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Summary 

Pseudogenes are considered as gene fossils, i.e. they are disabled copies of functional 

genes that were once active in the ancient genome. Recently, whole-genome 

computational approaches have revealed thousands of pseudogenes in the human and 

other eukaryotic genomes. Identification of these pseudogenes can improve the accuracy 

of gene annotation. It also offers new insight on the evolution history of human genes and 

the stability of genome as a whole.  

 

 

Introduction 

Mammalian genomes, such as human and mouse, contain large number of gene-like 

sequences called pseudogenes. These pseudogenes are inheritable, non-functional, gene 

homologies that are generally disabled at transcriptional level [1,2]. In most cases, 

pseudogenes cannot produce transcripts due to the lack of functional promoters. Very 

rarely, some pseudogenes have retained or acquired a functional promoter so they can be 

transcribed, but these transcripts are not translated due to lack of translational or splicing 

signal sequences. As the result of their non-functionality, pseudogenes are generally 

released from selective pressure and often accumulate mutations such as frameshifts, in-

frame stop codons, or interspersed repeats in the original protein-coding sequence (CDS) 

(see Figure 1).  Consequently, we can identify pseudogenes operationally through finding 

regions of homology that have these non gene-like features (Table 2).  
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Depending on the mechanism by which they were generated, majority of the mammalian 

pseudogenes can be divided into duplicated pseudogenes and retrotransposed 

pseudogenes (also called processed pseudogenes). Duplicated pseudogenes arose from 

tandem duplication or unequal crossing-over, thus they often have retained the original 

exon-intron structures of the parental genes, though sometimes incompletely. In contrast, 

retrotransposed pseudogenes were created from retrotransposition, i.e. the reverse 

transcription of mRNA transcript followed by integration into the genome [3,4]. 

Therefore, retrotransposed pseudogenes are often considered as a special type of 

retrotransposons, just like long interspersed nuclear elements (LINEs) and short 

interspersed nuclear elements (SINEs) in the mammalian genomes [5]. Retrotransposed 

pseudogenes also share some of the common characteristics of the LINEs and SINEs, 

which include completely lack of introns, the presence of small flanking direct repeats, 

and a polyadenine tail near the 3'-end. Because of their close homology to functional 

genes, pseudogenes often introduce errors or contaminations in the sequence databases 

(Figure 1). In addition to retrotransposed and duplicated pseudogenes, other types of 

pseudogenes also exist in the human genome (see below). 

 

Over the years, pseudogenes have been comprehensively surveyed in several completely 

sequenced genomes (Table 1). In 2002, a preliminary survey reported about 400 

pseudogenes on the two smallest human chromosomes, 21 and 22 [6]. Several other 

studies have focused on the pseudogene population of selected gene families [7-10]. Year 

2003 proved to be an exciting year for pseudogenes, as three research groups 

independently published comprehensive surveys of pseudogenes in the entire human 
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genome [11-13]. It was also discovered in the same year that a mouse pseudogene 

actually has a regulatory role [14].  

 
 
Whole-Genome identification of pseudogenes 

Traditionally, pseudogenes were often discovered as by-products of gene sequencing or 

PCR experiments. It is only after the whole-genome sequencing projects that large 

number of pseudogenes were identified and annotated. Using a homology based 

approach, Zhang and colleagues identified   ~8,000 retrotransposed pseudogenes and 

~3,000 duplicated pseudogenes in the human genome draft (Build 28, April, 2002 

release) [12]. Ohshima and colleagues [11] used basically the same approach in their 

survey except that they used an older release of the human genome (April, 2001). 

 

In addition to just relying on existence of truncation or frame disruptions to ascertain the 

non-functionality of the pseudogenes, Torrents and colleagues [13] developed a neutrality 

test by computing the ratio of synonymous to non-synonymous substitution rates (KA/KS) 

for each pseudogene. The KA/KS ratio measures how often nucleotide substitutions in a 

DNA sequence change the amino acid and this ratio is often used to test whether a 

sequence is under selective constraints [15]. These researchers reported ~20,000 potential 

human pseudogenes. By correlating with sequence conservation in the mouse syntenic 

regions, they estimated 70% of these were retrotransposed pseudogenes. The pseudogene 

annotations can also be validated by the absence “CpG islands” in their 5’ upstream 

regions; this is because these “CpG islands” are often associated with the 5’ end of the 

functional genes [16]. Operationally, as we have pointed out earlier, pseudogenes can be 
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defined by a variety of different sequence features. The three research groups (Tokyo, 

Yale, and EMBL) have taken somewhat different approaches towards the definition, 

resulting in different numbers. The differences are summarized in Table 2. Some features 

listed in Table 2 were not used in the identifying pseudogenes, but rather in the later 

stages of analysis and inferences. 

