
How representative are the known structures of the proteins in a
complete genome? A comprehensive structural census
Mark Gerstein

Background:  Determining how representative the known structures are of the
proteins encoded by a complete genome is important for assessing to what
extent our current picture of protein stability and folding is overly influenced by
biases in the structure databank (PDB). It is also important for improving
database-based methods of structure prediction and genome annotation.

Results:  The known structures are compared to the proteins encoded by eight
complete microbial genomes in terms of simple statistics such as sequence
length, composition and secondary structure. The known structures are
represented by a collection of nonhomologous domains from the PDB and a
smaller list of ‘biophysical proteins’ on which folding experiments have
concentrated. The proteins encoded by the genomes are considered as a
whole and divided into various regions, such as known-structure homologue,
low complexity (nonglobular), transmembrane or linker. Various tests are
performed to assess the significance of the reported differences, in both a
practical and a statistical sense.

Conclusions:  The proteins encoded by the genomes are significantly different
from those in the PDB. Their sequence lengths, which follow an extreme value
distribution, are longer than the PDB proteins and much longer than the
biophysical proteins. Their composition differs from the PDB proteins in having
more Lys, Ile, Asn and Gln and less Cys and Trp. This is true overall and
especially for the regions corresponding to soluble proteins of as yet unknown
fold. Secondary-structure prediction on these uncharacterized regions
indicates that they contain on average more helical structure than the PDB;
differences about this mean are small, with yeast having slightly more sheet
structure and Haemophilus influenzae and Helicobacter pylori more helical
structure. Further information is available through the GeneCensus system at
http://bioinfo.mbb.yale.edu/genome.

Introduction
The advent of complete genome sequences allows us to
reassess our understanding of proteins and, in particular,
protein structure. Most accounts of what proteins ‘look
like’ have underlying them an implicit statistical picture of
the ‘average protein’ — its composition, length, and so
forth. This statistical picture is based to a great extent on
the properties of the known structures in the Protein
Databank (PDB), however, and the selection of proteins
in the PDB is highly biased by the preferences of individ-
ual investigators and by the physical constraints on what
will crystallize (or can be studied by NMR spectroscopy).
The selection of proteins encoded by a complete genome,
by contrast, is in a sense unbiased, representing the total
complement of proteins necessary for an organism to live.

The objective of this paper is to understand how biased
the collection of known structures is by comparing them in
a statistical fashion to the proteins in a number of recently

completed genomes. The comparison focuses on simple
measures such as the distribution of sequence lengths,
amino acid and secondary structure composition, and the
occurrence of transmembrane segments and low-complex-
ity regions. Beyond simply illuminating the biases in the
structure databank, this work has important implications
for database-based structure prediction and modeling algo-
rithms. These algorithms all essentially try to extrapolate
what has already been seen in the database to a new
uncharacterized protein. For instance, secondary-structure
prediction consists of observing the patterns of amino acids
that are associated (albeit often weakly) with helices and
strands in the databank, and then assigning secondary
structure to an unknown protein based on the occurrence
of these patterns in its sequence [1–8]. If the database is so
biased that the amino acid and secondary structure compo-
sition in the known structures is not representative of that
in the unknown protein, however, one would not expect
prediction (by any algorithm) to be very meaningful. 
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This work follows up on much recent analysis of genomes
(or partial genomes). Automated methods have been
developed for annotating whole genomes [9–11]. The
number of membrane proteins encoded has been surveyed
[12–16]. Genomes have been compared on the basis of the
frequencies of oligonucleotide and oligopeptide words
[17–20]. And censuses have been done on the occurrence
of various fold families in genomes [21–24]. This paper
also follows up on recent work looking at how the compo-
sitional and length biases in the PDB affect various predic-
tion and sequence comparison methods [25–27].

Results
A representative selection of structures from the PDB
The obvious first step in this analysis is deciding exactly
what structures one should take to represent the known
structures. One could, for instance, take all the structures in
the PDB, of which there are currently about 5500 (5493
identifiers and 10781 domains, see the Materials and
methods section). This would be clearly biased, though, by
the fact that for some, but not all, of the proteins in the
PDB there are many mutant or highly homologous struc-
tures or many structures of the same protein in different
conformations or liganded states. (For instance, there are

