather insensitive to threshold increases). This indicate that mismatches can be
very useful. We see that reducing the genomic density of the Affy array to 50% (exclude every
other probe on the arrays before scoring) is detrimental to the performance as well.

Segmentation into transcribed/non-transcribed regions

We also tried different segmentation methods. The maxgap/minrun algorithm that was first
presented in Kampaet al. (2003) and that we have used hereis a straightforward way of using
neighboring information to partition the genomic region under study into transcribed and non-
transcribed regions. Different parameter settings (threshold for calling a probe “ positive’, maxgap,
minrun) were tried and evaluated. We also tried a more sophisticated approach by using hidden
Markov moddls, HMMs, and observed similar results. The HMM uses a continuous emission
spectrum and can be classified as akind of peak-fitting algorithm. A possible improvement of the
HMM segmentation may be realized by using a Generalized Hidden Markov Model (GHMM,
ak.a. Hidden semi-Markov Model), where the length distribution of transcribed regionsis
explicitly modeled, instead of an HMM in the algorithm. Further scoring can be done by
computing the posterior probabilities P(mi = k | x) for the predicted states on probes, where 1 isthe
state of theith probe, k is the predicted state, and x is the whole intensity/score sequence (the
emitted values). These scoring data indicate the confidence in every single prediction and may be
used to refine the TAR prediction results obtained by using an HMM method.

Assessing thetranscription of known genes
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The overlap of genes considered transcibed by both platformsis substantial, and the multi-exon
coherenceis clearly higher for the Affy sets than for the corresponding MAS sets. The figures
pertaining to the transcription of individua splice variants presented in Table 6 (in parenthesis) are
probably overestimates since the overlap between different variants of the same gene ofteniis
substantial, and wouldn't necessarily be detected by our sign test based transcription assessment of
the transcripts. Unless each exon/intron junction is experimentally tested (using, e.g., RACE), itis
impossible to know the true transcription status of each variant of a gene. The samereasoning is
applicable to the column labeled " Some exons' in Table 6: several of the transcripts ending up in
this column are most likely not transcribed at all. Here, areliable quantitative measure of the
transcription of each exon would be helpful. Basing the on/off calls for the exons on asign-test
generated p-value is a problem since most exons are not long enough and thus don't have enough
probes to yield significant p-values, which is why we chose to use the median score for each exon.

Conclusions

In its current form, the Affymetrix tiling microarray platform is better than the MAS platform for
detailed transcription mapping of the human genomein the sense that the agreement of the TARS
with known annotation is larger (Figure 2), and also in terms of coherent transcription of all exons
in multiple-exon transcripts (Table 6). From our study, we attribute this foremost to the use of
mismatches and a higher genomic density of the probes, while we cannot entirely exclude the
effects of the differing labeling and hybridization protocols. On the other hand, the two
technologies are roughly equal in their ability to detect novel transcription as indicated by our
experimental validation of novel TARs (checking for false positives) [[CHECK THISWHEN THE
RESULTS ARRIVE]] (Table 7). The overlap of genes or transcripts that are considered
transcribed by the different platformsis substantial, and again the experimenta validation of the
differences (checking for false negatives) does not indicate that either platform is superior
[[CHECK THISWHEN THE RESULTS ARRIVE]]. Furthermore, the MAS technology allows
for rapid manufacturing of customized designs and cost-effective production of small array series
which may aso be of importance in the choice of oligonucleotide microarray platform. We
conclude that oligonucleotide tiling microarrays are suitable to detect novel transcribed regions,
and that the use of replicates and statistically based scoring schemes significantly improves the
performance for all investigated oligonucleotide tiling microarray-based transcription mapping
experiments.

METHODS

Array designs

Affymetrix arrays

Arrays were designed and manufactured by Affymetrix, Inc., using aphysical mask. Probes are 25
bp long with an average genomic spacing of 21 bp, and they cover one genomic strand with the

exception of repeat regions. Each probeis present in a“ perfect match” and a“ mismatch” version.
The mismatch probe contains a single substitution at the middle probe position (A->T, T->A, C-
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>G, G->C). The probes were originaly designed from Nchi v31 of the human genome build, and
mapped forward to Ncbi v34 (hgl6) using the LiftOver tool at the UCSC Genome Browser. Each
array containsin total approximately 1,400,000 features.