 

Exact number of the pseudogenes in the human genome 

It is a little surprising that the total numbers of human pseudogenes reported by the three 

research groups are quite different.  Much of the discrepancy can be attributed to the 

different criteria used by individual groups. Ohshima et al [11] applied the stringiest 

criteria in their procedures as they only presented those pseudogenes that are 90% 

complete in comparison with their parental genes. Zhang and colleagues [12] counted 

those candidates that are 70% complete in coding region as pseudogenes and designate 

those shorter than 70% as “pseudogenic fragments”. In contrast, Torrents and colleagues 

[13] did not apply any sequence completeness threshold in their procedures. If the 70% 

completeness cutoff is applied to the pseudogene set derived by Torrents et al., 

approximately 7,800 of them are indeed longer than this threshold. This is actually 

remarkably close to the number reported by Zhang et al [12]. Thus, even though the 

reported numbers differ, the results from the three groups are actually consistent with 

each other.  
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Pseudogenes in other organisms 

In addition to human, large numbers of pseudogenes were also identified in the genomes 

of other eukaryotes including C. elegans [17], budding yeast [18], puffer fish [19], and 

fruitfly [20]. Some prokaryotic genomes also reportedly have many pseudogenes [21-23].  

Generally pseudogenes are less common in prokaryotes since their genomes are more 

compact and have higher DNA deletion rates [24].  

 

The initial annotation of the mouse genome reported about 14,000 putative pseudogenes  

[25]. A more recent study revealed about 5,000 retrotransposed pseudogenes in mouse 

[26], was based on the same criteria that was used for the human pseudogenes [12]. This 

is significantly less than the number of retrotransposed pseudogenes in human, even 

though the mouse genome is only slightly smaller than the human genome. However, this 

does not mean that retrotransposition is less active in mouse. The mouse genome has 

higher nucleotide substitution, insertion and deletion rates than human [25,27], thus the 

pseudogenes in mouse decay faster and are not recognized as easily as those in the human 

genome. 

 

It is interesting to estimate what fraction of the pseudogenes in the human and mouse 

genomes are lineage-specific, i.e. those pseudogenes that were created after the primate 

and rodent lineages split at about 75-80 million years (Myr) ago [25]. Torrents and 

colleagues [13] reported that ~76% of their “pseudocoding regions” in the human 

genome can also be found within the corresponding mouse synetnic regions. Using an 
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alternative approach, Zhang et al. [26] estimated sequence divergence between the 

pseudogenes and the parent gene and converted the divergence data to evolutionary time. 

These researchers concluded that about 60% of the retrotransposed pseudogenes in the 

human and mouse genomes are lineage-specific.  

 

 

Retrotransposed pseudogenes is a special type of retrotransposons 

Human genome contains about several millions of copies of LINE and SINE elements 

which comprise >30% of the entire human genomic DNA [5]. While LINEs are 

autonomous (i.e. they can retrotranspose their own transcripts), SINEs have to rely on 

active LINEs to propagate. It is believed that LINE retrotransposons are also responsible 

of mobilizing mRNA transcripts and generating retrotransposed pseudogenes [4]. 

Macroscopically, the distribution of the retrotransposed pseudogenes in the human 

genome is random and dispersed, with the pseudogene abundance on each chromosome 

proportional to its length. Despite the common mechanism in their biogenesis, LINEs, 

SINEs and retrotransposed pseudogenes have distinct distributions in the genomic 

regions of different G+C composition [12]. This discrepancy has been explained by the 

different stability of the retrotransposons and pseudogenes in different regions [28]. 

 

By calculating the sequence divergence between the sequence of pseudogene and the 

parental functional gene, one can estimate the age of a pseudogene, i.e. the time that has 

elapsed since it became non-functional [12] [11,29]. The retrotransposed pseudogenes in 

the human genome have an overall age profile that is similar to that of the Alu elements, 
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the predominant SINE elements in primates. The rate of new retrotransposed 

pseudogenes generated in human peaked at approximately 40 million years ago, which 

coincided with the onset of the higher primates radiation [11,12].  