154 structures for immunoglobulin variable domains and
222 structures for T4 lysozyme, but only a single structure
for the equally important tyrosine kinase and
topisomerase II proteins.) Brenner et al. [28], in fact, report
that 9 out of 10 of the new structures deposited in the PDB
are just minor variants of what is already in the database.
Consequently, for analyses such as the one here, the PDB
is usually clustered into a representative set of unique
chains or domains, and this is done here based on amino
acid sequence by a new algorithm (described in the Materi-
als and methods section). It gives 1135 representative
domains of soluble proteins — the amino acid composition
of these domains is shown in Table 1 and their length dis-
tribution in Figure 1. The average length of a PDB domain
is ~170 residues. (A few very long domains skew this
average, so that the most common length, i.e. the mode, is
around 120 residues.) The length and composition statistics
for these 1135 domains will serve as a standard for compari-
son against the genome proteins. When, in the following
discussion, reference is made to the ‘average length of the
known structures’ or the ‘composition of the PDB’, one is
directed to the statistics in Table 1 and Figure 1.

Some basic definitions for comparing composition
In what follows, the composition of a reference is compared
with the compositions of other data sets. Usually, this will
be the PDB versus whole genomes, and for concreteness
this terminology will be used in this section, but other situa-
tions will also arise, such as genome versus genome or PDB
versus biophysical proteins. It is worthwhile defining a few
basic terms relevant to these comparisons. The absolute
difference in composition of a particular amino acid i in
genome g versus the reference is Dabs(i,g) = C(i,g) − C(i,PS),
where C(i,g) is the fraction of amino acid i in genome g and
C(i,PS) is the analogous fraction in the reference, that is, in
PS, the soluble part of the PDB. The relative difference can
also be computed: Drel(i,g) = Dabs/C(i,PS). Note that both the
absolute and relative differences are unitless percentages.
This can lead to ambiguity — for example, how does one
know whether the statement “the Escherichia coli genome
has 10% more Ala than the 8% in the PDB” means that the
E. coli genome has 8.8% or 18% Ala. To avoid this problem,
absolute differences will be followed throughout the discus-
sion by ‘abs’ and relative ones by ‘rel’.

If one wants to get an idea of how the composition of a
genome differs overall from the reference, one can
compute an average difference in the RMS sense:

(1)

In the preceding expression, if X is ‘abs’, one is evaluating
an absolute root-mean square difference Rabs, denoted by
‘rms abs’ in the text. Likewise, if it is ‘rel’, one has a 
relative rms difference, denoted Rrel and ‘rms rel’ in the

( ) ( )R g D i gX X i
= 2 ,
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Table 1

Composition of the PDB.

Soluble All-β All-α Mixed
PDB (PS) (PB) (PA) (PAB)

Number of sequences 1135 266 207 662
Number of amino acids 192313 42845 29908 119560
Average length 169 161 144 181

Residue:
A 8.40% 6.8% 9.2% 8.7%
C 1.72% 1.6% 1.4% 1.8%
D 5.91% 5.9% 5.8% 6.1%
E 6.29% 5.2% 7.3% 6.3%
F 3.94% 4.2% 4.2% 3.9%
G 7.79% 8.4% 6.4% 7.9%
H 2.19% 2.1% 2.2% 2.2%
I 5.54% 5.4% 5.1% 5.8%
K 6.02% 5.6% 6.5% 5.9%
L 8.37% 7.3% 9.6% 8.4%
M 2.15% 1.7% 2.4% 2.2%
N 4.57% 5.3% 4.4% 4.5%
P 4.70% 5.1% 4.4% 4.6%
Q 3.73% 3.5% 4.2% 3.7%
R 4.78% 4.2% 5.4% 4.8%
S 5.97% 7.2% 5.7% 5.6%
T 5.87% 7.2% 5.2% 5.5%
V 6.96% 7.6% 5.7% 7.1%
W 1.46% 1.7% 1.5% 1.3%
Y 3.64% 3.8% 3.5% 3.7%

Statistics relating to the length and composition of some
representative subsets of the PDB. PS is 1135 domains derived from
applying multiple-linkage clustering to the soluble proteins in the PDB.
PA, PB and PAB are proper subsets of PS corresponding to all-α,
all-β, and mixed proteins.



text. (The averaging here is over all 20 amino acids. It can,
of course, instead be performed over secondary structure
or genomes to give quantities such as Rrel(Ala), but the
essential point of distinguishing between relative and
absolute compositional differences remains the same.)

