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Mark Gerstein

Background:  Determining how representative the known structures are of the
proteins encoded by [AU:OK?] a complete genome is important for assessing
to what extent our current picture of protein stability and folding is overly
influenced by biases in the structure databank (PDB). It is also important for
improving database-based methods of structure prediction and genome
annotation.

Results:  The known structures are compared to the proteins encoded by eight
complete microbial genomes in terms of simple statistics such as sequence
length, composition and secondary structure. The known structures are
represented by a collection of nonhomologous domains from the PDB and a
smaller list of ‘biophysical proteins’ on which folding experiments have
concentrated. The proteins encoded by the genomes are considered as a
whole and divided into various regions, such as known-structure homologue,
low complexity (nonglobular), transmembrane or linker. Various tests are
performed to assess the significance of the reported differences, in both a
practical and a statistical sense.

Conclusions:  The proteins encoded by the genomes are significantly different
from those in the PDB. Their sequence lengths, which follow an extreme value
distribution, are longer than the PDB proteins and much longer than the
biophysical proteins. Their composition differs from the PDB proteins in having
more Lys, Ile, Asn and Gln and less Cys and Trp. This is true overall and
especially for the regions corresponding to soluble proteins of as yet unknown
fold. Secondary-structure prediction on these uncharacterized regions indicates
that they contain on average more helical structure than the PDB; differences
about this mean are small, with yeast having slightly more β structure and
Haemophilus influenzae and Helicobacter pylori more α structure. Further
information is available through the GeneCensus system at
http://bioinfo.mbb.yale.edu/genome.

Introduction
The advent of complete genome sequences allows us to
reassess our understanding of proteins and, in particular,
protein structure. Most accounts of what proteins ‘look
like’ have underlying them an implicit statistical picture of
the ‘average protein’ — its composition, length, and so
forth. This statistical picture is based to a great extent on
the properties of the known structures in the Protein
Databank (PDB), however, and the selection of proteins
in the PDB is highly biased by the preferences of individ-
ual investigators and by the physical constraints on what
will crystallize (or can be studied by NMR spectroscopy).
The selection of proteins encoded by a complete genome,
by contrast, is in a sense unbiased, representing the total
complement of proteins necessary for an organism to live.

The objective of this paper is to understand how biased
the collection of known structures is by comparing them

in a statistical fashion to the proteins in a number of
recently completed genomes. The comparison focuses on
simple measures such as the distribution of sequence
lengths, amino acid and secondary structure composition,
and the occurrence of transmembrane segments and low-
complexity regions. Beyond simply illuminating the biases
in the structure databank, this work has important implica-
tions for database-based structure prediction and model-
ing algorithms. These algorithms all essentially try to
extrapolate what has already been seen in the database to
a new uncharacterized protein. For instance, secondary-
structure prediction consists of observing the patterns of
amino acids that are associated (albeit often weakly) with
helices and strands in the databank, and then assigning
secondary structure to an unknown protein based on the
occurrence of these patterns in its sequence [1–8]. If the
database is so biased that the amino acid and secondary
structure composition in the known structures is not rep-
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resentative of that in the unknown protein, however, one
would not expect prediction (by any algorithm) to be very
meaningful. 

This work follows up on much recent analysis of genomes
(or partial genomes). Automated methods have been
developed for annotating whole genomes [9–11], for
example, and the number of membrane proteins encoded
has been surveyed [12–16]. Genomes have also been com-
pared on the basis of the frequencies of oligonucleotide
and oligopeptide words [17–20], and censuses have been
done on the occurrence of various fold families in
genomes [21–24]. This paper also follows up on recent
work looking at how the effects of compositional and
length biases in the PDB affect various prediction and
sequence comparison methods [25–27].

Results
A representative selection of structures from the PDB
The obvious first step in this analysis is deciding exactly
what structures one should take as representing the
known structures. One could, for instance, take all the
structures in the PDB, of which there are currently about
5500 (5493 identifiers and 10781 domains, see the Materi-

als and methods section). This would be clearly biased,
though, by the fact that for some, but not all, of the pro-
teins in the PDB there are many mutant or highly homolo-
gous structures or many structures of the same protein in
different conformations or liganded states. (For instance,
there are 154 structures for immunoglobulin variable
domains and 222 structures for T4 lysozyme, but only a
single structure for the equally important tyrosine kinase
and topisomerase II proteins.) Brenner et al. [28], in fact,
report that 9 out of 10 of the new structures deposited in
the PDB are just minor variants of what is already in the
database. Consequently, for analyses such as the one here,
the PDB is usually clustered into a representative set of
unique chains or domains, and this is done here based on
amino acid sequence by a new algorithm (described in the
Materials and methods section). It gives 1135 representa-
tive domains of soluble proteins — the amino acid compo-
sition of these domains is shown in Table 1 and their
length distribution in Figure 1. The average length of a
PDB domain is ~170 residues. (A few very long domains
skew this average, so that the most common length, i.e.
the mode, is around 120 residues.) The length and compo-
sition statistics for these 1135 domains will serve as a stan-
dard for comparison against the genome proteins. When,
in the following discussion, reference is made to the
“average length of the known structures” or the “composi-
tion of the PDB”, one is directed to the statistics in
Table 1 and Figure 1.

Some basic definitions for comparing composition
In what follows, the composition of a reference is com-
pared with the compositions of other data sets. Usually,
this will be the PDB versus whole genomes, and for con-
creteness this terminology will be used in this section, but
other situations will also arise, such as genome versus
genome or PDB versus biophysical proteins. It is worth-
while defining a few basic terms relevant to these compar-
isons. The absolute difference in composition of a
particular amino acid i in genome g versus the reference is
Dabs(i,g) = C(i,g) − C(i,PS), where C(i,g) is the fraction of
amino acid i in genome g and C(i,PS) is the analogous frac-
tion in the reference, that is, in PS, the soluble part of the
PDB. The relative difference can also be computed:
Drel(i,g) = Dabs/C(i,PS). Note that both the absolute and rel-
ative differences are unitless percentages. This can lead to
ambiguity — for example, how does one know whether
the statement “the Escherichia coli genome has 10% more
Ala than the 8% in the PDB” means that the E. coli
genome has 8.8% or 18% Ala. To avoid this problem,
absolute differences will be followed throughout the dis-
cussion by ‘abs’ and relative ones by ‘rel’.

If one wants to get a sense of how the composition of a
genome differs in an overall sense from the reference, one
can compute an average difference in the RMS sense:
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Table 1

Composition of the PDB.

Soluble All-β All-α Mixed
PDB (PB) (PA) (PAB)
(PS)

Number of sequences 1135 266 207 662
Number of amino acids 192313 42845 29908 119560
Average length 169 161 144 181

Residue:
A 8.40% 6.8% 9.2% 8.7%
C 1.72% 1.6% 1.4% 1.8%
D 5.91% 5.9% 5.8% 6.1%
E 6.29% 5.2% 7.3% 6.3%
F 3.94% 4.2% 4.2% 3.9%
G 7.79% 8.4% 6.4% 7.9%
H 2.19% 2.1% 2.2% 2.2%
I 5.54% 5.4% 5.1% 5.8%
K 6.02% 5.6% 6.5% 5.9%
L 8.37% 7.3% 9.6% 8.4%
M 2.15% 1.7% 2.4% 2.2%
N 4.57% 5.3% 4.4% 4.5%
P 4.70% 5.1% 4.4% 4.6%
Q 3.73% 3.5% 4.2% 3.7%
R 4.78% 4.2% 5.4% 4.8%
S 5.97% 7.2% 5.7% 5.6%
T 5.87% 7.2% 5.2% 5.5%
V 6.96% 7.6% 5.7% 7.1%
W 1.46% 1.7% 1.5% 1.3%
Y 3.64% 3.8% 3.5% 3.7%

Statistics relating to the length and composition of some
representative subsets of the PDB. PS is 1135 domains derived from
applying multiple-linkage clustering to the soluble proteins in the PDB.
PA, PB and PAB are proper subsets of PS corresponding to all-α,
all-β, and mixed proteins.



(1)

In the preceding expression, if X is ‘abs’, one is evaluating
an absolute root-mean square difference Rabs, denoted by
‘rms abs’. in the text. Likewise, if it is ‘rel’, one has a rela-
tive rms difference, denoted Rrel and ‘rms rel’ in the text.
(The averaging here is over all 20 amino acids. It can, of
course, instead be performed over secondary structure or

genomes to give quantities such as Rrel(Ala), but the essen-
tial point of distinguishing between relative and absolute
compositional differences remains the same.)

