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Protein families can be used to understand many aspects of genomes, both
their “live” and their “dead” parts (i.e. genes and pseudogenes). Surveys
of genomes have revealed that, in every organism, there are always a
few large families and many small ones, with the overall distribution
following a power-law. This commonality is equally true for both genes
and pseudogenes, and exists despite the fact that the specific families
that are enlarged differ greatly between organisms. Furthermore, because
of family structure there is great redundancy in proteomes, a fact linked
to the small size of the minimal, indispensable sub-proteome for each
organism and the large number of dispensable genes. Pseudogenes in pro-
karyotes represent families that are in the process of being dispensed
with. In particular, the genome sequences of certain pathogenic bacteria
(Mycobacterium leprae, Yersinia pestis and Rickettsia prowazekii ) show how
an organism can undergo reductive evolution on a large-scale (i.e. the
dying out of families) as a result of niche change. There appears to be
less pressure to delete pseudogenes in eukaryotes. These can be divided
into two varieties, duplicated and processed, where the latter involves
reverse transcription from an mRNA intermediate. We discuss these col-
lectively in yeast, worm, fly, and human. The fly has few pseudogenes
because of its high rate of genomic DNA deletion. In the other three
organisms, the distribution of pseudogenes on the chromosome and
amongst different families is highly non-uniform. Pseudogenes tend not
to occur in the middle of chromosome arms and to be associated with
lineage-specific (as opposed to highly conserved) families that have
environmental-response functions. This may be because, rather than
being dead, they may often form a reservoir of diverse “extra parts” that
can be resurrected to help an organism adapt to its surroundings. In
yeast, there may be a novel mechanism involving the [PSI þ ] prion that
potentially enables this resurrection. In worm, the pseudogenes tend to
arise out of families (particularly chemoreceptors) that are greatly
expanded in it compared to the fly. The human genome stands out in
having many processed pseudogenes. These have a character very
different from those of the duplicated variety, essentially just representing
random insertions. Thus, their occurrence tends to be roughly in pro-
portion to the amount of mRNA for a particular protein and to reflect the
extent of the intergenic sequences. Further information about pseudo-
genes is available at http://genecensus.org/pseudogene
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The complete or near-complete sequencing of
the genomes of six eukaryotes (at the time of
writing) and dozens of prokaryotes is enabling us
to examine molecular evolution and diversity of
proteins from a “whole-proteome” perspective. In
the present review, we discuss various themes and
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issues in relation to proteome evolution, examining
both the “live” and “dead” proteomes of specific
genomes (all the proteins encoded by an organism
and all the pseudogenes). We set the stage for
discussion of pseudogene populations by survey-
ing different issues relating to protein family
redundancy in the live proteome, and how it
evolves. In particular, we examine how such
redundancy can be viewed in terms of partition
into essential and dispensable sub-proteomes.
Chiefly, then, we discuss the distribution of pro-
teins and protein families in pseudogene
populations for prokaryotes, and specifically for
the eukaryotes yeast, worm, fly and human, and
the implication of these dead or “dispensed-with”
sequences for proteome evolution.

What is a protein family?

A protein family is usually defined as a group of
sequences with an obvious evolutionary relation-
ship, judged chiefly by protein sequence compari-
son, i.e. whose evolution can be studied readily at
the sequence level. The definition of the threshold
of similarity is arbitrary in practice and different
degrees of protein sequence similarity are used
depending on the context.1 – 3 Membership of the
same protein family is now commonly determined
by the occurrence of a sequence motif indicative
of sequence, structural and functional similarity,
with integrated databases of such motifs used
routinely in genome annotation.4,5 There are now
many databases that cluster protein sequences
manually or automatically to varying degrees, at
various levels of sequence and structural similarity
(e.g. ProtoMap,6 SYSTERS,7 SCOP8 and CATH9). As
a higher level, a superfamily can then be described
in terms of groups of families that have more dis-
tant similarity; they may have common evolution-
ary origin as judged by functional and structural
similarities. (This is the definition used in the
SCOP database.8) Different superfamilies can be
grouped together if they have the same protein
fold. Sometimes it is more appropriate to group
families together into similar functional classes,
e.g. the Gene Ontology database,10 MIPS functional
classification11 or GenProtEc for Escherichia coli.12

Although, usually, as for most of the work dis-
cussed below, robustness of results is reported for
a range of sequence similarity cut-offs, there are a
number of caveats in considering assignment of
protein families and superfamilies to genomic
data.13,14 Firstly, such assignment procedures are
biased towards larger families and superfamilies,
in that sequence-searching procedures, such as the
commonly used iterative program PSI-BLAST,15

operate better for larger known families and are
calibrated to search for larger families; secondly,
for obvious reasons, gene prediction is more
successful for them too.

Surveys of the “live” proteome

There has been extensive recent work on the
counting of different levels of proteome parts:
protein families, superfamilies and folds.5,13,16 – 24

Initially, this work focused on prokaryotes, but is
now shifting emphasis to the recently genomically
sequenced eukaryotes. Surveys of protein fold and
superfamily occurrence in microbial proteomes
shows that a few folds predominate, whereas
many folds occur only once; protein fold occur-
rences tend to rely on the prevalence of a single
superfamily, although the rankings for these corre-
sponding folds and superfamilies vary widely.19

There are similar findings for the eukaryotes
(Table 1).

Power-law distribution of protein family size
in proteomes

Despite expansion and contraction in the size of
individual protein families in proteomes, the
redundancy in protein families appears to have a
characteristic distribution common to viral, bac-
terial, archaeal and eukaryotic genomes.3,16 An
initial analysis of the distribution of the number of
sequences in protein families versus their occur-
rence showed that the distribution for protein
families in proteomes follows power-law beha-
viour (i.e. a linear relationship on a log–log plot),
with a shallower slope for the relationship in the
larger genomes25 Huynen & Nimwegen3 did a
similar analysis for a larger number of microbial
genomes and found that the power-law behaviour
was maintained over a large range of sequence
similarity thresholds used for clustering into
families. They argued, using a simple probabilistic
formalism, that the power-law distribution implies
that gene duplications and deletions within gene
families are largely dependent on one another.
Other studies have shown that the distribution of
the number of protein families and of protein
folds in a proteome can be explained by simple
evolutionary models that involve only duplication
or the creation of new families or folds22,26 An
example of this power-law behaviour is illustrated
in Figure 1 for families in the yeast proteome, and
for protein folds and superfamilies.