MAS arrays

Arrays were designed by us and manufactured by NASA using a NimbleGen maskless array
synthesizer. Probes are 36 bp long with an average genomic spacing of 36 bp, in principletiled
end-to-end. Positional shifts were allowed to avoid self-complementarity at the probe ends
(defined as at least 4 consecutive complementary nucleotides within the 6 5/3' nucleotides). The
probes cover both genomic strands with the exception of repeat regions, as defined by
RepeatMasker (A.F.A. Smit and P. Green, unpublished). The design was done on the Nchi v34 of
the human genome build, and each array contains almost 390,000 features.

RNA extraction and array hybridization

In total three different placenta poly(A)+ biological batches and three different NB4 total RNA
batches were used, with the number of technical array replicates according to Table 1.

Cdll culture

The human NB4 cells were cultured in RPMI medium containing 20mM L-glutamine (Media
Tech) and supplemented with 10% fetal bovine serum (Invitrogen), 100 IU/mL penicillin (Media
Tech) and 100pg/mL Streptomycin (Media Tech). Cells were maintained at 37°C under 5%
CO,/95% air in a humidified incubator.

RNA samples

Total RNA from the human NB4 cells was extracted using Qiagen RNA extraction kit according to
the manufacturer’ s instructions. Human placental poly (A)+m RNA was purchased from Ambion
(Austin, TX).

Protocols

A detailed description of all three experimental protocols (MAS-B, MAS-N, Affy) isavailablein
the Supplementary material. The MAS-N protocol yields in-vitro transcribed, biotin-labeled
single-stranded cRNA, which is fragmented to an average size of 50-200 bp before hybridization.
The MAS-B protocal yields Cy3-aminoallyl-labeled single-stranded cDNA (no fragmentation).
The Affymetrix protocol yields end-labeled (bio-ddATP) double-stranded cDNA whichis
fragmented to an average size of 50-100 bp before hybridization.

Scoring schemes

To obtain the desired statistical resolution, MAS array scoring was done pooling the data from all
three biologica samples (for both placenta and NB4). For placenta data, this corresponds to seven
measurements for each probe, and six for NB4. For Affymetrix, three technical replicates were
used, corresponding to six measurements for each probe (three perfect match and three mismatch
probes).
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Sgn test using array median intensity

The intensity of every probe within the window is compared to the median intensity of the slide
and assigned a'1' if it is above and '0' otherwise. The number of ones within the window is
counted and the praobability p of finding at least this number of '1's under the null hypothesis that
half of the probes should be above the median, is calculated. The score assigned to the probe in the
middle of the window is then defined as score = -log(p). Window sizes of 90, 160, and 240 bp
were tried, choosing 160 (corresponding to 5 probes) for the datato be presented in this study. No
inter-array normalization is performed since each intensity is compared to the median intensity on
itsown array only.

Paired Wilcoxon signed rank sum test

Inter-array normalization is undertaken through dividing each intensity with the array median
(median normalization). Within awindow, al pairwise differences between the intensities of a
perfect match probe and its corresponding mismatch probe are calculated and ranked. A signis
assigned to each rank number depending on whether the PM or the MM intensity was greater, and
ap-vaueis caculated from the sum of this signed ranking (keeping track of the rank sum of all
negative ranks and the rank sum of all positive ranks). The p-value, which is a measure of how
significantly the distribution of PM-MM differences is skewed to either side around zero, can then
be used to compute the final score for the probe in the middle of the window (Kampa et a, 2004,
Royce et al., 2005). A related measure called the pseudomedian has been used (Cheng et a., 2005).
The pseudomedian, or the Lehmann-Hodges estimator, which is a point estimator, is obtained by
taking the median value of all the pairwise averages of PM-MM values within the sliding window.
The Affymetrix scores used in this study were calculated by Affymetrix using awindow size of
101 nucleotides, corresponding to on average 5 probes in the window.

Paired Wilcoxon for MAS arrays

The paired Wilcoxon signed rank test was applied as above, with the exception that the probe
corresponding to the reverse strand of the exact same genomic locus was used as a mismatch probe
in the calculations (instead of a designed mismatch probe).