Subdivision of the PDB: structural classes and ‘biophysical
proteins’
Using the original definitions of Levitt and Chothia [29],
on a very rough level the domains of known structure can
be subdivided into those with all-α, all-β, or mixed struc-

( ) ( )R g D i gX X i
= 2 ,
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Figure 1

The distribution of sequence lengths of
structures in the PDB. (a) Length distribution
of domains and chains of PDB structures
compared with those of genome proteins. The
genome distribution is a best-fit, extreme value
distribution (see Figure 2). The structure
distribution is derived from clustering the PDB
as described in the Materials and methods
section. One can assess whether the
distribution of lengths of genome sequences
is significantly different from that of PDB
chains in a standard fashion via computation
of a χ2 statistic [96]. Doing this indicates that
the differences are statistically significant in a
literal sense (i.e. there are enough counts),
with the chance of the distributions being
identical being less than 1e–100. (The χ2 value
is 1127 for 31 histogram bins.) (b) The
distribution of PDB domain lengths in more
detail, breaking down the domains into three
subcategories: all-α, all-β, and biophysical.
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ture (which includes both α/β and α+β). As shown in
Table 1, each group of domains has a different amino acid
composition, as expected, differing by 1.3% rms abs (23%
rms rel). Making up 18% of the total, the all-α domains
tend to be shorter than the overall average (144 residues).
The all-β domains are of average length (23% of the total;
161 residues), and the mixed domains, making up the
remainder of the total, are (necessarily) slightly longer
than the average (181 residues).

In addition, a list of structures corresponding to ‘biophysi-
cal proteins’ was assembled (Table 2). The 30 proteins on
this list are supposed to represent the small group of pro-
teins – a subset of those with known structure – on which
folding experiments have been done, that is, the proteins
that underlie our picture of the folding process. As
described in the Materials and methods section, these
were chosen in a somewhat subjective fashion, based on
literature searches and discussions with colleagues. The
biophysical proteins are almost all single-domain and, with
a mean length of ~120 residues, are significantly smaller
than the average domain in the PDB (Figure 1). As shown
in Table 2b, they have mostly moderate or small differ-
ences in amino acid composition compared to the average
PDB domain (differing by ~0.6% rms abs or 13% rms rel).

One can interpret these differences in terms of the bio-
physical proteins being considerably smaller than the
average PDB domain. This implies that they have a larger
surface area relative to buried core and hence more polar
and charged residues on the surface relative to hydropho-
bic ones in the core. As shown in Table 2b, this is largely
what is observed. Comparing the composition of the bio-
physical proteins to those in the PDB, one finds in total
that the hydrophobic residues decrease by 2.7% abs and
the hydrophilic residues increase by 2.3%. Moreover, five
of the six largest decreases are hydrophobes and, likewise,
the five largest increases are hydrophiles. The consider-
ably fewer prolines in the biophysical proteins may also be
due to the fact that Pro can potentially complicate the
folding pathway and so is disfavored by investigators
studying folding.

Genomes used and their overall size
The genomes considered in this analysis, listed in
Table 3, are the first eight genomes to be completely
sequenced. They represent a diverse comparison, being
drawn from the three kingdoms of life (Eukarya, Eubacte-
ria and Archaea) and from wildly different external envi-
ronments (from room temperature and pressure to 85°, 200
atmospheres and from normal pH to highly acidic). They
also represent microbes with a wide range of genome sizes
and modes of life, from parasite to autotroph. As shown in
Figure 2, the distribution of sequence lengths (L) is
similar in all eight genomes. It is unimodal with a long tail
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Table 2

Biophysical proteins. 

PDB Select Length Class Name

(a) A list of the proteins used for this study

1sty – 137 β Staph nuclease
1cgp a:9–137 129 β CAP
1bgh – 85 β Gene V protein
1pht – 83 β SH3 domain
1tpf a: 250 α/β TIM
1wsy a: 248 α/β Trp synthase
8dfr – 186 α/β DHFR
2rn2 – 155 α/β Ribonuclease H
1brs d: 87 α/β Barstar
1gbs – 185 α+β Hen lyzozyme
119l – 162 α+β T4 lysozyme
193l – 129 α+β α-Lactabumin
7rsa – 124 α+β RNAse A
1brn l: 108 α+β Barnase
1fkd – 107 α+β FK506
9rnt – 104 α+β RNAse T1
1sha a: 103 α+β SH2 domain
1ubi – 76 α+β Ubiquitin
1cse i: 63 α+β CI-2 inhibitor
1igd – 61 α+β B1 domain
1mbd – 153 α Globin
1hrc – 105 α Cytochrome c
2wrp r: 104 α Trp repressor
1lli a: 89 α Cro repressor
1cop d: 66 α Lambda repressor
1rpo – 61 α ROP
1myk a: 47 α Arc repressor
2zta a: 31 α GCN4 zipper
1btl – 263 M β-Lactamase
1bpi – 58 S BPTI
Average 116

(b) Composition of the biophysical proteins.

Residue Hydrophobic/ Soluble Biophysical Relative
polar (H/P) PDB proteins difference

(PS) (BP) (BP/PS –1)

P H 4.7% 3.7% –21%
F H 4.0% 3.2% –19%
M H 2.1% 1.8% –16%
D P 6.0% 5.1% –16%
V H 7.0% 6.2% –12%
C H 1.7% 1.5% –9%
S P 6.0% 5.7% –5%
G – 7.8% 7.7% –1%
I H 5.6% 5.5% –1%
N P 4.6% 4.6% 0%
W H 1.4% 1.5% 1%
T P 5.8% 6.0% 2%
L H 8.4% 8.7% 5%
A – 8.4% 8.8% 6%
Y – 3.7% 3.9% 6%
H P 2.2% 2.4% 6%
Q P 3.7% 4.0% 6%
R P 4.8% 5.2% 9%
E P 6.2% 7.0% 13%
K P 5.9% 7.7% 30%

(a) The 30 ‘biophysical proteins’, which have an average length of 116 amino
acids. [AU: please explain the entries in the ‘Select’ column] (b) The
composition of these proteins in comparison to the soluble part of the PDB. Note
that the average PDB protein is larger, with an average domain size of 169
residues, and is expected to contain proportionally more hydrophobic residues
relative to polar ones than the smaller biophysical proteins. This is indicated in
the last column, which shows the change in composition (relative using Drel(g,i)
as defined in the text) and the hydrophobic/polar labeling of the amino acids. The
net absolute change in hydrophobic residue composition is the total of
Dabs(BP,i) = C(BP,i) – C(PS,i) summed over all the residues labeled ‘H’: +2.7%.
The net change in hydrophilic residue composition is the same quantity summed
over all residues marked with ‘P’: –2.3%. Note that A, G and Y are left out of
these sums. These have a net change of +0.4%, so there is no overall change.
[AU: move part (a) to Supplementary material? Include No. of sequences,
No. of amino acids and Average length, as for Table 1, instead?]



and approximately follows an extreme value distribution:
F(L) = 1.25 exp(−(L−210)/140 –exp(−(L−210)/140)).
There is no periodicity observed (e.g. for multiples of 125,
as suggested by Berman et al. (1994) [AU: which ref is

this?]). The observed fall-off can be rationalized in terms
of physical arguments [30].

The average length of a genome-encoded protein
sequence is 340 amino acids, appreciably larger than that
of the average protein domain, ~170 amino acids, and also
larger than an average PDB chain, ~205 amino acids
(Figure 1 and Table 4). This average is greatly inflated,
however, because of a few extremely long sequences. The
most common length for a genome sequence is roughly
the size of a single domain (i.e. the mode, ~190). As has
been remarked on before [31], yeast has a preponderance
of very long protein sequences compared with the bacter-
ial genomes. In particular, about 13% of yeast sequences
have a length of more than 833 residues (five PDB

domains) compared with the average of 5% in all eight
genomes. (This leads to the average yeast sequence being
~470 residues, significantly greater than the genome
average of 340.) Interestingly, the mycoplasms (MP and
MG) have a relatively high proportion of rather long
sequences in their small genomes, indicating that some of
these long sequences may be essential. Overall, MJ
appears to have the shortest sequences. For yeast there is
a distinct spike in the length distribution around 100
residues; this is almost undoubtedly an artifact and reflects
the still-not-finalized state of the genome data (see Mate-
rials and methods section and [32]).

Overall genome amino acid composition
As shown in Table 5, the genome proteins have some sig-
nificant differences from the PDB proteins in terms of
their overall amino acid composition. The greatest differ-
ences are in the amino acids Lys, Ile, Gln and Asn, which
are more common in the genome proteins than in the
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Figure 2

The distribution of lengths of sequences in
eight microbial genomes. An extreme value
distribution fit to the observed distribution is
shown by the bold line. Note there are some
sequences longer than 983 amino acids that
are not indicated in the graph. The two-letter
abbreviations are defined in Table 3.
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SC


MJ


HI


MP


MG


EC


SS


HP

Table 3

Genomes and abbreviations used.