Subdivision of the PDB: structural classes and ‘biophysical
proteins’
Using the original definitions of Levitt and Chothia [29], on a
very rough level the domains of known structure can be sub-
divided into those with all-α, all-β, or mixed structure (which

includes both α/β and α+β). As shown in Table 1, each group
of domains has a different amino acid composition, as
expected, differing by 1.3% rms abs (23% rms rel). Making
up 18% of the total, the all-α domains tend to be shorter than
the overall average (144 residues). The all-β domains are of
average length (23% of the total; 161 residues), and the
mixed domains, making up the remainder of the total, are
(necessarily) slightly longer than the average (181 residues).

In addition, a list of structures corresponding to ‘biophysi-
cal proteins’ was assembled (Table 2). The 30 proteins on
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Figure 1

The distribution of sequence lengths of
structures in the PDB. (a) Length distribution
of domains and chains of PDB structures
compared with those of genome proteins. The
genome distribution is a best-fit, extreme value
distribution (see Figure 2). The structure
distribution is derived from clustering the PDB
as described in the Materials and methods
section. One can assess whether the
distribution of lengths of genome sequences
is significantly different from that of PDB
chains in a standard fashion via computation
of a χ2 statistic [96]. Doing this indicates that
the differences are statistically significant in a
literal sense (i.e. there are enough counts),
with the chance of the distributions being
identical being less than 1e–100. (The χ2

value is 1127 for 31 histogram bins.) (b) The
distribution of PDB domain lengths in more
detail, breaking down the domains into three
subcategories: all-α, all-β, and biophysical.
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this list are supposed to represent the small group of pro-
teins — a subset of those with known structure — on
which folding experiments have been done, that is, the
proteins that underlie our picture of the folding process.
As described in the Materials and methods section, these
were chosen in a somewhat subjective fashion, based on
literature searches and discussions with colleagues. The
biophysical proteins are almost all single-domain and, with
a mean length of ~120 residues, are significantly smaller
than the average domain in the PDB (Figure 1). As shown
in Table 2b, they have mostly moderate or small differ-
ences in amino acid composition compared to the average
PDB domain (differing by ~0.6% rms abs or 13% rms rel).

One can interpret these differences in terms of the biophys-
ical proteins being considerably smaller than the average
PDB domain. This implies that they have a larger surface
area relative to buried core and hence more polar and
charged residues on the surface relative to hydrophobic
ones in the core. As shown in Table 2b, this is largely what
is observed. Comparing the composition of the biophysical
proteins to those in the PDB, one finds in total that the
hydrophobic residues decrease by 2.7% abs and the
hydrophilic residues increase by 2.3%. Moreover, five of the
six largest decreases are hydrophobes and, likewise, the five
largest increases are hydrophiles. The considerably fewer
prolines in the biophysical proteins may also be due to the
fact that Pro can potentially complicate the folding pathway
and so is disfavored by investigators studying folding.

Genomes used and their overall size
The genomes considered in this analysis, listed in Table 3,
are the first eight genomes to be completely sequenced.
They represent a diverse comparison, being drawn from the
three kingdoms of life (Eukarya, Eubacteria and Archaea)
and from very different external environments (from room
temperature and pressure to 85°, 200 atmospheres and from
normal pH to highly acidic). They also represent microbes
with a wide range of genome sizes and modes of life, from
parasite to autotroph. As shown in Figure 2, the distribution
of sequence lengths (L) is similar in all eight genomes. It is
unimodal with a long tail and approximately follows an
extreme value distribution: F(L) = 1.25 exp(−(L−210)/140
–exp(−(L−210)/140)). There is no periodicity observed (e.g.
for multiples of 125). The observed fall-off can be rational-
ized in terms of physical arguments [30].

The average length of a genome-encoded protein
sequence is 340 amino acids, appreciably larger than that
of the average protein domain, ~170 amino acids, and also
larger than an average PDB chain, ~205 amino acids
(Figure 1 and Table 4). This average is greatly inflated,
however, because of a few extremely long sequences. The
most common length for a genome sequence is roughly
the size of a single domain (i.e. the mode, ~190). As has
been remarked on before [31], yeast has a preponderance
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Table 2

Biophysical proteins. 