Protein family redundancy in proteomes and
its evolution in eukaryotes

The total number of protein domain sequence
families, or functional diversity, appears to vary
much less between organisms than overall pro-
teome size. This is most striking in the
eukaryotes.2,27,28 For example, despite the wide
variation in the number of annotated genes, the
yeast, worm, fly and human proteomes seem to
contain similarly sized subsets of the InterPro
sequence domain database (851 for yeast; 1014 for
worm; 1035 for fly; 1262 for human, at the time of
writing).5,27 The eukaryotic proteomes comprise
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Table 1. Top-ranking protein superfamilies and folds in five eukaryote proteomes

Top-ranking superfamilies Top-ranking folds

Yeast Worm Fly Mustard weed Human Yeast Worm Fly Mustard weed Human

P-loop NTP
hydrolase
(438)

P-loop NTP
hydrolase (651)

C2H2 Zn
finger
(823)

P-loop NTP
hydrolase

(1282)

C2H2 Zn fin-
ger, 7.37.1

(3424)

P-loop NTP
hydrolase, 3.32

(438)

Ig-like, 2.1 (1044) Ig-like, 2.1
(999)

a/a Superhelix,
1.111 (1475)

C2H2 Zn fin-
ger, 7.37 (3424)

Protein
kinase (133)

Ig (571) P-loop
NTP

hydrolase
(661)

Protein kinase
(1070)

Ig, 2.1.1 (1453) a/a Superhe-
lix, 1.111 (195)

P-loop NTP
hydrolase, 3.32

(651)

C2H2 Zn
finger, 7.37

(823)

P-loop NTP
hydrolase, 3.32

(1282)

Ig-like, 2.1
(3034)

WD-repeat
(107)

Protein kinase
(500)

Ig, 2.1.1
(548)

Tetraticopeptide
repeat, 1.111.8

(787)

P-loop NTP
hydrolase,

3.32.1 (1229)

Ferredoxin-
like, 4.51 (154)

Protein kinase,
4.130 (500)

P-loop NTP
hydrolase,
3.32 (661)

Protein kinase,
4.130 (1070)

P-loop NTP
hydrolase, 3.32

(1229)
RNA-bind-
ing domain
(104)

EGF/laminin
(400)

EGF/lami-
nin (330)

RNI-like (709) EGF/laminin,
7.3.9 (1083)

Protein kinase,
4.130 (133)

Knottin, 7.3 (429) a/a Super-
helix, 1.111

(438)

Leucine-rich
repeat, 3.9 (812)

Knottin, 7.3
(1114)

NADP-
binding
Rossmann
fold (99)

C-type lectin
(369)

Protein
kinase
(288)

RING finger
(468)

Fibronectin
type-III (817)

Seven-bladed
b propeller,
2.64 (118)

a/a Superhelix,
1.111 (405)

Ferredoxin-
like, 4.51

(357)

Ferredoxin-like,
6.51 (451)

a/a Superhelix,
1.111 (898)

ARM repeat
(84)

Glucocorticoid
receptor-like

(349)

Spectrin
repeat
(268)

Homeodomain
(461)

Protein kinase,
4.130.1 (710)

TIM barrel, 3.1
(114)

C-type lectin,
4.154 (369)

Knottin, 7.3
(345)

DNA/RNA-
binding 3-Heli-
cal bundle, 1.4

(539)

Protein kinase,
4.130 (710)

DNA/RNA
polymerises
(59)

Nuclear recep-
tor ligand-

binding
domain (284)

RNA-bind-
ing

domain
(257)

RNA-binding
domain (426)

Cadherin (676) RNase H, 3.50
(110)

Glucocorticoid
receptor-like, 7.39

(349)

Protein
kinase, 4.130

(288)

RING finger,
7.44 (468)

Ferredoxin,
4.51 (655)

Actin-like
ATPase (56)

Homeodomain
(263)

Trypsin-
like serine
protease

(240)

NADP-binding
Rossmann-fold
domain (366)

RNA-binding
domain, 4.51.7

(517)

NADP-binding
Rossmann

fold, 3.2 (99)

DNA/RNA-
binding 3-helical
bundle, 1.4 (329)

Spectrin
repeat, 1.7

(272)

Seven-bladed b
propeller, 2.64

(451)

DNA/RNA-
binding 3-heli-
cal bundle, 1.4

(510)
Membrane
all-a (54)

C2H2 Zn finger
(255)

Fibronectin
type III,

2.1.2 (219)

a/b Hydrolase
(341)

PH domain,
2.52.1 (415)

DNA/RNA-
binding 3-heli-
cal bundle, 1.4

(59)

Ferredoxin-like,
4.51 (301)

Trypsin-like
serine pro-
tease, 2.44

(240)

TIM barrel, 3.1
(383)

PH domain,
2.52 (415)

Zn2/Cys6
DNA-bind-
ing domain
(53)

a/b-Hydrolase
(219)

Cadherin,
2.1.6 (213)

ARM repeat,
1.111.1 (284)

Homeodomain,
1.4.1 (339)

DNA/RNA
polymerases,

5.8 (59)

Nuclear receptor
ligand-binding
domain, 1.116

(284)

Seven-
bladed b-
propeller,
2.64 (118)

NADP-binding
Rossmann-fold

domain, 3.2
(366)

Seven-bladed b
propeller, 2.64

(394)

The Table shows the top-ranking folds in eukaryotes from SCOP. There is a pattern similar to that observed in prokaryotes.19 In particular, for human, the prevalence of a fold tends to be due to a
particular superfamily prevalence (superfamilies and folds in bold in the Table. Examples of folds that have multiple prevalent superfamilies are observed; examples for fly and mustard weed
(A. thaliana ) are in italics. Ig, immunoglobulin.
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Final count of protein fold occurrence:       6      2      2      1      1      1      1      1      1
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Figure 1 (legend opposite)
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comparable coverage of the SCOP domain
database8 in terms of superfamilies (between 460
(yeast) and 594 (human)24). Extensive sequence
family redundancy is observed at the individual
gene level in the eukaryotes, most notably in Arabi-
dopsis thaliana, where only 35% of proteins are sin-
gletons (i.e. have no paralogs).2 (For comparison,
the degree of family redundancy is less extensive
in the Saccharomyces cerevisiae genome, which by
the same strict criteria, contains 29% of proteins in
families.) In Arabidopsis, the extensive redun-
dancy is linked to a large number of segmental
chromosomal duplications arising from four dis-
tinct large-scale duplication events 100 to 200
million years ago.29 Regardless of the mechanism
of formation (whether segmental or local dupli-
cation), from an individual gene perspective, new
gene duplicates in eukaryotes arise at the rate of
about 0.01 per gene per million years, with rates
for individual genomes ranging from 0.02 for Cae-
norhabditis elegans to 0.002 for Drosophila melanoga-
ster; this is of the same order as the rate of
mutation per nucleotide site.30

By what mechanism does the gene family redun-
dancy chiefly arise? For example, Wolfe and col-
leagues identified homologous arrays of genes on
different yeast chromosomes, which they hypoth-
esized had arisen from a single, whole-genome
duplication event about 100 million years ago,
after separation from the Saccharomyces kluyveri
yeast branch31 – 33 However, ,90% of the resulting
individual duplicated genes arising from this
event appear to have been lost. Furthermore, there
is no evidence that these duplications occurred at
the same time; indeed, many segmental chromoso-

mal duplications may have occurred in yeast at
various times over the past 200–300 million
years.1 On the basis of the partial genome sequen-
cing of 13 ascomycete relatives of S. cerevisiae, the
conservation in yeast of singletons and gene family
redundancy was found to arise mostly from local
duplication events and did not support the whole-
genome duplication hypothesis in yeast
evolution.34 Finally, in the human genome, notably,
there is much less occurrence of pairs of chromoso-
mal segments where the density of duplicated
genes approaches that of A. thaliana or S. cerevisiae,
indicating far less segmental chromosomal
duplication.27 Inclusion of detailed pseudogene
annotations for the analysis described above
would help to pin-point the mechanism of evol-
ution of gene redundancy (see below for a discus-
sion of pseudogene populations).