Genome Abbreviation Size (Mb) Reference Website

Haemophilus influenzae HI 1.83 [87] http://www.tigr.org/tdb/mdb/hidb/hidb.html
Mycoplasma genitalium MG 0.58 [88] http://www.tigr.org/tdb/mdb/mgdb/mgdb.html
Methanococcus jannaschii MJ 1.66 [89] http://www.tigr.org/tdb/mdb/mjdb/mjdb.html
Synechocystis sp. SS 3.57 [90] http://www.kazusa.or.jp/cyano/cyano.html
Mycoplasma pneumoniae MP 0.81 [91] http://www.zmbh.uni-eidelberg.de/M_pneumoniae/MP_Home.html
Saccharomyces cerevisiae SC 13 [92] http://genome-www.stanford.edu/Saccharomyces
Helicobacter pylori HP 1.66 [37] http://www.tigr.org/tdb/mdb/hpdb/hpdb.html
Escherichia coli EC 4.60 [93] http://www.genetics.wisc.edu



PDB proteins, and Cys and Trp, which are less common.
The latter difference may reflect the abundance of Cys
and Trp in active sites and binding surfaces, and the
prevalence of enzymes and ‘binding’ proteins in the PDB
(e.g. see [33]). Also, the PDB has a clear over-representa-
tion of extracellular proteins, which can have disulfides, as
opposed to intracellular ones, which cannot. The amino

acids that differ most in occurrence between the genome
proteins and the PDB also tend to vary the most between
genomes. This is especially true for Lys. The amino acids
with the greatest similarity in composition to the PDB are
Asp, Glu, Thr, Tyr and Val. It is interesting that Asp and
Glu are so similar in composition while there are great dif-
ferences between Gln and Asn.

6 Folding & Design Vol 3 No 6

Table 4

Statistics for the lengths of genome-encoded protein sequences.

PS Average* EC HI HP MG MJ MP SC SS

Average size of a sequence 169 340 317 301 317 364 287 351 466 326
Most common sequence size 116 186 249 149 216 283 149 149 116 149

in histogram (mode)
Fraction of sequences > 333 aa 9.8% 40% 38% 34% 38% 42% 32% 39% 56% 38%

(~2 SCOP domains)
Fraction of sequences > 833 aa 0.1% 4.6% 2.8% 2.4% 3.2% 6.0% 2.1% 5.0% 12.6% 3.9%

(~5 SCOP domains)
Average size of a sequence 2.0 1.9 1.8 1.9 2.1 1.7 2.1 2.8 1.9

as a multiple of SCOP domains
Total number 1135 4290 1680 1577 468 1735 677 6218 3168
Number of SCOP-sized domains 8017 2982 2955 1006 2939 1404 17119 6099

*The average over the eight genomes for a row. Note that these simple average values are slightly different from those obtained from integrating the
extreme value distribution fit, shown in Figures 1 and 2. 

Table 5

Composition of the genome proteins as compared to the PDB.

RMS K I C Q W N F L G A P S R H M E D T Y V

(a) Absolute composition

EC 4.4 6.0 1.2 4.4 1.5 4.0 3.9 10.6 7.4 9.5 4.4 5.8 5.5 2.3 2.8 5.7 5.1 5.4 2.9 7.1
HI 6.3 7.1 1.0 4.6 1.1 4.9 4.5 10.5 6.6 8.2 3.7 5.8 4.5 2.1 2.4 6.5 5.0 5.2 3.1 6.7
SS 4.2 6.3 1.0 5.6 1.6 4.0 4.0 11.4 7.4 8.5 5.1 5.8 5.1 1.9 2.0 6.0 5.0 5.5 2.9 6.7
SC 7.3 6.6 1.3 3.9 1.0 6.1 4.5 9.6 5.0 5.5 4.3 9.0 4.5 2.2 2.1 6.5 5.8 5.9 3.4 5.6
HP 8.9 7.2 1.1 3.7 0.7 5.9 5.4 11.2 5.8 6.8 3.3 6.8 3.5 2.1 2.2 6.9 4.8 4.4 3.7 5.6
MP 8.6 6.6 0.8 5.4 1.2 6.2 5.6 10.3 5.5 6.7 3.5 6.5 3.5 1.8 1.6 5.7 5.0 6.0 3.2 6.5
MG 9.5 8.2 0.8 4.7 1.0 7.5 6.1 10.7 4.6 5.6 3.0 6.6 3.1 1.6 1.5 5.7 4.9 5.4 3.2 6.1
MJ 10.4 10.5 1.3 1.5 0.7 5.3 4.2 9.5 6.3 5.5 3.4 4.5 3.8 1.4 2.2 8.7 5.5 4.0 4.4 6.9
Average 7.5 7.3 1.1 4.2 1.1 5.5 4.8 10.5 6.1 7.0 3.8 6.4 4.2 1.9 2.1 6.5 5.1 5.2 3.3 6.4
SD 2.3 1.4 0.2 1.3 0.3 1.2 0.8 0.7 1.0 1.5 0.7 1.3 0.9 0.3 0.4 1.0 0.3 0.7 0.5 0.6

(b) Difference in composition versus the PDB

EC 16 –25 8 –29 19 7 –15 –2 28 –6 13 –5 –3 16 3 28 –7 –14 –7 –22 1
H 17 8 27 –38 24 –21 6 12 26 –15 –2 –20 –2 –6 –7 10 5 –17 –11 –14 –4
SS 20 –29 13 –39 49 9 –13 1 37 –6 1 11 –3 6 –15 –8 –2 –16 –6 –20 –4
SC 21 24 18 –21 5 –27 31 14 15 –36 –34 –7 51 –7 –2 –4 5 –4 0 –8 –20
HP 27 52 29 –34 0 –51 27 36 34 –26 –18 –29 14 –28 –4 2 11 –20 –25 1 –20
MP 28 45 18 –55 44 –17 35 41 24 –29 –20 –25 8 –27 –18 –28 –8 –17 2 –11 –7
MG 36 61 48 –50 27 –32 62 53 28 –41 –33 –36 11 –35 –28 –30 –8 –18 –8 –11 –12
MJ 38 77 88 –23 –61 –49 14 6 14 –19 –35 –28 –25 –20 –35 1 40 –8 –31 20 –2
Average 26 31 –36 13 –23 19 20 26 –22 –16 –17 6 –13 –13 –4 4 –14 –11 –8 –9
RMS 45 39 38 35 31 30 28 27 25 24 23 21 21 18 18 16 15 15 15 11

The table shows (a) the amino acid composition of each genome and
then (b) the difference in composition versus the PDB. This latter
number is expressed as a relative change Drel(g,i) as defined in the
text: Drel(g, i) = [C(g,i)–C(PS,i)]/C(PS,i), where C(g,i) is the genome
composition of amino acid i and C(PS,i) is the composition of the
corresponding amino acid in the PDB from the PS column in Table 1.

The bottom rows beneath each block give the average, standard
deviation (SD), and RMS average of the column above. The column
headed ‘RMS’ gives the RMS average of the amino acid differences in
a row, i.e. Rrel, as defined in the text. The rows and columns of the
table are sorted so that genomes and amino acids with the greatest
differences relative to the PDB are in the bottom left-hand corner.



Overall, the genomes with the greatest similarity in com-
position to the PDB are EC, HI, SS and SC, with the
mycoplasms and MJ having the greatest differences. This
is perhaps understandable in terms of the great number of
E. coli and yeast structures in the PDB. Figure 3 shows a
cluster tree grouping the genomes based on overall amino
acid composition. It is similar in topology to the conven-
tional tree based on 16S ribosomal sequences [34–36].
That is, it groups together the gram-positive bacteria (MP
and MG) and the gram-negative bacteria (HI and EC) and
positions these two bacterial lineages with the cyanobacte-
ria SS, a roughly equal distance from the eukaryote SC
and the archeon MJ. The only problematical organism is
HP, which is closer to the mycoplasms in the composition
tree. HP is a gram-negative bacterium and should be
grouped with EC and HI; however, it has previously been
found to be rather problematic in terms of evolutionary
classification [37,38]. The overall similarity of the tree in
Figure 3 with the conventional tree is notable given the
very different properties of the genomes used for defining
distance for these trees, that is, overall amino-acid compo-
sition versus the specific nucleotide sequence of a single
gene.

Each amino acid has a different propensity to confer sec-
ondary structure, whether it be α helix, transmembrane
helix, or β strand (Table 6 [AU: tables renumbered from

here, please check all table citations carefully.]). Conse-
quently, the observed differences in amino-acid composi-
tion might be expected to give rise to more of one type of
secondary structure, for example more helices. This can
be tested to some degree through prediction of secondary
structure, as discussed below.