(a) A list of the proteins used for this study

PDB Select Length Class Name

1sty – 137 β Staph nuclease
1cgp a:9–137 129 β CAP
1bgh – 85 β Gene V protein
1pht – 83 β SH3 domain
1tpf a: 250 α/β TIM
1wsy a: 248 α/β Trp synthase
8dfr – 186 α/β DHFR
2rn2 – 155 α/β Ribonuclease H
1brs d: 87 α/β Barstar
1gbs – 185 α+β Hen lyzozyme
119l – 162 α+β T4 lysozyme
193l – 129 α+β α-Lactabumin
7rsa – 124 α+β RNAse A
1brn l: 108 α+β Barnase
1fkd – 107 α+β FK506
9rnt – 104 α+β RNAse T1
1sha a: 103 α+β SH2 domain
1ubi – 76 α+β Ubiquitin
1cse i: 63 α+β CI-2 inhibitor
1igd – 61 α+β B1 domain
1mbd – 153 α Globin
1hrc – 105 α Cytochrome c
2wrp r: 104 α Trp repressor
1lli a: 89 α Cro repressor
1cop d: 66 α Lambda repressor
1rpo – 61 α ROP
1myk a: 47 α Arc repressor
2zta a: 31 α GCN4 zipper
1btl – 263 M β-Lactamase
1bpi – 58 S BPTI
Average 116

(b) Composition of the biophysical proteins.

Residue Hydrophobic/ Soluble Biophysical Relative
polar (H/P) PDB proteins difference

(PS) (BP) (BP/PS –1)

P H 4.7% 3.7% –21%
F H 4.0% 3.2% –19%
M H 2.1% 1.8% –16%
D P 6.0% 5.1% –16%
V H 7.0% 6.2% –12%
C H 1.7% 1.5% –9%
S P 6.0% 5.7% –5%
G – 7.8% 7.7% –1%
I H 5.6% 5.5% –1%
N P 4.6% 4.6% 0%
W H 1.4% 1.5% 1%
T P 5.8% 6.0% 2%
L H 8.4% 8.7% 5%
A – 8.4% 8.8% 6%
Y – 3.7% 3.9% 6%
H P 2.2% 2.4% 6%
Q P 3.7% 4.0% 6%
R P 4.8% 5.2% 9%
E P 6.2% 7.0% 13%
K P 5.9% 7.7% 30%

(a) The 30 ‘biophysical proteins’, which have an average length of 116 amino
acids. The ‘select’ column is for residue selection. (b) The composition of these
proteins in comparison to the soluble part of the PDB. Note that the average
PDB protein is larger, with an average domain size of 169 residues, and is
expected to contain proportionally more hydrophobic residues relative to polar
ones than the smaller biophysical proteins. This is indicated in the last column,
which shows the change in composition (relative using Drel(g,i) as defined in the
text) and the hydrophobic/polar labeling of the amino acids. The net absolute
change in hydrophobic residue composition is the total of Dabs(BP,i) = C(BP,i) –
C(PS,i) summed over all the residues labeled ‘H’: it is +2.7%. The net change in
hydrophilic residue composition is the same quantity summed over all residues
marked with ‘P’: it is –2.3%. Note that A, G and Y are left out of these sums.
These have a net change of +0.4%, so there is no overall change.



of very long protein sequences compared with the bacter-
ial genomes. In particular, about 13% of yeast sequences
have a length of more than 833 residues (five PDB
domains) compared with the average of 5% in all eight
genomes. (This leads to the average yeast sequence being
~470 residues, significantly greater than the genome
average of 340.) Interestingly, the mycoplasmas (MP and
MG) have a relatively high proportion of rather long
sequences in their small genomes, indicating that some of
these long sequences may be essential. Overall, MJ
appears to have the shortest sequences, perhaps reflecting
a preference for short sequences at high temperature. For
yeast there is a distinct spike in the length distribution
around 100 residues; this is almost undoubtedly an artifact
and reflects the still-not-finalized state of the genome data
(see Materials and methods section and [32]).

Overall genome amino acid composition
As shown in Table 5, the genome proteins have some sig-
nificant differences from the PDB proteins in terms of

their overall amino acid composition. The greatest differ-
ences are in the amino acids Lys, Ile, Gln and Asn, which
are more common in the genome proteins than in the
PDB proteins, and Cys and Trp, which are less common.
The latter difference may reflect the abundance of Cys
and Trp in active sites and binding surfaces, and the
prevalence of enzymes and ‘binding’ proteins in the PDB
(e.g. see [33]). Also, the PDB has a clear over-representa-
tion of extracellular proteins, which can have disulfides, as
opposed to intracellular ones, which cannot. The amino
acids that differ most in occurrence between the genome
proteins and the PDB proteins also tend to vary the most
between genomes. This is especially true for Lys. The
amino acids with the greatest similarity in composition to
the PDB are Asp, Glu, Thr, Tyr and Val. It is interesting
that Asp and Glu are so similar in composition while there
are great differences between Gln and Asn.