Indispensable and dispensable sub-proteomes

What is the minimal “indispensable” sub-pro-
teome for the eukaryotic cell? Regardless of how
the protein family redundancy in the yeast pro-
teome has arisen, it seems clear from gene disrup-
tion experiments that the sub-proteome essential
for yeast cell viability contains only ,1000
proteins.35,36 This is about three times the number
of proteins adjudged essential for a minimal pro-
karyotic cell.37 Wagner noted, from analysis of
gene disruption data for yeast, that there is no
strong correlation between gene family redun-
dancy and robustness against gene disruption.
This indicates that there is a contribution to the
robustness to mutation of a given gene that arises

Figure 1. Power-law distribution
of family sizes, superfamily sizes
and protein fold occurrences in pro-
teomes: adapted from Qian et al.,22

(a) An illustration of how protein
folds, superfamilies and families
can be counted up, to give their
total occurrences. (b) The power-
law distribution of families
(diamonds), superfamilies (crosses)
and protein folds (filled squares) in
the yeast (S. cerevisiae ) proteome.
The number of families or folds
(y-axis) that have a particular occur-
rence (x-axis) is plotted. (c)
Approximate power-law behaviour
for InterPro protein sequence motifs
in the pseudogene populations for
human chromosomes 21 and 22
combined. The axes are as for (b).
Outliers are labelled. (d) Power-law
behaviour for a reliable subset of
1100 pseudogenes derived for the
worm genome (see the text for
details). The grey line is the power-

law fit to the distribution for pseudogene families (open boxes); the black line is the same fit for the distribution for
gene families, clustered as described.69 The axes are as for (b).
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from other genes with no detectable ancestral
relationship, which, for instance, could provide
alternative routes through pathways.38

From studies in yeast, it seems clear that many
proteins have marginal effects on species fitness.39

In a study of 34 S. cerevisiae genes that were judged
non-essential by gene disruption,35 70% of them
were found to have marginal but significant effects
on the fitness of a strain.40 This implies that the
effective size of the indispensable sub-proteome
for yeast can be determined only from study of its
behaviour from generation to generation for the
reproducing organism. This generation-weighted
proteome could perhaps be dubbed the selectome,
in analogy to the transcriptome (where the occur-
rence of different proteins is weighted by their
transcription levels at different time-points and
under various conditions41,42). The marginality of
contribution to fitness in yeast, or protein
dispensability, has been shown to be correlated
with the molecular rate of evolution, i.e. more
dispensable proteins evolve more rapidly.43 It is
conceivable that protein families with a higher
molecular rate of evolution are more likely to

have related pseudogenes in the genome. Proteins
that have recently been dispensed with from the
proteome may remain in the genome as pseudo-
genes (depending on genome-specific rates of
genomic DNA loss and mutation), and this aspect
of proteome evolution is discussed below.

The “dead” proteome: pseudogenes
and proteome evolution

In the previous sections, we have discussed how
the live part of the proteome of an organism is dis-
tributed into protein families, and some impli-
cations of this sequence redundancy. We now
focus on the corresponding dead population of
sequences, pseudogenes.

Pseudogenes are disabled copies of genes (or
decayed remnants of genes) that do not produce a
full-length protein chain. They can generally be
divided into two types (Figure 2). Firstly,
“processed” pseudogenes arise from reverse
transcription from messenger RNA (mRNA) and
re-integration into the genomic DNA.44 These have

Figure 2. Two types of pseudo-
gene. Pseudogenes are produced
chiefly either by duplication or by
processing. An example of a gene
with three exons (shaded areas) is
shown (boxed at the center of the
Figure), with no non-coding seg-
ment in the exons for simplicity.
ATG labels the start of the coding
sequence, an asterisk (*) labels a
stop codon and hash (#) stands for
a frameshift. A non-processed or
duplicated pseudogene simply
arises when a gene duplication
acquires a disablement that leads
to: (i) lack of transcription; (ii)
degradation via nonsense-mediated
decay; or (iii) for an unknown sub-
set of pseudogenes that produce
messenger RNA transcripts escap-
ing nonsense-mediated decay,105 to
degradation at some later unknown
stage, so that a functioning protein
chain is not formed. After such an
initial disablement, the recently
defunct pseudogene will acquire
further obvious disablements of its
reading frame (such as premature
stops arising from point mutation,
or truncations and frameshifts
arising from deletion or insertion).
A processed pseudogene arises
when a messenger RNA transcript
is reverse transcribed and re-inte-
grated into the genomic DNA.
Characteristic signals for these pro-

cessed pseudogenes include small direct repeats (grey triangles) at either end of the pseudogene and a polyadenine
tail (indicated here by AAAAA). The apparent coding frame of the pseudogene would then acquire obvious disable-
ments, such as premature stops and frameshifts over evolutionary time.
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been observed only in the metazoan animals and
flowering plants, and presumably arise from
mRNA transcripts in the germ-line cell lineage. In
humans, they are probably made as a by-product
of long interspersed nuclear element (LINE)
retrotransposition.45 After integration into the
genome, they gradually accumulate disablements
(stop codons, frameshifts, inserted repeat
elements) of their reading frame. Secondly, “non-
processed” or “duplicated” pseudogenes arise
from duplication in the genomic DNA and sub-
sequent disablement, most commonly through dis-
ruptive frameshift mutation or premature stop
codon formation.46 Formation of a pseudogene
from gene duplication may have effects on the fit-
ness of an organism; for example, if the duplicated
gene has diverged very little since the duplication
event that formed it (perhaps acquiring a slightly
different activity or specificity in its function), the
decrease in copy number for the gene family may
be mildly deleterious. Conversely, copies of genes
may be lost because that particular family is no
longer as beneficial for fitness and has become
more dispensable.

Pseudogenes, as “molecular fossils”, are import-
ant sequences for the study of molecular evolution.
Here, we discuss the occurrence of pseudogenes
from a whole-proteome perspective, making use,

where appropriate, of comparison of the prevalent
families in proteomes and pseudogene popu-
lations. Such a perspective, of course, has been
possible only recently with the advent of complete
genome sequencing. We examine, in turn, the
implications for proteome evolution in
prokaryotes, and in the eukaryotes yeast, worm,
fly and human. In prokaryotes, we see evidence
for large-scale reductive evolution that mirrors
the expansive evolution arising from horizontal
transfer. In eukaryotes, we see that duplicated
pseudogenes tend to be associated with environ-
mental and response families. In the yeast, there
appears to be a mechanism for conditionally
“resurrecting” disabled genes as an evolutionary
buffer to environmental fluctuation, perhaps in a
concerted fashion. In the worm, the families of
sequences that are prevalent in its pseudogene
population have corresponding expanded or
organism-specific populations in its genome,
indicative of recent organism-specific expansions.
For the fly, we argue that its apparently very
small pseudogene population is linked to the size
of its proteome through a very high rate of
genomic DNA loss. Finally, for the human, we dis-
cuss the substantial number of processed pseudo-
genes relative to the putative total gene
complement.