An overview of sequence masking
One problem with comparing the overall amino acid com-
position of the genome proteins with that of the PDB is
that this lumps together many distinctly different groups
of proteins — membrane proteins, proteins with PDB
homologues, completely uncharacterized proteins, and so
forth. In this section, an attempt is made to disentangle
these different groups. One can think of this process as
sequentially applying a number of ‘masks’ to the genome
sequences – first, covering the regions that match a
domain in the PDB, then covering the low-complexity
regions and transmembrane helices, and finally, short seg-
ments between already masked regions are annotated as
linkers, connecting domain structures with loops. The part
of the genome sequence that remains after all of this con-
sists of structurally uncharacterized domains of soluble
proteins. Comparison of these uncharacterized regions
with the PDB is the ultimate goal of this analysis, as it
most directly addresses the issue of how representative
the known structures are of the new and unusual proteins
encoded in the genomes.

From the masking process, one gets two numbers: the
fraction of the total amino acids in a genome associated
with a particular structural feature, and the number of pro-
teins in the genome (i.e. open reading frames — ORFs)
that contain this feature. Most genome analyses have
tended to focus on the latter value, characterizing, for
example, certain fractions of the proteins in the genome as
being membrane proteins. This is somewhat deceptive,
however, as a given protein can have many different
domains and structural features. For instance, a given
ORF can simultaneously match a known domain of a
soluble protein and also contain a transmembrane helix.

Sequence similarity to known structures
The first step in ‘masking’ is just to compare the genome
proteins with the structures in the PDB. This was done
with standard sequence comparison approaches (see the
Materials and methods section). As has been found in
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Figure 3

A cluster tree based on amino-acid composition. This unrooted tree
shows the result of clustering the eight microbial genomes on the
basis of differences in amino-acid composition. The distance between
two genomes A and B is defined in terms of amino-acid composition
through the following formula for Euclidean distance:

(4)

where C(i,g) is the composition of the ith amino acid in genome g.
Other measures of distance were also tried, in particular the Hellinger
distance [97], which is the same as Dabs(AB) except for the
replacement:

(5)

This treats small differences differently. However, it is found that the
resulting tree topology is insensitive to the choice of distance metric —
providing a test of the robustness of the results.

( ) ( )C i C i, ,⋅ → ⋅

( ) ( ) ( )( )D AB C i A C i Babs i
= −=∑ , ,

2

1
20
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numerous previous analyses, about one-eighth of the
ORFs in the genomes (13%) were homologous (or identi-
cal) to sequences corresponding to known structures, and

these structure matches involved 9% of the total amino
acids in a genome (Table 7). This number ranges consid-
erably, however. Predictably, yeast has the smallest frac-
tion of its genome matched in terms of total number of
residues (6%), and MJ has the smallest fraction matched
in terms of fraction of sequences (11%). Conversely, HI
has the largest fraction of its amino acids matched to
known structures (14%), and MG has the largest fraction
of its ORFs that have a structural match (19%).

As is to be expected, the segments matching known struc-
tures are more similar in composition to the PDB and to
each other (18% and 15% rms rel) than to the genomes
overall or to structurally uncharacterized regions (Tables 5
and 8, see later). And the average size of a genome region
matching a PDB structure (152 residues) is a bit less than
the average size of a domain in the known structures (but
this number varies between genomes).

Low-complexity regions, transmembrane helices and
linkers
Stretches of low complexity sequence are thought not to
fold into globular protein structures [39,40]; they may cor-
respond to fibrous or disordered structures. Consequently,
it is doubtful whether they will ever be crystallized. After
removing the structure matches (as shown in Table 6),
about one-quarter of the remaining residues in the
genomes are in low-complexity regions. This number
varies considerably between genomes, with MJ having the
most and HI the fewest (37% versus 15%). Somewhat sur-
prisingly, MG has a high proportion of its minimal genome
devoted to these sequences (28%, more than EC or HI),
indicating that they must have some essential role. The
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Table 6

Experimentally determined local structure propensities.

Propensity (kcal/mol)

TM helix α Helix β Strand

A –1.6 –1.9 0.0 
C –2.0 –1.1 –0.8 
D +9.2 –1.0 +0.9 
E +8.2 –1.2 –0.2 
F –3.7 –1.0 –1.1 
G –1.0 0.0 +1.2 
H +3.0 –1.1 –0.4 
I –3.1 –1.2 –1.3 
K +8.8 –1.5 –0.4 
L –2.8 –1.6 –0.5 
M –3.4 –1.4 –0.9 
N +4.8 –1.0 –0.5 
P +0.2 +3.0 >3.0 
Q +4.1 –1.3 –0.4 
R +12.3 –1.9 –0.4 
S –0.6 –1.1 –0.9 
T –1.2 –0.6 –1.4 
V –2.6 –0.8 –0.9 
W –1.9 –1.1 –1.0 
Y +0.7 –1.2 –1.6 

The transmembrane (TM) helix scale gives the energy in kcal/mol for
inserting this amino acid into a membrane [78]. It is used here for the
identification of membrane proteins. The α helix and β strand propensity
scales are also expressed in kcal/mol. Both scales are derived from
protein-unfolding experiments [94,95], but similar scales can be
determined from doing statistics on solved crystal structures [82].

Table 7

Overall statistics for occurrence of different structurally characterized regions.

Average SD EC HI HP MG MJ MP SC SS

Statistics for amino acids
Total number 775,998 1,358,465 505,279 500,616 170,400 497,968 237,905 2,900,670 1,033,450
Fraction masked by...
PDB match 8.7% 3.7% 11.1% 13.7% 8.8% 12.9% 7.1% 9.7% 6.2% 9.0%
Low-complexity region 21.7% 6.9% 16.7% 13.9% 22.2% 28.2% 35.1% 24.7% 23.9% 20.5%
TM helix 4.9% 1.4% 7.3% 6.1% 4.8% 3.8% 2.9% 4.5% 5.2% 5.9%
Linker region 5.1% 0.4% 5.3% 4.8% 4.8% 5.0% 5.0% 5.2% 4.6% 5.1%

Fraction remaining
uncharacterized 59.7% 8.9% 59.6% 61.5% 59.4% 50.2% 49.9% 55.8% 60.0% 59.6%

Statistics for ORFs
Total number 2206 1731 4290 1680 1577 468 1735 677 6218 3168
Fraction containing...
PDB match 12.6% 4.8% 14.1% 16.8% 12.2% 19.2% 11.0% 14.2% 13.5% 13.2%
Low-complexity region 43.0% 12.6% 34.6% 30.6% 43.2% 51.7% 61.3% 49.3% 56.3% 39.6%
TM helix 28.8% 6.6% 34.6% 27.7% 26.9% 26.7% 19.6% 28.1% 35.6% 36.8%
Linker region 51.0% 9.1% 49.0% 46.1% 50.4% 58.8% 55.0% 56.0% 57.3% 52.8%

Fraction containing...
Uncharacterized region 76.8% 4.4% 75.2% 73.2% 75.4% 74.8% 68.8% 77.8% 84.0% 79.4%
Characterized region 65.5% 13.7% 64.2% 58.6% 65.2% 74.1% 74.9% 70.9% 79.1% 68.3%



low-complexity regions are highly variable in composition
and, predictably, very different in composition from the
PDB (see Table 9 for specific values).

About 5% of the residues in the genomes are in transmem-
brane helices (Table 7). This number ranges from a high
of 7% in EC to a low of 3% in MJ. The number of
sequences with at least a single transmembrane element
ranges from a high of ~35% in EC, SC and SS to a low of
about 20% in MJ with an average of about 28%.

Segments of sequence already accounted for thus far – i.e.
PDB matches, low-complexity regions or transmembrane
helices — are considered to be ‘characterized’ regions.
The average length of these regions is ~100 residues, and
these segments make up ~35% of the total amino acids in
a genome. Short sequences between characterized seg-
ments are considered to be linkers, loops or coils connect-
ing known structural elements, whether
membrane-spanning helices or known globular domains.
Over all the genomes, linker regions are consistently about
11 residues in length and constitute ~5% of the total
amino acids (Table 6). Compared to the PDB they are
especially enriched in Lys and depleted in Ala and Gly
(by –29% and –23% rms rel). This latter result is some-
what contrary to expectation, as one tends to think that

the small residues, such as Ala and Gly, occur often in
flexible loops connecting domains [41,42].

Regions of sequence remaining structurally
uncharacterized 
After the whole masking process is done, including
finding the linkers, one is left with regions of sequence
that have not been characterized in a structural sense.
These ‘uncharacterized regions’ presumably fold into
soluble, globular protein structures, though some of them
could also be part of all-β membrane proteins, such as
porins [43]. They provide a suitable comparison for the
PDB, which also consists (mostly) of soluble proteins with
globular structures.