Segmentation of genomic regions

Maxgap/minrun segmentation

The transcribed regions were generated from scored data. The maxgap parameter was set to 50 for
Affymetrix dataand 80 for MAS data. The minrun parameter was set to 50 for both approaches,
thus at least four probes have to be included in an Affymetrix TAR and three for the maskless
arrays. Other maxgap/minrun parameter settings were also tested (data not shown). We evaluated

segmentation thresholds of 70-99" percentile. The parameters were chosen to in the end generate
TAR sets of roughly similar size both in terms of the number of nucleotides within TARSs.

HMM segmentation

18



The raw datawere pre-scored by other methods (see above section) before being processed by
HMM segmentation scheme. The emission distributions of the four-state HMM for each dataset
were |earned according to the scores of those probes which fall into known gene regions, where
the score characteristics in the exon regions were used to estimate the parameters for the TAR
state, and those in the intron regions for the non-TAR state. The parameters for the two
intermediate transition states were obtained by investigating those probes containing both exon and
intron regions. These emission distributions were then fitted with mixed-Gaussian distributions to
generate a continuous model. The transition probabilities of the HMM were learned in asimilar
way. The Viterbi algorithm was utilized to identify TARs.

Choosing primer pairsfor validation

Primer pairs were generated using Primer3 (Rozen and Skaletsky, 2000) (Supplemental material,
Table S1). Primers ng novel TARs were required to define a genomic region that did not
overlap with any Gencode gene and the TARs required to have a minimum length of 120 bp.
When ng known genes, the exon with the highest p-val ue based transcription score was
chosen. Primer3 settings were as default or more stringent, e.g., the GC content within 35-65%,
and primer size was forced to be between 20 and 28 nucleotides, and the resulting PCR products
were chosen to be between 100 and 200 bp. Validation candidates were checked using UCSC In
Silico PCR (http://genome.ucsc.edu/cgi-bin/hgPcr) against the Ncbi v35 human genome build (the
latest at time of writing) to ensure that exactly one potential PCR product was possible; those that
generated no or multiple hits were discarded. Three regions that did not contain any verified or
predicted transcription were chosen to act as negative controls. The experimental protocol of the
PCR validation is described in detail in Supplementary Material.

Accession number sof array designs and hybridization experiments
The MAS ENCODE array platform has GEO accession number GPL 2105; the corresponding data
series has GEO accession number GSE2720 (placenta and untreated NB4). The Affymetrix anti-

sense ENCODE array platform has GEO accession number GPL 1789; the corresponding data
series has accession number GSE2671 (placenta) and GSE2679 (untreated NB4).
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FIGURE LEGENDS

Figurel:

Comparing human chromosome 22 transcription data sets with gene annotation. Transcription data
sets were derived from previously published studies. They were generated from three different
microarray platforms: PCR (red squares), MAS (blue diamond), and Affymetrix (green circles); in
total 15 separate experiments (tissues or cell lines), each represented by a point in the figure . We
used the Ref Seq annotation as a benchmark to assess the quality of the data from each experiment.
X-axis, the fraction of exonic probes that were identified to be transcribed in individual
experiments (sensitivity). Y-axis, the fraction of transcribed probes overlapping with an exon
(specificity). The PCR tiling array data were from placenta, fibroblast and B-cells (Rinn et al .,
2003; White et d., 2004), the MAS datafrom liver (Bertone et al., 2004), and the Affymetrix sets
were collected from Kapranov et a. (2002) representing 11 different cell lines. Arrow, the
Affymetrix datafrom U87 cell line is not representative since along section of chromosome 22 is
identified as transcriptionally silent, suggesting this particular experiment probably did not work
or something unusual about U87.