Figure 3. The relationship between the number of pseudogenes and genes for different functional categories in
M. leprae. Each of the 31 functional categories listed by Cole et al.,52 (Figure 2 of that paper) is plotted. The continuous
line represents the number of pseudogenes being equal to the number of genes. Eleven of the categories are above
this line, i.e. are more “dead” than “live”. The dotted line represents the overall ratio of pseudogenes to genes in the
proteome. Eight of the categories are below this line, i.e. more live than the overall ratio for live-to-dead.
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Prokaryotes: expansive and reductive
proteome evolution

Prokaryotes can expand their proteomes by
undergoing substantial horizontal transfer of
genes from other strains and species.47 Comparison
of the two complete genomes sequences of E. coli
strains O157:H7 EDL933 and K-12 MG1655,48,49

shows how dramatically dynamic this horizontal
transfer can be. Over a quarter (26%, 1387/5416)
of the O157:H7 EDL933 genes are specific to that
strain compared to K-12 MG1655. Conversely, in
the same manner, 528/4405 (12%) of K-12 MG1655
genes are strain-specific. Strain-specific variation
such as this has led some to argue that it is perhaps
best to compare organisms in terms of a “species
genome”, with a core sub-proteome, and a variable
sub-proteome that comprises the proteins and
protein families that vary from strain to strain.50,51

It will be interesting to see how closely corre-
spondent such a core sub-proteome is to the
indispensable subproteome, as discussed above
for yeast.

Conversely, reductive evolution in bacteria may
be equally dynamic. The recent sequencing of the
genome of the bacterium Mycobacterium leprae, the
leprosy pathogen, shows that it has undergone
massive recent proteome decay52 The M. leprae
genome contains about ,1100 apparent pseudo-
genes, and ,1600 genes.52 This is a considerable
reduction when compared to the ,4000 proteins
encoded in the genome of the related bacterium
Mycobacterium tuberculosis and involves decrease
in the redundancy of almost all protein families,
with loss of substantial parts of pathways, such as
the anaerobic respiratory chain. For example, the
repetitive, glycine-rich PE and PPE families com-
prise 167 genes in the M. tuberculosis genome; how-
ever, in M. leprae it is more dead than live, there are
only nine such genes in M. leprae, and 30 related
pseudogenes. This family is shown on a plot for
all of the functional classes reported here with
pseudogene number plotted versus gene number
(Figure 3). On the other hand, the functional class
for chaperones and heat-shock proteins has a
much smaller dead-to-live ratio than the overall
ratio of dead to live proteins. By analogy with the
two E. coli strains, it would be interesting to see to
what extent the observed huge proteome decay is
specific for the M. leprae strain sequenced, and
how this affects the definition of its core sub-
proteome.50,51

Proteome decay has been observed for two other
pathogenic bacteria. The typhus pathogen
Rickettsia prowazekii seems to have undergone such
reductive evolution recently53,54 Initially, it was
thought to harbour only 12 pseudogenes,53 but
subsequently this estimate was enlarged.
Prokaryote genomes are generally very compact,
harbouring little non-coding genomic DNA
(generally ,10%; E. coli K-12 has ,11%48),
implying that there is rapid deletion of any
recently formed pseudogenes. However, the non-

coding DNA in the R. prowazekii genome is .24%
of the genomic DNA, suggesting that it
comprises undetected decayed remnants of
genes. Comparison of the R. prowazekii genomic
sequence to those of other Rickettsias,54,55 led to
the detection of sequence similarity between
(pseudo)genes in one species and the equivalent
non-coding DNA in other species. These more
fragmentary and disabled pseudogenic sequence
homologies were dubbed fossil ORFs55 or
decayed orthologs.54 Inclusion of these more
decomposed remnants in R. prowazekii raises its
total pseudogene population to 241 (compared
to 834 live genes). The plague bacterium Yersinia
pestis has a smaller relative proportion of
pseudogenes (160, compared to ,4000 live
genes) that appear linked to the loss of an enter-
opathogenic lifestyle56

Yeast: resurrectable variation between strains

There are very few annotated pseudogenes in
the sequenced laboratory strain of S. cerevisiae,
S288C;57 we could find at most 30 such annotations
in the SGD and MIPS databases.11,58 From the
analysis of disabled protein homology matches in
the yeast genome, we believe that there may be up
to a further 221 un-annotated pseudogenes in the
S. cerevisiae S288C strain. This number rises further
to 241 if we include pairs of existing ORF annota-
tions, termed mORFs, that can be merged into a
pseudogene and that could be complete ORFs in a
different yeast strain59 (Table 2). One of the most
important previously documented pseudogenes in
the yeast strain S288C is the FLO8 mutation.60 This
flocculin gene has an intact ORF in other strains
but is disrupted by a single stop codon in S288C.
This mutation has been shown to be the cause of
the lack of diploid pseudohyphal filamentous
growth in S288C, and has thus probably been
selected in the laboratory so that yeast colonies are
round and smooth. Strains that have an active
FLO8 gene appear flocculent, having a fluffy
colony appearance. The largest sequence families
that are relatively prevalent in the S288C strain
pseudogene population comprise flocculins like
FLO8, the DUP family of double-transmembrane-
helix proteins, growth inhibitors, helicases and
stress-response proteins, whereas the most popu-
lated live families are forms of protein kinase, heli-
cases, a transcriptional regulatory protein domain
and the AAA ATPase domain (Table 3). Note how
the pseudogenes appear to disproportionately
have environmental and stress response functions.
They have been found to occur near the ends of
the chromosomes, mostly within 20 kb of the
telomeres.59

Sup35p is part of the surveillance complex in
yeast that controls translation termination and
nonsense-codon read-through.61,62 The [PSI þ ]
prion in yeast arises from the propagation of an
alternatively folded amyloid-like form of
Sup35p.61,63 Thus, formation of the alternative
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normal functioning state, and can cause
increased levels of nonsense-codon read-through
in a particular strain, arguably leading to the
full-length resurrection of ORFs that are appar-
ently disabled. This can be seen as an evolution-
ary “buffering” effect, that enables a small
amount of strain-specific variation to be main-
tained “in store”. Indeed, the ability to form the
[PSI þ ] prion itself may have been selected to
enable this buffering effect. Interestingly, a recent
study on [PSI þ ]-engendered phenotypic diver-
sity, showed that one strain is more flocculent
when in the [PSI þ ] state than in the [ psi 2 ]
state;64 this may be due to the resurrection of
the complete FLO8 reading frame, or other
flocculin genes.