 

 

Highly expressed genes tend to have multiple retrotransposed pseudogenes 

The number of retrotransposed pseudogenes per gene is highly uneven among human 

genes. In fact, only 10% of the human genes have at least one retrotransposed 

pseudogene identified [11,12]. Ribosomal proteins, which have 79 genes in the human 

genome, account for nearly 20% of the entire retrotransposed pseudogenes population 

[7]. Other genes that have multiple retrotransposed pseudogenes include housekeeping 

genes, genes that code for structure protein and metabolic enzymes. In general, the genes 

that have multiple retrotransposed pseudogenes tend to be highly expressed, have short 

transcripts, and have lower G+C composition [12,30]. Figure 2 shows the functional 

categories of the human and mouse genes that gave rise to multiple retrotransposed 

pseudogenes. These also include some genes that are involved in cancer or have other 

medical implications such as cyclophilin, nucleophosmin and prohibitin [12]. For those 

human genes that have multiple retrotransposed pseudogenes, their mouse homologues 

also tend to have many pseudogenes in the mouse genome. 
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Pseudogenes as tools to study gene and genome evolution 

Pseudogenes are often considered as “genomic fossils” as they provide snapshots of the 

ancient genes that were active millions of years ago. They can be analyzed to infer the 

evolutionary history of particular genes or gene families. By comparing the sequences of 

human cytochrome c (cyc) pseudogenes with the functional cyc gene from human and 

mouse, it became obvious that accelerated evolution in cyc gene had occurred in the 

primate lineage leading to human [31]. In another case, it is found that the orthologs of a 

human keratin pseudogene in the chimpanzee and gorilla are still functional [32]. 

 

Since pseudogenes are free to accumulate mutations, they are also very valuable in 

studying nucleotide substitution, insertion and deletions [33,34]. On a related note, 

retrotransposition of mRNA transcripts has been suggested as an important mechanism of 

generating new genes [35-37]. Brosius and colleagues have argued that mammalian 

genomes were forged and shaped by “massive bombardments” of retrotransposed 

sequences [38,39].  

 

 

Some pseudogenes are transcribed 

Because pseudogenes have high sequence similarity with their parental genes, they can 

potentially introduce contaminations in hybridization or amplification experiments. 

Special cautions need to be taken to prevent such interferences [40]. It has been reported 

that a cytokeratin-19 pseudogene may have interfered with diagnostic assays used to 

detect micrometastatic tumor cells [41].  In another instance, a novel pseudogene of phox, 
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component of phagocyte NADPH oxidase complex, complicates the detection of chronic 

granulomatous disease [42,43].  

 

The original definition of pseudogenes implies that they are transcriptional silent, 

however over the years there have been many reported cases where a pseudogene can 

indeed be transcribed (for a complete list, see [2]). In one instance, it was found that a 

tumor suppressor gene, PTEN, has a transcribed retrotransposed pseudogene that has 

more transcripts than the parental functional gene [44]. In another case, a pseudogene 

even has developed a tissue-specific expression pattern [45].  

 

 

Potential functional roles of pseudogenes 

Because of their close similarities to the functional genes and high level of sequence 

conservation, pseudogenes, especially those are transcribed, have been hypothesized to 

have regulatory roles [46]. Korneev and colleagues has reported that, in the neurons of 

mollusk Lymnaea stagnalis, a transcribed pseudogene of neural nitric oxide synthase 

(nNOS) suppresses the synthesis of nNOS protein in an RNAi-like mechanism [47]. The 

transcript of the pseudogene contains a region with significant antisense homology to the 

nNOS mRNA transcript and binds to the nNOS transcript to form a stable RNA/RNA 

duplex. In another example, the pseudogene of the mouse gene Makorin1 modulates the 

expression of the homologous functional gene in either an RNA-mediated or a DNA-

mediated mechanism [14]. At the RNA level, the pseudogene RNA transcript could 

compete with the functional mRNA for an RNA-digesting enzyme. At the DNA level, the 
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pseudogene locus could potentially compete with the functional Makorin1 gene for 

transcription repressors [48]. 