Figure2:

(A) Number of nucleotides in placental TARS as a function of segmentation threshold
(percentiles). TARs were generated with the maxgap/minrun algorithm based on the scored
hybridization intensity data using a genomic window and technical replicates: MAS-B scored with
standard sign test (green); MAS Fwd-Rev scoring using reverse strand as “mismatch” (orange),
pseudomedian; Affymetrix scored using pseudomedian from PM-MM (blue). The data points
corresponding to the data sets used in the Comparison section are circled: thresholds are 90"
percentile for Affy and 91* percentile for MAS-B (sign test scoring). X-axis, the percentile score
threshold for calling a probe “positive’. Y-axis, the number of nucleotidesin TARs (in
megabasepairs). The dashed line corresponds to the number of nucleotides in exonsin the analyzed
region (1,001,238 nts). (B) Positive predictive value (PPV) versus sensitivity for three different
ways of scoring and segmenting the MAS-B data, varying the segmentation threshold from 70"
percentile (to the right in the figure) to 99 percentile (to the left) for the MAS-B set scored with
standard sign test (green); scored using reverse strand as “mismatch” (orange), pseudomedian;
and the result from HMM segmentation (Viterbi decoding) of sign test-scored data (grey triangle).
Sensitivity (x-axis), defined as the percentage of bases in Gencode exonic regions that are covered
by aTAR. PPV (y-axis), defined as the percentage of bases in the TARSs that overlap with a
Gencode exonic region. (C) PPV versus sensitivity for two different ways of scoring the placenta
Affy data: Wilcoxon signed rank test (blue circles), and standard sign test (large cyan triangles
using PM-MM values; yellow squares using PM values only). The result from reducing the
genomic density of the Affy array with 50% (ie., removing the data from every second probe) is
also shown (small cyan triangles (PM-MM values uses)). (D) PPV versus sensitivity for MAS-B
and Affy placenta data, varying the segmentation threshold from 70" percentile (to the right in the
figure) to 99" percentile (to the left). The average results of TARS generated from raw intensities
from single arrays for Affy (PM only (blue squares), and PM-MM (blue triangles)) and MAS-B
(green sguares) are plotted, as well as scored results for Affy (blue circles) and MAS-B (green
circles). Sensitivity (x-axis), and PPV (y-axis), defined as above. The data points corresponding to
the data sets used in the Comparison section are circled. The hatched area marks where a
sengitivity of 30% is achieved for the various sets. (E) PPV for placental TAR sets when choosing
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a segmentation threshold that yields approximately 30% sensitivity (hatched areain (B)). Note that
the actual sengitivity varies slightly between the sets.

Figure3:

TAR set agreement. (A) Overlap of TAR sets, measured in number of overlapping nucleotides
(kilobases). All three placenta TAR sets (MAS-B, MAS-N, Affy) and both NB4 TAR sets (MAS
N and Affy) . Risameasure of the size of the overlap. R=|N|/ |U]| (calculated pairwise for the
three placenta TAR sets). (B) Size of TAR set overlap, expressed in R, for comparisons within
biological samples but across different array platforms (black lines), and comparisons within array
platforms but across the biological samples (brown lines). Vauesin leftmost column of the graph
are calculated with no further constraints. Second column, only TARs overlapping with conserved
regions are included. Third column, only TARS overlapping with Gencode exons are included.
Fourth column, only TARs overlapping with both conserved and exon regions included.

Figure4:
Distribution of Gencode exon coverage by placenta TARs: all exons (MAS-B, green sgquares, and
Affy, blue squares); 5' exons (Affy, blue circles); 3' exons (Affy, blue triangles). X-axis, the

fraction to which an exon is covered by a TAR; 0.0-1.0 split up in 10 bins. Y-axis, the percentage
of exons covered by a TAR to the fraction represented on the x-axis.
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TABLES
Tablel
Outline of hybridization experiments.

-—-Experiment ID-- Sample  Number of technical replicates Hybridization protocol

batchl+batch2+batch3
Placenta MAS-B Poly(A)+ 3+2+2 Bertoneet d. (2004)
Placenta MASN Poly(A)+ 3+2+2 derived from manufacturer's
Placenta Affy Poly(A)+ 3+2+2 manufacturer's
NB4 MASN total RNA 2+2+2 derived from manufacturer's
NB4  Affy total RNA 2+2+2 manufacturer's

Table2

Correlation of hybridization intensities. Average of absolute values of Pearson correlation coefficients (R),
calculated from unprocessed hybridization intensities (excluding internal standards and grid alignment
probes). Between arrays. between technical and between biological replicates. Within arrays: for Affymetrix
arrays, between corresponding perfect match (PM) and mismatch (MM) values, for MAS arrays, between
probes representing forward/leading (Fwd) and reverse/lagging (Rev) strands of the same genomic location.