Uncharacterized regions constitute about ~60% of the
amino acids in a genome. Their average size is 186
residues, which is, perhaps not coincidentally, about the
size of an average PDB domain. This number is remark-
ably constant across the genomes with a standard devia-
tion of only ~9% (16) [AU: is this ref [16]?]. Interestingly,
HI, followed closely by yeast, has the highest fraction of
uncharacterized regions (64% and 60%), and MG and MJ
have the lowest (50%). The latter value reflects the large
number of low-complexity regions in MJ. For yeast there
is a large discrepancy in the total number of residues that
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Table 8

Composition of structurally uncharacterized regions.

RMS K Q N I C W G A F P L R E S M T V Y H D

(a) Absolute composition

EC 4.8 4.8 4.3 5.6 1.2 1.5 6.9 8.7 3.6 4.5 9.8 6.1 6.5 5.7 2.6 5.3 6.6 3.1 2.6 5.8
HI 6.7 5.1 5.2 6.6 1.1 1.1 6.2 7.5 4.2 3.8 10.0 4.9 7.0 5.7 2.2 5.1 6.4 3.3 2.3 5.5
SS 4.6 5.9 4.2 6.0 1.1 1.5 6.9 7.8 3.9 5.2 10.6 5.5 6.6 5.6 1.9 5.3 6.4 3.2 2.2 5.5
SC 7.5 3.9 6.0 6.7 1.4 1.1 4.8 5.2 4.6 4.3 9.6 4.8 6.7 8.0 2.1 5.6 5.7 3.6 2.3 6.1
HP 9.2 3.8 6.0 7.0 1.2 0.7 5.5 6.5 5.2 3.4 10.5 3.9 7.1 6.5 2.2 4.4 5.4 4.0 2.4 5.2
MP 8.7 5.3 6.7 6.5 0.9 1.2 5.3 6.2 5.6 3.6 9.8 3.8 5.8 5.9 1.6 5.7 6.3 3.6 2.1 5.5
MG 9.6 4.7 7.8 8.0 1.0 1.0 4.7 5.3 5.8 3.1 9.9 3.4 5.8 6.3 1.6 5.4 6.0 3.5 1.9 5.3
MJ 9.9 1.7 5.4 9.4 1.5 0.8 6.3 5.4 4.2 3.7 8.7 4.4 8.5 4.4 2.3 4.2 6.9 4.6 1.8 5.9
Average 7.6 4.4 5.7 7.0 1.2 1.1 5.8 6.6 4.6 3.9 9.8 4.6 6.7 6.0 2.1 5.1 6.2 3.6 2.2 5.6
SD 2.1 1.3 1.2 1.2 0.2 0.3 0.9 1.3 0.8 0.7 0.6 0.9 0.9 1.0 0.3 0.5 0.5 0.5 0.3 0.3

(b) Difference in composition versus the PDB

EC 15 –19 30 –8 0 –25 3 –12 4 –10 –3 18 28 5 –5 18 –9 –5 –16 17 –3
H 17 14 36 13 18 –33 –22 –21 –10 5 –18 20 2 14 –5 3 –12 –9 –9 3 –8
SS 19 –22 58 –9 8 –31 8 –12 –7 –3 11 27 16 6 –6 –11 –10 –8 –11 –1 –8
SC 20 28 5 30 20 –14 –21 –38 –38 16 –8 15 0 8 33 –2 –5 –19 0 6 2
HP 26 56 3 30 25 –27 –51 –30 –23 31 –27 25 –19 14 9 0 –26 –23 10 7 –13
MP 27 48 43 44 17 –48 –16 –33 –26 42 –24 17 –21 –7 –1 –29 –3 –10 –1 –5 –9
MG 34 64 25 69 43 –41 –31 –40 –36 46 –33 18 –29 –7 5 –25 –8 –15 –3 –15 –11
MJ 32 68 –55 16 70 –10 –42 –19 –35 5 –20 5 –8 37 –26 5 –28 –2 26 –20 –2
Average 30 18 23 25 –29 –21 –26 –22 17 –15 18 –4 9 0 –5 –13 –11 0 –1 –6
RMS 45 37 34 32 31 29 28 26 26 20 19 18 16 16 16 15 13 12 11 8

This table has an identical format to that of Table 5, but here all the
statistics are restricted to the uncharacterized regions of the genomes
– i.e. the regions corresponding to soluble protein domains with a
definite yet currently unknown fold. There are 160 differences reported

in this table; 18 of these are greater than the largest difference
between all-α and all-β domains (40% rel, see Table 1): K in MJ, MG,
MP and HP; Q in MJ, MP and SS; N in MP and MG; I in MJ and MG; C
in MP and MG; W in HP and MJ; G in MG; and F in MG and MP.



are uncharacterized versus the few proteins that do not
have at least one characterized region (60% versus 29%
(= 100% – 71%)). This reflects the large average size of a
yeast protein (which can contain multiple structural
domains) and highlights the problem, alluded to earlier, of
characterizing an entire ORF based on it having a single
domain of known structure.

As shown in Table 8, compared to the known structures,
the composition of the uncharacterized regions is deficient
in Ala, Cys, Gly, Pro and Trp and is enriched in Ile, Lys,
Leu, Asn and Gln, with the compositions of Gln and Lys
being particularly variable.

Secondary-structure prediction on uncharacterized regions
It is possible to structurally characterize the uncharacter-
ized regions in a rough fashion through prediction of sec-
ondary structure. This was done using standard
approaches (the GOR program). Surprisingly, despite the
differences in amino-acid composition, the overall statis-
tics for secondary structure composition (the number and
size of helices and strands) were very similar in all the
genomes (Table 10). About 39% of the residues are pre-
dicted to be in an α-helical conformation, 17% in a strand
conformation and the remainder in a coil conformation.
This is markedly more helical than the (predicted) sec-
ondary structure composition of the PDB: 31% helical and
21% strand. The difference is consistently observed across
all the genomes (standard deviation 2% rms abs), but
there are some, relatively small, variations. Yeast has the
least helical structure, and HI and HP the most (34%
versus 41% and 42%).

How can genomes have such similar secondary structure
composition while having such a markedly different

amino acid composition (i.e. comparing Tables 8 and 10)?
This is analogous to the question: how they can have very
different base compositions (AT- or GC-rich) while coding
for proteins with similar amino acid composition. To some
degree it has do with a ‘degeneracy’ in the coding of sec-
ondary structure propensities and the ‘trading off’ of
residues with equivalent propensities between genomes.
This is evident in the similar values calculated for each
genome for average helix and strand propensity per
residue (i.e. –1.0 and –0.3 kcal/mol, Table 10).

One problem with this analysis of secondary structure
composition is that a prediction method is potentially
being applied to sequences very different from those it
was ‘trained’ on. That is, the parameters for the prediction
programs all derive from the data in the PDB, so the
results of running these programs may unduly reflect the
biased nature of the PDB and not be indicative of the
actual secondary structure in a genome. This problem is
particularly acute here in trying to contrast the PDB with
the uncharacterized regions in the genomes.

One way of comparing secondary structure without intro-
ducing the statistical biases of the PDB is to use the
experimentally determined propensities for α and β struc-
ture. These propensities were used to identify regions of
mostly helical and mostly strand residues – which, hope-
fully, correspond loosely to all-α and all-β domains — and
then statistics were done on the occurrence of these
regions. The results (shown in Table 10) indicate many
more putative all-α domains in the uncharacterized
regions than all-β ones (11% versus 3% of the total
residues in the uncharacterized regions). As was observed
for the standard secondary structure prediction, yeast has
relatively more β structure and HI and HP more α (yeast
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Table 9

Difference in composition of various regions versus the PDB.

Average SD EC HI HP MG MJ MP SC SS

Overall 23% 10% 16% 17% 27% 36% 38% 28% 21% 20%
PDB match 18% 9% 12% 14% 24% 27% 34% 20% 12% 15%
Low-complexity region 36% 13% 32% 33% 39% 50% 52% 40% 42% 35%
TM helix 49% 15% 55% 53% 55% 57% 55% 56% 56% 51%
Linker region 27% 10% 22% 24% 29% 39% 33% 35% 21% 25%
Uncharacterized region 23% 6% 15% 17% 26% 34% 32% 27% 20% 19%

The difference in composition of a specific region of a genome (e.g.
linker regions) versus the PDB averaged over all 20 amino acids (in an
RMS sense). That is, each value in this table is an Rrel(g) value as
defined in the text, but now restricted to just comparing the
composition of a specific region of the genome. Because of the large
number of amino acids involved in all comparisons, all the
compositional differences reported here are statistically significant in a
literal sense (see text). The number of amino acids compared is listed
in Table 7. The smallest number of amino acids compared is for the TM
helices in MG: 38% × 170,400 = 6475. Some notes on the

compositional differences follow. For the low-complexity regions, the
average difference in composition between the genomes is 29% rms
rel, with the most variable amino acids being C, H, K, M, Q and W
(data not shown). The average difference from the PDB is 36% rms rel,
with the genomes being enriched in K, S and I and depleted in C, A, H,
Y, W and M. As is necessitated by their definition, the transmembrane
regions have a relatively constant composition across the genomes,
and relative to the PDB they are depleted in amino acids such as D, E,
K, N, Q and R and enriched in A, F, G, I, L, M, V and W.



has 9% all-α and 4% all-β regions as compared to 23% and
1% for HI). This finding of the prevalence of all-β struc-
ture in yeast is similar to what was observed in an earlier
survey of supersecondary structures in three
genomes [22].