Overall, the genomes with the greatest similarity in compo-
sition to the PDB are EC, HI, SS and SC, with the
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Figure 2

The distribution of lengths of sequences in
eight microbial genomes. An extreme value
distribution fit to the observed distribution is
shown by the bold line. Note there are some
sequences longer than 983 amino acids that
are not indicated in the graph. The two-letter
abbreviations are defined in Table 3.
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SC

MJ

HI

MP

MG

EC

SS

HP

Table 3

Genomes and abbreviations used.

Genome Abbreviation Size (Mb) Reference Website

Haemophilus influenzae HI 1.83 [87] http://www.tigr.org/tdb/mdb/hidb/hidb.html
Mycoplasma genitalium MG 0.58 [88] http://www.tigr.org/tdb/mdb/mgdb/mgdb.html
Methanococcus jannaschii MJ 1.66 [89] http://www.tigr.org/tdb/mdb/mjdb/mjdb.html
Synechocystis sp. SS 3.57 [90] http://www.kazusa.or.jp/cyano/cyano.html
Mycoplasma pneumoniae MP 0.81 [91] http://www.zmbh.uni-eidelberg.de/M_pneumoniae/MP_Home.html
Saccharomyces cerevisiae SC 13 [92] http://genome-www.stanford.edu/Saccharomyces
Helicobacter pylori HP 1.66 [37] http://www.tigr.org/tdb/mdb/hpdb/hpdb.html
Escherichia coli EC 4.60 [93] http://www.genetics.wisc.edu



mycoplasmas and MJ having the greatest differences. This
is perhaps understandable in terms of the great number of
E. coli and yeast structures in the PDB. Figure 3 shows a
cluster tree grouping the genomes based on overall amino
acid composition. It is similar in topology to the conven-
tional tree based on 16S ribosomal sequences [34–36].
That is, it groups together the gram-positive bacteria (MP

and MG) and the gram-negative bacteria (HI and EC) and
positions these two bacterial lineages with the cyanobacte-
ria SS, a roughly equal distance from the eukaryote SC and
the archeon MJ. The only problematical organism is HP,
which is closer to the mycoplasmas in the composition tree.
HP is a gram-negative bacterium and should be grouped
with EC and HI; however, it has previously been found to
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Table 4

Statistics for the lengths of genome-encoded protein sequences.

PS Average* EC HI HP MG MJ MP SC SS

Average size of a sequence 169 340 317 301 317 364 287 351 466 326
Most common sequence size 116 186 249 149 216 283 149 149 116 149

in histogram (mode)
Fraction of sequences > 333 aa 9.8% 40% 38% 34% 38% 42% 32% 39% 56% 38%

(~2 PDB domains)
Fraction of sequences > 833 aa 0.1% 4.6% 2.8% 2.4% 3.2% 6.0% 2.1% 5.0% 12.6% 3.9%

(~5 PDB domains)
Average size of a sequence 2.0 1.9 1.8 1.9 2.1 1.7 2.1 2.8 1.9

as a multiple of PDB domains
Total number 1135 4290 1680 1577 468 1735 677 6218 3168
Number of PDB-sized domains 8017 2982 2955 1006 2939 1404 17119 6099

*The average over the eight genomes for a row. Note that these simple average values are slightly different from those obtained from integrating the
extreme value distribution fit, shown in Figures 1 and 2. 

Table 5

Composition of the genome proteins as compared to the PDB.

RMS K I C Q W N F L G A P S R H M E D T Y V

(a) Absolute composition

EC 4.4 6.0 1.2 4.4 1.5 4.0 3.9 10.6 7.4 9.5 4.4 5.8 5.5 2.3 2.8 5.7 5.1 5.4 2.9 7.1
HI 6.3 7.1 1.0 4.6 1.1 4.9 4.5 10.5 6.6 8.2 3.7 5.8 4.5 2.1 2.4 6.5 5.0 5.2 3.1 6.7
SS 4.2 6.3 1.0 5.6 1.6 4.0 4.0 11.4 7.4 8.5 5.1 5.8 5.1 1.9 2.0 6.0 5.0 5.5 2.9 6.7
SC 7.3 6.6 1.3 3.9 1.0 6.1 4.5 9.6 5.0 5.5 4.3 9.0 4.5 2.2 2.1 6.5 5.8 5.9 3.4 5.6
HP 8.9 7.2 1.1 3.7 0.7 5.9 5.4 11.2 5.8 6.8 3.3 6.8 3.5 2.1 2.2 6.9 4.8 4.4 3.7 5.6
MP 8.6 6.6 0.8 5.4 1.2 6.2 5.6 10.3 5.5 6.7 3.5 6.5 3.5 1.8 1.6 5.7 5.0 6.0 3.2 6.5
MG 9.5 8.2 0.8 4.7 1.0 7.5 6.1 10.7 4.6 5.6 3.0 6.6 3.1 1.6 1.5 5.7 4.9 5.4 3.2 6.1
MJ 10.4 10.5 1.3 1.5 0.7 5.3 4.2 9.5 6.3 5.5 3.4 4.5 3.8 1.4 2.2 8.7 5.5 4.0 4.4 6.9