 

Pseudogenes have also been proposed to serve as a sequence pool for generating genetic 

diversity [2]. Genes and pseudogenes can recombine and produce new genes; such 

processes have been reported in the human immune system [49]. 

 

Conclusions 

Pseudogenes are ubiquitous and abundant in the mammalian genomes. Their importance 

and implications have captured the interests of researchers from very diverse disciplines. 

The fact that pseudogenes have regulatory roles further demonstrates that these sequences 

should not be treated as “junk DNA”. With more mammalian genomes such as that of 

chimpanzee being sequenced, a more complete picture of pseudogenes and their 

functional roles is starting to emerge. 
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Figure Legends 
 

Figure 1 

(A) A screen shot from the Ensembl website showing the contamination of pseudogenes 

in the genomic databases. The human cytochrome c functional gene (cyc) is located in the 

chromosome 7. Many retrotransposed cyc pseudogenes exist in the human genome. The 

red arrows point to those pseudogenes that are mistakenly annotated as genes By 

Ensembl. The functional cyc gene contains 1 intron in the coding region while the 

pseudogenes have no introns.  (B) The amino acid and nucleotide sequence alignments 

between the functional cyc gene and a pseudogene. The pseudogene contains frame shifts 

and stop codons. (C) Retrotransposed pseudogene can be used to verify the exon structure 

predictions. The exon structures predicted by RefSeq and Ensembl are compared with a 

retrotransposed pseudogene. The inconsistency between the predictions and the 

pseudogene sequence could represent alternative splicing or erroneous predictions. 

 

Figure 2 

Functional classification of the retrotransposed pseudogenes in the human genome (A) 

and mouse genome (B), according to Gene Ontology functional categories. 

"Unclassified" are those pseudogenes that arose from genes that were not yet assigned to 

a GO category. Less populated categories are lumped together into "Others." 
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Table 1 Annotated pseudogenes in the completely sequence genomes. 
 
 

Organism Genome 
size [Mb] No. of genes No.  of 

pseudogenes 

No. of 
retrotransposed 
pseudogenes 

Reference 

R. prowazekii 1.1 834 241 0 [21] 

M. leprae  3.3 1,604 1,116 0 [22] 

Y. pestis  4.6 4,061 160 0 [50] 

E. coli, K-12  4.6 4,400 95 0 [23] 

E. coli, O157  5.5 6,000 101 0 [23] 

S. cerevisiae 12.1 6,340 241 0 [18] 

C. elegans  102.9 20,009 2,168 208 [17] 

D. melanogaster  128.3 14,332 110 34 [20] 

A. thaliana  115.4 25,464 > 700 ? [51] 

      

H. sapiens 3,040 ~35,000    

   ~14,000 ~7,800 [12] 

   ~3,600 ~3,600 [11] 

   ~19,000 ~13,300 [13] 

M. musculus 2,493 ~22,000    

   ~10,000 ~4,500 [26] 

   ~13,000 N/A [25] 
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Table 2 

 
 Features of pseudogenes (or potential 

pseudogenes) Tokyo 
[11] 

Yale 
[12,26] 

EMBL 
[13] Others * 

Level of sequence homology to parent 
gene     

Sequence completeness relative to parent 
gene     

Absence of introns     
Ratio of the non-synonymous to 
synonymous 
substitution rates (Ka/Ks) 

 ▲  [25,52] 

Chromosomal location (in relation to 
parent gene)  ▲   

Existence of frame disruptions 
(frameshifts and stops)     

G+C content of pseudogenes and 
background  ▲ ▲   

Expression level of the parent gene  ▲   
Occurrence of regulatory regions such as 
CpG islands     

Codon composition and nucleotide 
substitutions in relation to parental gene  ▲  [34,53] 

Occurrence of polyadenine tail      
Conservation with mouse genome  ▲   
Association with evidence of 
transcription such as  
EST matches or micro-array data 

   [54,55] 

Occurrence of SNPs    [56] 
Number of pseudogenes per gene family ▲ ▲ ▲ [7-10,57] 
 

  Main feature used for the assignment of pseudogenes. 

  Minor feature used for the assignment of pseudogenes. 

▲  Surveyed after assignment of pseudogenes (in comparison to genes). 

  Not currently used or surveyed but potentially could be. 

*   Analysis performed by others. 
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