Discussion
At this point one has been presented with many statistics,
particularly those related to differences in amino acid and
secondary structure composition. One is naturally led to
ask how significant and meaningful they are. This ques-
tion can be answered on a number of levels.

Literal statistical significance
First, one can ask whether one has compared enough
amino acids for the differences in composition to be signif-
icant, compared to the expected random variation. This is
statistical significance in a literal sense. It is properly
addressed through the calculation of a chi-squared (χ2)
statistic. For purposes of concreteness the following dis-
cussion will focus on comparing the amino-acid composi-
tion of a particular genome g (e.g. E. coli) against the PDB,
but the argument is general and can be extended to many
of the other statistics presented here. The appropriate null
model is that genome g has the same composition as the
PDB. One then compares the actual number of counts of
each amino acid observed with the number expected, if
this were the case, in the calculation of a χ2 statistic with
19 degrees of freedom:

(2)

where the summation is carried out over all 20 amino
acids, N is the total number of amino acids in genome g,
O(i) = NC(i,g) is the observed number of counts of amino
acid i, and E(i) = NC(i,PS) is the expected number of
counts, assuming the genome has the same composition as
the PDB. Using the definitions given previously, this can
be rewritten as:

(3)

Clearly, the χ2 statistic depends greatly on the number N
of amino acids in the genome. For all the compositional
differences reported here, N is so large that the χ2 statistic
is highly significant. For instance, in comparing the amino
acid composition of the E. coli genome to the PDB, the χ2

statistic is ~30000 (0.022N, for N = 1358465 amino acids).
This has a chance (i.e. a p-value) of less than 1e-100 [AU:

please explain the e-value form here] occurring under the
null model. Even if the number of amino acids compared
were only 10000, the p-value would still be less than 1e-
30. In fact, one only needs compare 2000 amino acids to
achieve a significance level of 0.1%. Considering that the
composition difference between E. coli and the PDB is
one of the smallest reported here (only 16% rms rel) and
that all the comparisons done here involve many more
than 10000 amino acids, one can see that the composition
differences reported here are all statistically significant —
in the literal sense. This does not mean, though, that they
are free of statistical artifacts or systematic biases.

Possible sampling artifacts: clustering and non-uniform
composition of PDB
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Table 10

Predicted secondary structure composition of structurally uncharacterized regions.

Average SD EC HI HP MG MJ MP SC SS

Total uncharacterized residues 530,488 809,837 310,907 297,265 85,467 248,367 132,692 1,742,937 616,432

Average experimental propensity of these residues
α propensity –1.01 0.03 –1.00 –1.02 –1.05 –1.05 –1.01 –1.03 –1.00 –0.96
β propensity –0.34 0.05 –0.27 –0.33 –0.37 –0.42 –0.36 –0.38 –0.36 –0.26

Fraction of these predicted by GOR to be...
in coil conformation 45% 2% 44% 43% 42% 44% 43% 45% 49% 46%
in strand conformation 17% 1% 17% 16% 15% 17% 19% 17% 17% 16%
in helical conformation 39% 2% 39% 41% 42% 39% 37% 39% 34% 38%

Fraction of these predicted by experimental propensities to be...
in all-α domain 11% 3% 11% 12% 16% 11% 8% 10% 9% 8%
in all-β domain 2.7% 2.4% 0.6% 1.0% 2.1% 7.7% 2.4% 3.0% 4.2% 0.6%

The average β-strand and α-helix propensities are derived by
computing a weighted average of the propensities in Table 6, using as
weighting factors for each residue the fractional composition of it in the
uncharacterized regions:

(6)

where P(i) is the propensity of amino acid i (from Table 6) and C(g,i) is
the composition of amino acid i in genome g (from Table 8).
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One potential statistical artifact could result from the
method used to cluster the PDB — that is, different clus-
tering methods could give significantly different PDB

compositions (Figure 4). Two statistics that quantify this
possible effect are shown in Table 11. For the first statis-
tic, the same basic clustering algorithm used here is
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Figure 4

Illustration of possible sampling artifacts
affecting the composition of the PDB. The
reported composition of the soluble PDB,
which acts as a reference here, can be
affected by the particularities of the clustering
method and by compositional heterogeneity in
the PDB. This figure is meant to be read in
conjunction with Table 11. (a) A schematic
illustrating clustering and sampling bias in the
PDB. At the left is a representation of all the
sequences in the PDB. The black bands in
each sequence are to be read as the
occurrence of a particular amino acid. Their
frequency (~8.5%) is approximately the same
as that of Ala. The transition to the ‘clustered
PDB’ shows how the PDB is clustered into a
small number of families. By definition, the
difference in amino-acid composition between
each member in a cluster is small. Thus, no
matter whether one picks representative a, b,
or c of the second cluster, the overall
composition of the PDB will be nearly the
same. This is quantified in the ‘SD-CLUST’
column [AU: does not correspond to a
column in Table 11] of Table 11. The
‘skewed composition’ and ‘uniform
composition’ columns to the right show two
extreme cases of how a given amino acid (e.g.
Ala) could be distributed amongst the various
cluster representatives. On one extreme,
uniform composition, it could be distributed
uniformly through each sequence, so that the
composition of the PDB would be relatively
insensitive to the addition of a new fold (e.g.
fold 5). Alternatively, one sequence could be
highly compositionally biased, so that it
contains much more of a given amino acid
than the PDB as a whole. In the extreme case
shown here for illustrative purposes, one
imagines that all the Ala in the PDB is
concentrated in a single sequence (fold 4).
Thus, the presence or absence of this
sequence would greatly affect the
composition of the PDB. One imagines that
the actual PDB (clustered PDB) is
somewhere between these extremes. The
compositional bias of the PDB can be
quantified by resampling [44,98,99]. One
begins with the 1135 sequences in the
soluble PDB (data set PS in Table 11). Then
one randomly picks the 1135 sequences with
replacement to make a new soluble PDB,
called the bootstrap sample PS*2. One
calculates the composition PS*2 and then
continues the procedure N times (here
N = 1000), generating PS*2, PS*3… PS*N
and their compositions. The composition of
each amino acid i varies between the various
bootstrap samples PS*j, and one can graph
its distribution. (Technically, one should really

deal with this in a multivariate sense in terms
of multinomial distributions, but it is sufficient
here to deal only with projections of these
high-dimensional distributions.) This is shown
in (b) for Ala. As is evident from the figure, the
distribution follows an almost perfectly
Gaussian (or binomial) distribution. One can
estimate the standard deviation of this
distribution and use it to quantify the degree
of non-uniformity in composition of the PDB.
The larger the width, the greater the bias. For
instance, for the uniformly distributed case,
the width would be 0. For the case where all
the Ala in the PDB is concentrated in one
sequence, the width is estimated to be about
8%. (This is derived from making up a
specially biased PDB that contains 8.4% Ala
but has it all in one sequence.) In both these
extreme cases, however, the distribution
would no longer be normal. The standard
deviations for all 20 amino acids are shown in
the SD-RESAMP column of Table 11. The
average width is 0.00074 rms abs (1.7% rms
rel). Using these standard deviations in

conjunction with a ‘normal’ curve, one can
estimate a significance or p-value for each of
the observed differences between the
genomes and the PDB. Consider the
difference between the E. coli genome
composition and the PDB discussed in the
text. This has an average difference of 16%
rms rel, about 10 average standard deviations,
and so is clearly significant. Finally, using an
analogous approach to the one described
above, one can also see how compositionally
heterogeneous the genomes are and derive
compositional distributions for each amino
acid in the genome. These result in narrow
distributions with even tighter standard
deviations than the PDB. Then if one wishes
one can use the t-test or a resampling
approach to estimate significance for the
difference of the means of the two
distributions. [AU: could this figure and
Table 11 be moved to Supplementary
material or this legend significantly
reduced?]
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employed but different cluster representatives are picked
at random. This gives essentially no difference to PDB
composition (average difference is 8e-8 rms abs). For

another statistic, the composition of the PDB was calcu-
lated after it had been clustered by a completely different
algorithm. This also gave essentially the same PDB com-
position as reported here, indicating that details of the
clustering are not expected to affect the results signifi-
cantly. (The actual difference in composition between the
two clustering methods, 0.03% rms abs and 1.3% rms rel,
provides a useful baseline for assessing compositional dif-
ferences.)