Worm versus fly: comparison in terms of their
live and dead proteomes

Despite their comparable genome size (100 Mb
for the worm, 120 Mb euchromatic for the fly),
and the greater apparent biological complexity of
the fly (more cells, longer lifespan, more compli-
cated physiology), the worm (at present) has more
genes. The original sequencing projects estimated
19,099 worm and 13,601 fly proteins, although the
proteomes comprise comparable functional diver-
sity at the sequence domain level.28,65 – 67 A recent
gene prediction study for the fly genome has
yielded 1042 additional candidate genes, poten-
tially increasing the Drosophila gene total to
.14,600 and the total proteome to .15,100.68

Furthermore, alternative splicing for the fly may

Table 2. Gene and pseudogene numbers

Organism

No. genes
No.

pseudogenes

No.
processed

pseudogenes

No.
duplicated

pseudogenes References

R. prowazekii (B) 834 241 0 241 53,54
M. leprae (B) 1604 1116 0 1116 52
Y. pestis (B) 4061 160 0 160 56
S. cerevisiae strain S288C (E) 6340 221 þ 20 ¼ 241a 0 241a 57,59
C. elegans (E) 20,009 1100 (2168)b 104 (208) 996 (1962) 66,69
D. melanogaster (E) 14,332 100 þ ?? ?? 28; Harrison et al.,

unpublished results
A. thaliana (E) 25,464 785 ?? ?? 2
Homo sapiens (E) ,21,000 to

,39,000
?? ,2900 ?? 27,85

Homo sapiens (E) (just
chromosomes 21 þ 22)

927 350 178 172 96

a This total is for dORFs plus mORFs. dORFs are pseudogenic or disabled ORFs that comprise a large fragment of disabled protein
sequence homology that is not part of an existing ORF annotation; mORFs (merged ORFs) arise from merging two existing ORF anno-
tations by ignoring their intervening stop codon.59

b This is for a set of disabled protein sequence homologies, supported by protein/cDNA/EST homology evidence. The values in
parentheses are upper estimates derived as described.69

Table 3. Comparison of the prevalent InterPro sequence motifs in the population of disabled ORFs and in the live pro-
teome of yeast

Disabled ORFs/pseudogenes Proteins

No. Description No. Description

12 WD40 (IPR001680)a 115 Eukaryotic kinase (IPR000719)
6 DUP membrane protein (IPR001142) 112 Serine–threonine protein kinase (IPR002290)
6 Mitochondrial electron transport (IPR001993) 99 WD40 (IPR001680)
6 Flocculin (IPR001389) 76 Dead-box helicase (IPR001410)
4 Helicase, C-terminal domain (IPR001650) 74 Helicase, C-terminal domain (IPR001650)
4 PIR repeat (IPR000420) 57 Fungal transcriptional regulatory protein (IPR001138)
3 BNR repeat (IPR002860) 57 AAA ATPase superfamily (IPR003593)
3 Zn-containing alcohol dehydrogenase (IPR002085) 55 TyA transposon protein (IPR001042)
3 Dead-box helicase (IPR001410) 54 RNA-binding region RNP-1 (IPR000504)
3 Fungal transcriptional regulatory protein (IPR001138) 53 C2H2 Zn finger (IPR000822)
3 SRP1/TIP1 stress-induced protein (IPR000992)
3 DNA topoisomerase I DNA-binding domain (IPR003602)

The name of each InterPro motif is given,5 along with its number in parentheses. These counts are for the pseudogenic population
derived from combining dORFs and mORFs (see the text and footnote a in Table 2).

a The 12 of these are all in one protein.
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be more extensive than at present documented
(currently about 2% of the documented worm
proteome arises from alternative splicing, and
,7% for the fly).28,65 – 67

What about the corresponding sizes of the
pseudogene populations for these two organisms?
Depending on the thresholds used, the worm
genome appears to contain a moderately sized
complement of .1100 pseudogenes.69 Only a
small proportion (,,5%) of the pseudogenes
appear to be processed. In general, the number of
pseudogenes associated with each family of pro-
teins is not proportional to the size of the family.69

This would be the “default case” if duplicated
pseudogenes were formed randomly from existing
gene families. However, as shown in Table 4, the
largest numbers of pseudogenes are associated
with multiple families of seven-transmembrane
chemoreceptors (these are also a class of “environ-
mental response” proteins, which were observed
above for yeast). Also common are families associ-
ated with a reverse transcriptase and a trans-
posase, which presumably reflects remnants of
decayed transposons (obvious transposons were
screened out before the pseudogene assignment).

There are only 40 annotated pseudogenes for the
fly genome, and a preliminary survey by the
authors suggests at least ,60 more (P.M.H. et al.,
unpublished results). (One should note, however,
that an unknown number of gene annotations for
either the fly or the worm may be shown to be
pseudogenes, upon further characterization.) The
cohort of olfactory receptors/chemoreceptors and
other seven-transmembrane receptors in the worm
(,1100) is almost a scale of magnitude larger than
in the fly (,160 seven-transmembrane receptors).
This perhaps indicates a recent evolutionary
organism-specific expansion in these genes for the
worm, or the converse (a contraction in number of
members) for the fly.65,66,70 Their predominance in
the worm pseudogene population is presumably
related to this apparent expansion of seven-trans-
membrane receptors in the worm. The substantial
majority of these genes (,90%) appear to be
organism-specific in the worm,71 although careful
sequence analysis using hidden Markov models
has found mammalian orthologs for ,170 of
them.72 On a related note, of the estimated ,1000
seven-transmembrane olfactory receptor (pseudo)-
genes in the human genome, about two-thirds are
expected to be pseudogenic.73,74

Interestingly, the families that have the largest
number of associated pseudogenes are amongst
the families that are most expanded in the worm
relative to the fly (Table 5). We compared in detail
the list of domain sequence families for the fly
and worm proteomes from the InterPro database.5

The families exclusive in this list to either organism
are tabulated, as well as the most expanded large
families (with 30 or more members) relative to the
other organism (Table 5). Three of the largest of
these are for the seven-transmembrane receptor
families (Table 5).

The small number of fly pseudogenes and the
apparently small size of its proteome may be
related to the overall genomic DNA deletion rate.
The larger worm proteome may arise simply
because factors such as genomic DNA deletion
rates and chromosomal rearrangement have
allowed it. It may be that the genomic DNA
deletion rate in the fly (which was previously
evidenced to be very high from the apparent rarity
of true fly pseudogenes75 – 77) hampers the main-
tenance of recent gene duplications, so that they
have less time to become evolutionarily useful.
Experiments with transposable elements in
D. melanogaster and the cricket genus Laupala indi-
cate a very rapid loss of genomic DNA in
Drosophila78 – 80 Drosophila has an extremely high
rate of chromosomal rearrangement.81 However,
studies on families of worm chemoreceptor genes
and pseudogenes suggest that the worm has a
rather high genomic DNA deletion rate.70,82,83

Moreover, an analysis looking for small protein
motifs selected from the Prosite database in inter-
genic regions in the fly and the worm suggests
that the fly has as many, if not more, over-
represented motifs (pseudomotifs) than the
worm.84 These pseudomotifs may represent frag-
ments of protein fossils. Thus, their prevalence in
the fly in relation to the worm, may indicate that
the fly has much pseudogenic material that has
decayed substantially.