--Experiment ID--  -----m-mommemoo- Between arrays Within arrays -------------
techn. repl. bial. repl. PM vsMM Fwd vs Rev

Placenta MAS-B 0.829 0.820 - 0.627

Placenta MAS-N 0.955 0.953 - 0.046

Placenta Affy 0.961 0.937 0.774 -

NB4 MASN 0.959 0.957 - 0.045

NB4  Affy 0.981 0.983 0.917 -

Table3

Characteristics of TAR sets used in comparison (datafor ENCODE regions ENmM001-ENmO11)

--Experiment | D-- Scoring method and --Number of TARsand nuclectides- Mean/ Gencodecmp.
Segmentation parameters  ----Stranded------  --- Unstranded--- Median Sens. PPV
threshold/minrun/maxgap #TARs #bases #TARs #bases length (%) (%)

Placenta MAS-B Signtest win.160 91/50/80 4079 955k 2545 684k 269/180 24.6 35.9

MAS-N Signtest win.160 92/50/80 3853 768k 3248 701k 216/144 22.3 317

Affy PM-MM P-median 90/50/50 - - 3694 629k 170/105 37.0 58.6
NB4 MAS-N Signtestwin.160 93/50/80 3520 697k 2936 632k 216/144 19.1 30.2
Affy PM-MM P-median 87/50/50 - - 4674 629k 135/91 26.5 41.8
Gencode exonic 2563 1018k 2482 1001k 403
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Table4

Percentage of genic and intergenic TARS that overlap with conserved regions (>90% of TAR length within
conserved region) or that do not overlap with conserved regions (<10% of TAR length within conserved

region).
Intergenic TARs GenicTARs

Overlaps

conserved
--Experiment ID-- region.  NO YES NO YES
PlacentaMAS-B 84% 2% 50% 8%
Placenta Affy 77% 8% 41% 24%
NB4  MASN 85% 1% 54% 8%
NB4  Affy 79% 7% 49% 19%

Table5

Transcribed placental genes (and in brackets: transcripts) in MAS-B and Affy experiments. A geneis
considered as transcribed if at least one of its transcripts (splice variants) is transcribed at significance level
p<0.001, using the sign test to score all transcripts. Probes that to at least 50% are within an exon of the
transcript are considered. If atranscript/gene has less than 10 probesit will be unable to reach a p-value
below 0.001, and isin the"Too few probes' category.

Affy
Yes No Too few probes
Yes 158 (871) 37 (155) 15 (58)
MASB No 9(13 24 (61) 7(13
Toofewprobes 2(51) 7 (36) 5 (44)

[Total number of genes: 264; Total number of transcripts: 1342]

Table6

Multi-exon coherence of transcripts with more than one exon. Percentage of transcripts where all, some, or
no exons are considered transcribed according to median intensity of each exon. Exons were called on/off
based on their median intensity compared with the experiment-specific score thresholds used for TAR
generation (segmentation), specified in Table 3. The transcription status of entire transcripts was generated as
in Table5.

-—-Experiment ID--  All exons Some exons No exons
All transcripts (1298 transcripts):

PlacentaMAS-B 6.3% 60.7% 33.0%
PlacentaMASN 3.4% 56.8% 39.8%
Placenta Affy 36.8% 47.6% 15.6%
NB4  MASN 1.9% 51.7% 46.4%
NB4  Affy 15.5% 60.9% 23.7%

Intersection of placenta MAS-B and Affy transcribed transcripts (869):
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Placenta MAS-B 7.8% 68.9% 23.2%

Placenta Affy 50.1% 48.3% 1.6%
Intersection of NB4 MAS-N and Affy transcribed transcripts (543):
NB4 MASN 2.9% 72.9% 24.1%
NB4  Affy 26.9% 61.9% 10.7%
Table7

Results of experimental validation (reverse transcriptase PCR) in placenta of 142 regions. 96 novel TARs, 43
exons from known genes, 3 negative controls.

Set Transcription status ~ Overlap with Number Number
MASB Affy known exon? assessed  positive

TAR on off no 39 ?

TAR  off on no 37 ?

TAR on on no 20 ?

Genes on off yes 17 ?

Genes  off on yes 8 ?

Genes  off off yes 18 ?

Neg ctrl off off no 3 ?
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