Another potential sampling issue that may affect the
quality of the statistics is that the reference PDB data set
may be highly heterogeneous in composition. By this, one
means that a few sequences with a very biased composi-
tion may disproportionately skew the composition of the
whole PDB (this situation is illustrated in Figure 4). For
instance, imagine if the last two folds added to the PDB
were exceedingly Ala-rich. This would imply that the
composition of the PDB would be contingent on exactly
when the calculation was done (i.e. before or after the new
Ala-rich entries were added). The contrasting situation, of
course, would be where Ala was distributed uniformly
throughout the PDB. Sampling bias is not expected to be
as meaningful for the genome compositions, as they are
composed of an unbiased and essentially unchanging
selection of proteins.

One can measure this lack of uniformity in PDB composi-
tion through resampling: making up a ‘new PDB’ by
picking randomly from the original PDB with replace-
ment, calculating a composition of this new PDB and then
determining the spread of these compositions. As illus-
trated in Figure 4, the range of resampled compositions is
directly related to how non-uniformly amino acids are
spread through the PDB. Figure 4 also shows that the
actual resampled compositions are distributed in an
approximately Gaussian (or binomial) fashion with a very
narrow variance. The narrowness of the spread in resam-
pled compositions is quite small in comparison to the
observed differences in composition between the
genomes and the PDB (0.00074 rms abs or 1.7% rms rel,
which is about one-tenth of the average difference
between EC and PDB, 16% rms rel). This implies that the
observed differences are statistically significant even
when accounting for the variability in the PDB due to its
biased and heterogeneous nature.

Meaningful differences and practical significance
Thus far, it has been shown that the reported composition
differences are significant in the literal sense of having
enough data (counts) and are not unduly affected by the
clustering method or the heterogeneity of the PDB.
However, this does not really answer the question of
whether the observed differences in composition are bio-
logically meaningful or practically useful. The only way to
do this is to compare the observed differences to known
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Table 11

Investigation of biases in the composition of the PDB.

PS SD-RECLUS PDB40D SD-RESAMP

Number 
of sequences 1135 1217

Number 
of amino acids 192313 202415

Residues:
A 8.40% 8E-08 8.41% 0.0012
C 1.72% 2E-08 1.63% 0.0006
D 5.91% 4E-08 5.99% 0.0007
E 6.29% 7E-08 6.16% 0.0008
F 3.94% 3E-08 4.02% 0.0006
G 7.79% 5E-08 7.82% 0.0009
H 2.19% 2E-08 2.21% 0.0005
I 5.54% 5E-08 5.55% 0.0007
K 6.02% 1E-07 5.87% 0.0009
L 8.37% 6E-08 8.37% 0.0009
M 2.15% 3E-08 2.21% 0.0004
N 4.57% 6E-08 4.64% 0.0007
P 4.70% 3E-08 4.64% 0.0007
Q 3.73% 5E-08 3.73% 0.0006
R 4.78% 6E-08 4.77% 0.0007
S 5.97% 8E-08 6.00% 0.0009
T 5.87% 7E-08 5.86% 0.0007
V 6.96% 6E-08 6.97% 0.0007
W 1.46% 1E-08 1.47% 0.0004
Y 3.64% 3E-08 3.67% 0.0006

This table gives some indication of how the reported composition of
the soluble PDB can be affected by the particularities of the clustering
method and by biases in the PDB. The last two columns give
measures of how dependent the composition of the soluble PDB (PS)
is on the representative structures chosen by the clustering algorithm.
As should be evident, the clustering algorithm has little effect on the
overall composition calculated for the PDB. The PS-CLUST column (at
far right) shows the standard deviation in the composition of PS when
different representatives were randomly chosen for each of the 1135
clusters. The average (RMS) deviation is 6E-8 [AU: lowercase “e”
used in text, i.e. 6e-8]. The PDB40D column gives the composition of
another clustering of the PDB. This is a standard data set available
over the web (via http://scop.mrc-lmb.cam.ac.uk [62]). It was prepared
in a completely different fashion from the clustering here, so that
representative sequences are roughly no more than 40% similar to
each other. (There is a length correction via the HSSP equation [74].)
Furthermore, unlike PS, PDB40D includes a few membrane proteins.
The average (RMS) difference between PS and PDB40 is ~4E-4. The
units of PS-SD [AU: what does this mean?] are the same as those of
PS composition. Thus, a 8E-8 value for Ala means that with one SD
unit, Ala ranges in composition from 0.084 – 0.00000008 to 0.084 +
0.00000008. These very narrow bands imply that the bulk composition
does not depend on the choice of cluster representative. The PS-
RESAMP column gives a measure of the compositional heterogeneity
of the PDB. It gives the standard deviation of the distribution resulting
from resampling the PDB, as described in Figure 4. That is, each
standard deviation in this table is derived from a Gaussian like that
shown for Ala in Figure 4b. [AU: various terms and columns
referred to in the footnote (underlined) do not correspond to
those in the table, could you please provide consistent terms]
[AU: could this table be moved to Supplementary material?]



differences in composition that have been established to
be relevant. One area in which composition differences
have been found to be relevant is in the prediction of
membrane protein topology. The ‘positive-inside’ rule
based on composition differences of 5–10% abs for
Arg + Lys (e.g. 15% inside versus 5% outside) has been
found to be quite effective in this regard [45–47]. A
number of the composition differences between genomes
are comparable to this and involve many more total
residues. For instance, the MJ genome has ~4% abs more
Arg + Lys than the PDB.

Another helpful yardstick to use in comparing composi-
tions is the difference in composition of all-α and
all-β domains. These differ by 23% rms rel on average
(1.3% rms abs) and up to 40% rel (24% abs) for particular
amino acids. Half of the genomes (HP, MP, MG and MJ)
differ more from the PDB than this, both overall and in
their uncharacterized regions. Moreover, when comparing
the genomes with the PDB, many of the differences in
composition for particular amino acids are considerably
more than the maximal difference of 40% rel between
all-α and all-β domains — such as Lys in MJ, MG, MP
and HP (see Table 8 for more examples). Thus, the com-
position differences between the genomes and the PDB
discussed here are comparable to observed variations in
composition that are considered significant.

Overall conclusions
This analysis has attempted to determine how representa-
tive the known structures are of the proteins encoded in
the first eight microbial genomes to be completed, in
terms of simple statistics such as sequence length, compo-
sition and secondary structure. The sequence lengths of
proteins encoded in the genomes, following a long-tailed
extreme value distribution, are significantly longer than
proteins in the PDB, especially the biophysical proteins
(which are quite short). Although the genomes have a
roughly similar distribution of transmembrane helices and
linker regions, they differ in the relative amount of low-
complexity regions and structural homologues they
contain. The composition of the genomes, particularly cor-
responding to the regions of unknown soluble proteins,
differs from the PDB in having more Lys, lle, Asn and Gln
and less Cys and Trp. Bulk structure prediction applied to
the uncharacterized regions of the genomes shows them to
have a consistently more helical structure than the PDB,
though there are some differences between the genomes,
with yeast having more β structure and HI and HP having
more α structure.

Furthermore, this analysis has shown that beyond being
small, the PDB is also highly biased (with respect to the
genomes) in terms of the length and composition of the
proteins it contains. Statistical analyses and structure pre-
diction approaches built upon the contents of the PDB

need to take these biases into account so that they can be
more readily applied to the emerging genome sequence
data.

Materials and methods
A relational database of genome sequences and structure
assignments
Translated genome sequences were taken from the relevant web sites
(Table 3). The genome data are constantly changing and are contin-
gent on the current state of the art in gene finding. The data used in
this paper reflect a particular snapshot of this ongoing process. Struc-
tures were taken from the PDB via the PDB browser [48,49]. Domain
fold and class definitions were taken from SCOP (version 1.35, May
1996) [50–52]. Specific values quoted about the composition of the
PDB, such as that it has 5493 total structures and 222 T4 lysozyme
structures, refer to the state of the databank when SCOP 1.35 was
built. (Since this analysis was performed SCOP 1.37 has been
released, which refers to 6497 total structures.) Core structures for
each domain were based on refinement of structural alignments
[53–56]. The biophysical protein list was constructed in a subjective
fashion, based on conversations with colleagues and reading the litera-
ture.