Human: a large processed
pseudogene population

For the human genome, the determination of the
number of pseudogenes is intimately inter-linked
with the determination of the total gene number,
as cDNA/EST coverage for a full range of human
tissues is likely to take many years. The recent
near-complete sequencing of the human genome
has yielded numbers for the human gene total
that seem surprisingly low, of the order of 23,000–
40,000 genes.27,85 Efforts to estimate the number of
human genes just prior to the publications of the
sequenced genome, with one notable exception
(which estimated ,120,000 human genes86),
yielded largely similar numbers to these, in the
range ,28,000 to ,35,500.87 – 90 A recent compre-
hensive annotation of the draft human genome
estimated about 65,000–75,000 transcriptional
units or genes in the genome.91

Duplicated pseudogenes are more involved in
the problem of gene prediction than processed
pseudogenes: an exon with a disablement that is
in the region of a gene may or may not be a
part of the extant gene, making it difficult or
impossible to determine if the gene is a pseudo-
gene without cDNA/EST evidence. This is com-
pounded by the prevalence of alternative
splicing in the human genome; three indepen-
dent surveys have shown that ,40% of genes
encode alternatively spliced transcripts.92 – 94

Estimates for the proportion of gene annotations
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Table 4. Largest families in terms of proteins and pseudogenes in the worm; adapted from previous family clustering69

Pseudogenes Proteins

No. Description No. Description

59 Reverse transcriptase (IPR000477) 216 Nuc. hormone receptor ligand-binding domain (IPR000536)
51 7-TM chemoreceptor family #1 (IPR000168, IPR003003) 193 7-TM chemoreceptor family #1 (IPR000168, IPR003003)
31 Unknown domain family #1a 188 7-TM chemoreceptor family #2 (IPR000168)
27 7-TM chemoreceptor family #2 (IPR000168) 124 Eukaryotic kinase (IPR000719)
22 7-TM chemoreptor family #3 (IPR000168) 93 MATH domain (IPR002083)
21 Major sperm protein (IPR000535) 70 7-TM receptor family #4 (IPR000276)
20 Unknown domain family #3a 70 Guanylyl cyclase recep. tyr kinase (IPR001054)
19 Unknown domain family #4a 70 Cytochrome P450 (IPR001128)
19 TcA transposase (IPR002492) 70 Tyr phosphatase (IPR000242)
17 7-TM receptor family #4 (IPR000276) 68 UDP-glucuronyl transferase (IPR002213)

Corresponding InterPro motifs for some families are indicated in brackets. The thickly outlined boxes are for families that occur in both the top ten pseudogenes and top ten protein families.
a Those families do not have corresponding InterPro motifs.
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Table 5. Exclusive and expanded large families for assigned INTERPRO domains in the fly and worm proteomes

Largest exclusive to flya Largest exclusive to wormb Most expanded in worm relative to flyb Most expanded in fly relative to worm

No. Description No. Description

No. in
worm
(fly) Description

No. in fly
(worm) Description

404 Insect cuticle protein
(IPR000618)

624 7-TM chemo-receptor family
(IPR000168, IPR003003)

60 (1) DUF23 (IPR002875) 544 (15) Chymotrypsin serine protease
family S1 (IPR001314)

110 Alkaline phosphatase
(IPR001952)

322 7-TM chemo-receptor family
(IPR000168)

301 (6) EB module (IPR002899) 950 (35) Serine protease trypsin family
(IPR001254)

99 Glycoside hydrolase family 22
(IPR001916)

276 DUF38 (IPR002900) 44 (1) ET module (IPR002603) 161 (6) Lipase (IPR000734)

73 Alpha-tocopherol transport
protein (IPR001071)

238 ShK toxin domain (IPR003582) 339 (8) MATH domain (IPR002083) 48 (2) Peptidyl di-peptidase A M2
metallo-protease (IPR001548)

54 Hemocyanin (IPR000896) 237 DUF139 (IPR003341) 58 (2) K þ channel (IPR003280) 38 (2) GMC oxido-reductase
(IPR000172)

30 Acylphosphatase (IPR001792) 233 7-TM chemo-receptor family
(IPR000168)

167 (6) Major sperm protein (IPR000535) 37 (2) NMDA receptor (IPR001508)

29 GYR motif (IPR004011) 184 pol-like reverse transcriptase
(IPR003286)

71 (3) TcA transposase family
(IPR002492)

44 (3) Chaperonin cpn60 60 kDa sub-
unit (IPR001844)

26 Mitochondrial brown fat
uncoupling protein (IPR002030)

148 SRG family integral membrane
protein (IPR000609)

438 (37) Nuclear hormone receptor ligand-
binding domain (IPR000536)

47 (4) Gamma tubulin (IPR002454)

25 Opsin (IPR001760) 145 Nematode cuticle collagen N-
terminal domain (IPR002486)

861 (75) F box domain (IPR001810) 35 (3) Neutrophil cytosol factor 2
(IPR000108)

25 NF-kB/Rel/dorsal (IPR000451) 109 WSN (domain of unknown func-
tion) (IPR003125)

167 (17) vWF type A domain (IPR002035) 76 (9) Insect alcohol dehydrogenase
(IPR002424)

These data are taken from the lists provided on the InterPro proteome analysis Website (http://www.ebi.ac.uk/proteome). The symbols and abbreviations are explained in Table 4. The boxed
families occur also in the top ten pseudogene family list for worm.

a The four lists are sorted in decreasing order of the degree of expansion. The degree of expansion in a family is simply the size of the family in one organism divided by its size in the other. Only
families with 30 or more members in either organism are considered for this analysis.

b The family numberings differ here from those in Table 2, as these are derived by motif scanning in individual sequences, whereas the Table 2 families are derived by our own sequence cluster-
ing procedure (see Table 2).
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that may actually be pseudogenes lie in the
range 4–22%.27,87,95

Processed pseudogenes will be less likely to
interfere with the accuracy of gene predictions;
they will, on average, tend to be longer than the
average human exon size, and comprise character-
istic signals, including a C-terminal polyadenine
tail.44,46 If they occur in relatively large numbers,
they are also, in a sense, evidence that their parent
gene is transcribed and most likely functional.
Estimated numbers of processed pseudogenes in
the human genome are substantial compared to
those estimated for the gene total. In the
completed chromosome 22 sequence, Dunham
et al. initially predicted at least 545 genes and 134
pseudogenes (one for every ,4.1 genes).87 They
surmised that 82% of these pseudogenes were
processed, as they contained single blocks of
homology and lacked the characteristic exonic
structure of the closest matching gene. This gives
a predicted proportion of one processed pseudo-
gene for every ,5.0 genes. Venter et al., observed

evidence for at least ,2900 processed pseudogenes
arising from their human gene set.85 These were
identified by searching for continuous spans of
homology of .70% sequence identity over .70%
of the length of the matching coding sequences
from their gene annotations. No effort was made
to look for the other characteristics of processed
pseudogenes, such as evidence for polyadenyla-
tion. This data set of processed pseudogenes gives
a smaller proportion of processed pseudogenes, in
the region of about one for every ten genes. A
survey by the authors of pseudogenes on
chromosomes 21 and 22 that included
searching for polyadenylation yielded an estimate
of about one processed pseudogene for every
four genes.96 In this survey, we found that about
half of all detected pseudogenes are processed
(Table 2). The large amount of processing in the
human genome may simply reflect its large
amount of intergenic sequence and perhaps, the
genomic mobility of transposable elements such as
LINE-1.45