Analysis and processing of the data were greatly expedited by the use
of a simple relational database, implemented in DBM, Perl5 [57] and
mini-SQL (http://Hughes.com.au). This was described in an earlier
paper [22] which also contains tables cross-referencing sequence
identifiers, structure matches, transmembrane helix positions, and so
forth, and cross-tabulation reports giving the occurrence of various pat-
terns. Most of these tables and reports will be made available over the
internet (as text tables and via a simple query interface) from the
GeneCensus system at http://bioinfo.mbb.yale.edu/genome. The
tables are structured in such a way that all the genome features (e.g.
location of a transmembrane helix or PDB match) are annotated in a
consistent fashion, with thresholds and scoring schemes applied con-
sistently over multiple tools. This attempt at consistency is similar to
what has been achieved in other genome annotation systems that aim
to integrate multiple tools [58,59].

Sequence comparison
All sequence comparison was done with the FASTA program (version
2.0) with k-tup 1 and an ‘e-value’ threshold of 0.01 [60,61]. The e-value
describes the number of errors per query expected in a single data-
base scan, so a value of 0.01 means that about one out of a hundred
cluster linkages will be in error [27,51,62–65]. To extend the sensitivity
of the analysis, transitive comparisons were sometimes used [66].

FASTA with k-tup 1 is considered to be one of the most sensitive
single-sequence comparison methods, essentially as sensitive as a
Smith–Waterman comparison and much faster [62,67]. However,
there are a number of other potentially more sensitive methods of com-
paring sequences to structures that are based on multiple-sequence
information — e.g. profiles, hidden Markov models, PSI-BLAST, and
motif analysis [68–72]. A number of these were tested and, as
expected, they find more homologues for certain folds. The sensitivity
improvement is not uniform, however, as these multiple-sequence
methods do considerably better matching structures, for which many
sequences are known. This creates a subtle bias: one finds more of
what one already knows a lot about. This is obviously disadvantageous
for a large-scale census where uniform sampling and treatment of the
data are more important than sensitivity – i.e. one is more concerned
with accuracy in relative rather than absolute numbers. Moreover, cob-
bling together a census through the use of a disparate collection of
tools and patterns creates the problem of devising consistent scores
and thresholds. This is particularly acute in the case of manually
derived sequence patterns and motifs, as an expert on a particular fold
or motif would expect his pattern to find relatively more homologues
than a pattern not constructed by an expert. The approach here, apply-
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ing the same single-sequence procedure to each fold, circumvents
these problems to some degree. Furthermore, it has an added advan-
tage in that it can be performed automatically without manual interven-
tion and, consequently, can easily be scaled up to deal with much
larger datasets.

Nevertheless, it is undoubtedly the case that in the future multiple-
sequence methods will enable a more complete exploration of the
genome. Recent work assigning folds to the MG genome using PSI-
BLAST in combination with duplication analysis gives a hint of what is
to come [73]. This work shows that by using a very up-to-date data-
base (SCOP 1.37) and a multiple-sequence-based fold-recognition
method (PSI-BLAST), a considerably larger percentage of the genome
can be assigned to known folds (27% by amino acid and 41% by
ORFs in comparison to the values of 13% and 19% in Table 7). These
fold assignments were integrated into the sequence-masking proce-
dure done here and this, in turn, shows that 61% of the amino acids in
the MG genome can be given a structural annotation (i.e. structure
match, transmembrane, low complexity, or linker).

Clustering
The structures in the PDB were clustered into 1135 representative
domains. The few membrane protein structures in the PDB were
excluded from this clustering so that all the membrane proteins would
be identified, in a uniform fashion, by prediction. (This is not expected
to be a major factor as, for instance, the yeast genome contains only a
single homologue to a known membrane protein structure.) The clus-
tering was similar in spirit to the many previous divisions of the PDB
into representative chains (e.g. see [28,62,74,75]). However, a slightly
different multiple-linkage algorithm was used [76]. It was designed to
be internally consistent with the search method used to identify homo-
logues in the genomes, using the same similarity criteria (a FASTA e-
value threshold). The clustering algorithm takes the results of an
all-versus-all comparison of the PDB and creates a graph that has one
vertex for each sequence and one edge for each similarity score. Each
vertex starts out as a cluster of size one. As sequence similarity scores
(i.e. e-values) are not commutative, this directed graph is converted to
an undirected graph by removing the better scoring edges between
pairs. Then each edge is considered in turn, and the two clusters asso-
ciated by this edge are merged into a single cluster if every member of
the first cluster has a good scoring edge between it and every member
of the second cluster, and vice versa. The edges are considered in
order of decreasing similarity. This has the advantage that close rela-
tionships are considered before more distant ones, ensuring that
distant relationships are not erroneously used to add a member to a
cluster when there exists (for that member) a much closer relationship
that would lead to an alternative clustering. Furthermore, this algorithm
will produce the same result on the same data set every time; i.e. it is
not affected by the order in which the data is traversed. Cluster trees
based on distance matrices were built with the Kitsch program, which
is part of the Phylip package [77]. Trees were built on the basis of the
difference in amino acid composition vectors, as described in the
caption to Figure 3. Di-amino acid composition was also used and
gave a similar tree. 

Transmembrane helix, low-complexity and linker region
identification
Transmembrane segments were identified using the GES hydrophobic-
ity scale, shown in Table 6 [78]. The values from the scale for amino
acids in a window of size 20 (the typical size of a transmembrane helix)
were averaged and then compared against a cutoff of –1 kcal/mol. A
value under this cutoff was taken to indicate the existence of a trans-
membrane helix. Initial hydrophobic stretches corresponding to signal
sequences for membrane insertion were excluded. (These have the
pattern of a charged residue within the first seven, followed by a
stretch of 14 with an average hydrophobicity under the cutoff.) These
parameters have been used, tested, and refined on surveys of mem-
brane protein in genomes [12,37,47].

Low-complexity, non-globular sequences were identified with the SEG
program [39,40,79] using the standard parameters K(1) = 3.4 and
K(2) = 3.75, and a window of length 45. These parameters are the
ones used to find ‘long’ domain-size low-complexity regions. The
average size of a low-complexity region found here is ~110 residues.
Many of these transmembrane regions are also low-complexity regions
(almost half). Taking a conservative approach, it was decided to anno-
tate these doubly identified regions as low complexity, not as trans-
membrane. This will tend to reduce the total amount of identified
transmembrane helices. This is especially true for MJ, which has the
largest number of low-complexity regions. SEG is a standard program
for the annotation of low-complexity regions and has been integrated
into a number of genome analysis systems, in particular the PEDANT
system [80]. Characterized regions are considered to be PDB
matches, transmembrane helices, or low-complexity regions. Linker
regions were considered to be stretches of uncharacterized sequence
that connected two characterized regions and were less than 50
residues in length. Linkers also included short sequences at the N or C
terminus. Initial Met residues were excluded from the statistics on linker
regions.

Secondary structure prediction
Secondary structure prediction was done using the GOR program
[1,2,81]. This is a well-established and commonly used method. It is
statistically based so that the prediction for a particular residue to be in
a given state (say Ala to be in a helix) is directly based on the frequency
that this residue occurs in this state in a database of solved structures
(taking into account neighbors at ±1, ±2, and so forth). Specifically,
version 4 of the GOR program is used here [1]. This bases the predic-
tion for residue i on a window from i–8 to i+8 around i, and within this
window, the 17 individual residue frequencies (singlets) are combined
with the frequencies of all 136 possible di-residue pairs (doublets). The
GOR method uses only single-sequence information and because of
this achieves lower accuracy (65% versus 71%) than the current
‘state-of-the-art’ methods that incorporate multiple sequence informa-
tion [3,82–84]. However, it is not possible to obtain multiple sequence
alignments for most of the proteins in each of the genomes. Conse-
quently, bulk predictions of all the proteins in a genome based on multi-
ple-alignment approaches are skewed, in the same sense as discussed
above for multiple-sequence-based fold-recognition methods. One
gets two distinctly different types of prediction, depending on how
many homologues a given protein has. For the bulk prediction done
here a simpler single sequence approach was deemed more consis-
tent. This is especially appropriate given that the goal here is to charac-
terize the part of the genome that is least well understood from a
structural perspective. Note also that the analysis here is not at all
focused on the particular secondary structure prediction for any individ-
ual residue. What is of concern is aggregate secondary structure
content of whole proteins (and genomes). Prediction of aggregate
quantities is expected to be more accurate than the prediction of indi-
vidual residues [5]. This is evident in the greater success that has been
had in predicting overall class of protein fold than just the secondary
structure [85,86].

All-α and all-β regions were highlighted in a simple fashion based on
the experimental amino-acid propensities (shown in Table 6). A window
of length 50 was moved over the sequence, and the average propen-
sity for the amino acids in the window was calculated. If this was less
than –0.65 kcal/mol using the β propensity scale, the region was con-
sidered all-β. Alternatively, if it was less than –1.25 kcal/mol using the α
propensity scale, the region was considered all-α. These thresholds
were determined from an analysis of how well they discriminated the
known all-alpha and all-beta domains in the PDB.
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