4 + 10Kinase

7 + 9Nucleic-acid binding

10 + 18Transcription Factor

6 + 22Nucleotide binding

11 + 21DNA binding

Genes 

0 + 4Receptor

0 + 4Transferase

2 + 2Kinase

2 + 3Nucleotide binding

0 + 6Transcription factor

2 + 2RNA binding

2 +2Receptor

3 + 4DNA binding

3 + 4Transcription factor

20 + 22Ribosomal protein

Pseudogenes

3 + 3Transcription factor

2 + 0RNA binding

2 + 1Oxidoreductase

2 + 3DNA binding

11 + 9Ribosomal protein

2 + 3Kinase

2 + 6Receptor

4 + 4DNA binding

3 + 10Transcription factor

20 + 23Ribosomal protein

Duplic ated Processed

Ancient
Modern

1 + 1Cell cycle regulator

1 + 2Receptor

2 + 0Nucleotide binding

0 + 2RNA binding

1 + 1DNA binding

9 + 13Ribosomal protein

Ig                     0 + 70

Ig                        0 + 69 Ig 0 + 70

Figure 4. Functional categories of genes and pseudogenes in chromosomes 21 and 22: adapted from data given by
Harrison et al.,96 Gene Ontology (GO) functional classes were assigned to predicted genes and pseudogenes for
chromosomes 21 and 22 in combination. Those for pseudogenes are separated into processed and duplicated, with pro-
cessed pseudogenes further separated into ancient and modern processed pseudogenes on the basis of their degree of
sequence identity with the closest-matching human gene from the Ensembl data set (http://www.ensembl.org
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The prevalence of the encoded proteins in the
processed pseudogene population appears to be
related to expression. Goncalves et al. analysed
181 genes that were reported to have one or more
processed pseudogenes.97 They found that such
genes tend to be short, highly conserved and
widely expressed. In the survey of ,2900 potential
processed pseudogenes by Venter et al.85 (noted
above), by far the most prevalent class of tran-
scripts (.60%) were for ribosomal proteins, which
are very highly (and, of course, widely) expressed.
The possibility of a large number of processed
pseudogenes for ribosomal proteins was first
noted during cloning of the mouse ribosomal pro-
tein rpL3298 As shown in Figure 4, data by the
authors from a survey of chromosomes 21 and 22
for processed and duplicated pseudogenes96 also
indicate that ribosomal proteins predominate in
the processed pseudogene population, albeit, to
less of an extent than in the survey by Venter
et al.,85 we found that ,20% of processed pseudo-
genes were ribosomal, and that there was little
difference in this prevalence for either modern or
ancient processed pseudogenes.

Figure 4 shows that the duplicated pseudogenes
found in the survey of chromosomes 21 and 22
tend to be immunoglobulin gene fragments,
reflecting their prevalence on chromosome 22.
This preference continues the environmental-
response theme discussed above for the worm and
the yeast.

Concluding remarks

Comparing and contrasting the distribution of
protein families in proteomes and in pseudogene
populations gives us new perspectives on how
proteomes evolve. A number of over-arching
themes and implications are apparent. There are
three distinct populations of pseudogenes.

Three types of pseudogenes

Prokaryotic pseudogene: dying genes resulting
from a niche change

Prokaryotic pseudogenes appear to be genes that
are dying and disappearing from the genome, in
response to a fundamental niche change for an
organism. In particular, there are now three
bacterial pathogenic genomes (M. leprae, Y. pestis
and R. prowazekii ) that exhibit large-scale degra-
dation of the proteome, with the lost or depleted
families evidencing apparent niche change. In the
most extreme case, M. leprae has large-scale
patterning in its pseudogene population that indi-
cates modular loss of metabolic pathways and
branches of pathways, such as part of the
anaerobic respiratory chain, when compared with
M. tuberculosis, its closest sequenced relative. It is
interesting, however, that this organism has lost
dnaQ-mediated proofreading activities of DNA

polymerase III.52 Perhaps, this loss of function
may actually have been selected so that removal
of redundant genes could be accelerated. Although
selection for deletion of pseudogenic DNA may not
be sufficiently strong in eukaryote genomes,79 there
may be strong selection pressures for such deletion
in small prokaryotic genomes that are undergoing
niche change, and discarding many genes.

Eukaryotic processed pseudogenes: random
insertion events

Processed pseudogenes arise from reverse-
transcription of mRNA and re-integration into the
genome. In humans, they are probably made as a
by-product of LINE retrotransposition45,99 That is,
the processed pseudogene is formed from reverse
transcribing a spliced mRNA into a cDNA using
the reverse transcriptase from the LINE and
re-integrating into the genome.45,99 Initial surveys
suggest that their occurrence is largely based on
simply random insertions, with their prevalence
based on (1) the amount of mRNA to be inserted
(expression levels) and (2) the amount of intergenic
DNA available for insertion. The first factor
accounts for the large numbers of ribosomal pro-
tein families found in processed pseudogenes.85,96

The second factor explains the large number of
processed pseudogenes in the human genome,
relative to the worm. It appears that the number
of processed pseudogenes per 106 bases of non-
coding DNA is almost the same for both
organisms. For human (chromosomes 21 and 22)
the ratio is 2.6, which is 178 processed pseudo-
genes per 67 Mb of non-coding DNA. For the
worm, the comparable number is 3.0, which is 208
per 70 Mb. (This ratio uses the high estimate for
numbers of pseudogenes in the worm. It would
decrease by 50% if one used the lower estimate
(see Table 2).)

Eukaryotic duplicated pseudogenes: a
resurrectable reservoir of extra parts for
environmental response?

Duplicated eukaryotic pseudogenes appear to be
most intriguing. They tend to arise for organism-
specific environmental response functions. This
tendency may reflect genomic mechanisms that an
organism uses to generate proteins that deal with
changes in its environment. We suggest below that
pseudogenes or pseudogenic parts for such classes
of gene may occasionally be resurrected and used
to enable larger random leaps in sequence space
(see below).

Eukaryotic pseudogenes tend to occur for
organism-specific families. Pseudogenes in yeast
are about twice as likely as a live protein to be
yeast-specific.59 Similarly, in the worm, the vast
majority of the most prominent pseudogene
families (those for the 7-TM chemoreceptors,
major sperm protein and some unknown domains)
are worm-specific or represent families vastly
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expanded in the worm relative to the fly (Tables 4
and 5).

Pseudogenicity in eukaryotes appears to be
linked to protein functions that are needed for
environmental response, needing functional
“breadth”. In the worm, pseudogenicity is linked
to 7-TM chemoreceptor families.69 In the yeast,
flocculins (which perform a variety of functions
involving cell adhesion), growth-inhibitors, and
stress-response proteins have the highest numbers
of pseudogenes.59 Finally, in the human, immuno-
globulins have a high degree of pseudogenicity.
For example, the immunoglobulin locus containing
lambda variable-region gene segments on chromo-
some 22 is about 50% pseudogenic.96 Also, a recent
survey shows that there are ,1000 olfactory recep-

tors in the human genome, with 60% of these
pseudogenic.73

Pseudogene resurrection as a general
evolutionary mechanism

In certain cases, as a rare or occasional evolution-
ary event, the resurrection of duplicated pseudo-
genic DNA to an expressed protein may enable
sampling of more sequence space for a protein or
protein family (Figure 5(a)). In particular, pseudo-
genes or parts of pseudogenes may be re-used,
after having drifted randomly without selection
for a period of evolution. The idea of such
“untranslatable intermediates” in the evolution of
a protein was first postulated about 30 years ago

Figure 5. Aspects of pseudogene
resurrection as an evolutionary
mechanism. (a) A schematic
evolutionary landscape showing a
sequence (represented by an open
circle) in a favourable fitness mini-
mum, with three evolutionary
routes A, B and C. Route A (con-
tinuous line) arises from mutation
under the pressures of natural
selection. Route B (dotted line) rep-
resents what happens when a
sequence undergoes random drift
as a pseudogene, but which, when
“resurrected” as a genic sequence,
is unfit. Route C represents what
happens when a sequence under-
goes random drift as a pseudogene,
but reaches another favourable fit-
ness minimum in a shorter span of
time than would be possible under
continuous natural selection. (b)
The top panel shows the conven-
tional view of protein fold evol-
ution where every intermediate
along the pathway has to be tran-
scribed and translated. The bottom
panels shows a pathway that
involves pseudogenic fragments.
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by Koch.100 Although generally one would expect
this mechanism to produce unviable or unfavour-
able leaps in sequence space, occasionally it may
provide a shorter evolutionary route to another
favourable evolutionary energetic minimum
(Figure 5(a)).

There are number of cases that one can point to
as evidence of such resurrection. A pseudogene of
bovine seminal ribonuclease that lay dormant for
,20 million years, appears to have been
resurrected to form a functioning gene, probably
via a gene conversion event.101 As discussed
above, the presence of the [PSI þ ] prion in yeast
strains may enable resurrection or extension of
ORFs from the yeast genome that have been able
to drift without selection pressures since the occur-
rence of their disrupting mutations.64 The large
cohort of pseudogenes for chemo- or olfactory
receptors (ORs) in metazoans (60% of the ORs in
the human genome are pseudogenic) may be
resurrectable by gene conversion events. There
appears to have been a large number of gene con-
version events (.20) in a cluster of olfactory recep-
tors on chromosome 17 over the course of primate
evolution.102 This cluster contains 16 OR genes
and 6 OR pseudogenes in the human genomic
DNA. Gene conversion events in OR gene clusters
may help to generate diversity at the odorant
binding site.102 Occasional resurrection of OR
pseudogenes by gene conversion may contribute
to this generation of diversity in binding capability.
Finally, in the chicken, diversity of immuno-
globulin heavy chain variable-region gene seg-
ments appears to be generated by gene conversion
of a single functional gene with .80 pseudogenic
gene segments.103

Resurrectable pseudogenes may help resolve
a paradox about protein fold evolution

Considering duplicated pseudogenes as a
resurrectable reservoir of diversity may help to
resolve an evolutionary paradox presented by
structural biology. How do new folds evolve? An
early observation from structural genomics
analyses was that there appear to be folds unique
to certain phylogenetic groups.16,25 For instance, an
initial analysis showed that of 275 folds, 46 were
present only in eubacteria and 73 only in
eukaryotes, and of the 229 total folds in eukaryotes,
20 were only in plants and 90 only in animals.16

How does one get new unique folds in certain
phylogenetic groups? As shown in Figure 5(b), in
some cases it may be difficult to imagine a scenario
for this where each intermediate form has to be a
functioning protein that is transcribed and trans-
lated. (This is in contrast to other evolutionary
pathways, where functioning and selected inter-
mediates are more plausible.) One can speculate
that resurrectable pseudogenes could eliminate
this paradox to some degree. A sequence compris-
ing a particular domain fold or (more likely) part
of a domain could become pseudogenic. It could

then drift freely as a pseudogene, and evolve to a
new domain fold upon or after resurrection. In
this scheme, each intermediate does not have the
constraint that it be a folded functional protein.

Elimination of pseudogenes

Pseudogenes can be eliminated from the genome
due to deletion events. There is obviously greater
pressure to do this for prokaryotes than for
eukaryotes. Thus, it is important to point out that
the lack of a large pseudogene population for pro-
karyotes does not imply that an organism has not
undergone gene loss as drastic as that seen in
M. leprae, over a similar evolutionary period. An
organism with a higher rate of genomic DNA
deletion would delete pseudogenic DNA more
efficiently, and we would therefore not see such a
large pseudogene population at present. For
M. leprae, it may be that the rate of disablement of
ORFs is raised, without there being a concomitant
increase in the rate of deletion of intergenic DNA.
Rates of intergenic DNA deletion vary widely
from organism to organism.80 For the eukaryote
Drosophila, although the overall genomic deletion
rate is very high, the observed spectrum of deletion
sizes in transposable elements implies that it has
not been selected for to aid genome compaction.79

The Drosophila genomic DNA deletion rate seems
to explain the dearth of pseudogenes in the fly
that are detectable by sequence homology.78,80 To
find very decayed remnants of proteins in the
genome not amenable to sequence alignment, we
are currently developing a probabilistic approach
based on scanning the genome for decayed protein
motifs (termed pseudomotifs).84 Over even longer
evolutionary periods, gene loss can be inferred
from careful comparative proteome analysis. For
example, comparison of the S. cerevisiae proteome
with the near-complete proteome of the fission
yeast Schizosaccharomyces pombe, indicates the
possible loss of about 300 proteins in S. cerevisiae,
and provides an explanation for the small degree
of gene splicing in S. cerevisiae, involving deletion
of signalosome and spliceosome components.104

(The fission yeast has extensive gene splicing.)

Power-law behaviour and the size of
duplicated pseudogene populations

We noted above that the size of protein families
in the live proteomes is governed by a power-law
distribution (Figure 1). This behaviour is observed
for the distribution of protein families in the
pseudogene population (the dead proteome) of
chromosomes 21 and 22, and of the worm
genome69,96 (Figure 1). (It is observed even for the
distribution of pseudomotifs in the fly and worm
genomes.84) This may imply that conservation
pressures do not cause such power-law behaviour,
but rather the flow of change from old to new
families over evolution. Qian et al.,22 found that
the power-law distribution of protein families and
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folds is well described by a simple model in which
existing gene sequences can be duplicated, but
with the occasional creation or addition of a novel
gene.

Thus, despite the great differences in specific
protein families prevalent in various organisms in
both the living and the dead proteomes, we can
see a clear commonality in their occurrence: one
has a few families occurring many times and most
occurring just a few times. In all aspects of geno-
mic biology, one never gets a uniform distribution
of occurrence over families.
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