Average 7.5 7.3 1.1 4.2 1.1 5.5 4.8 10.5 6.1 7.0 3.8 6.4 4.2 1.9 2.1 6.5 5.1 5.2 3.3 6.4

SD 2.3 1.4 0.2 1.3 0.3 1.2 0.8 0.7 1.0 1.5 0.7 1.3 0.9 0.3 0.4 1.0 0.3 0.7 0.5 0.6

(b) Difference in composition versus the PDB

EC 16 –25 8 –29 19 7 –15 –2 28 –6 13 –5 –3 16 3 28 –7 –14 –7 –22 1
H 17 8 27 –38 24 –21 6 12 26 –15 –2 –20 –2 –6 –7 10 5 –17 –11 –14 –4
SS 20 –29 13 –39 49 9 –13 1 37 –6 1 11 –3 6 –15 –8 –2 –16 –6 –20 –4
SC 21 24 18 –21 5 –27 31 14 15 –36 –34 –7 51 –7 –2 –4 5 –4 0 –8 –20
HP 27 52 29 –34 0 –51 27 36 34 –26 –18 –29 14 –28 –4 2 11 –20 –25 1 –20
MP 28 45 18 –55 44 –17 35 41 24 –29 –20 –25 8 –27 –18 –28 –8 –17 2 –11 –7
MG 36 61 48 –50 27 –32 62 53 28 –41 –33 –36 11 –35 –28 –30 –8 –18 –8 –11 –12
MJ 38 77 88 –23 –61 –49 14 6 14 –19 –35 –28 –25 –20 –35 1 40 –8 –31 20 –2

Average 26 31 –36 13 –23 19 20 26 –22 –16 –17 6 –13 –13 –4 4 –14 –11 –8 –9

RMS 45 39 38 35 31 30 28 27 25 24 23 21 21 18 18 16 15 15 15 11

The table shows (a) the amino acid composition of each genome and
then (b) the difference in composition versus the PDB. This latter
number is expressed as a relative change Drel(g,i) as defined in the
text: Drel(g, i) = [C(g,i)–C(PS,i)]/C(PS,i), where C(g,i) is the genome
composition of amino acid i and C(PS,i) is the composition of the
corresponding amino acid in the PDB from the PS column in Table 1.

The bottom rows beneath each block give the average, standard
deviation (SD), and RMS average of the column above. The column
headed ‘RMS’ gives the RMS average of the amino acid differences in
a row, i.e. Rrel, as defined in the text. The rows and columns of the
table are sorted so that genomes and amino acids with the greatest
differences relative to the PDB are in the bottom left-hand corner.



be rather problematic in terms of evolutionary classification
[37,38]. The overall similarity of the tree in Figure 3 with
the conventional tree is notable given the very different
properties of the genomes used for defining distance for
these trees, that is, overall amino-acid composition versus
the specific nucleotide sequence of a single gene.

Each amino acid has a different propensity to confer sec-
ondary structure, whether it be α helix, transmembrane helix,
or β strand (Table 6). Consequently, the observed differences
in amino-acid composition might be expected to give rise to
more of one type of secondary structure, for example more
helices. This can be tested to some degree through prediction
of secondary structure, as discussed below.

An overview of sequence masking
One problem with comparing the overall amino acid com-
position of the genome proteins with that of the PDB 

proteins is that this lumps together many distinctly differ-
ent groups of proteins — membrane proteins, proteins
with PDB homologues, completely uncharacterized pro-
teins, and so forth. In this section, an attempt is made to
disentangle these different groups. One can think of this
process as sequentially applying a number of ‘masks’ to
the genome sequences — first, covering the regions that
match a domain in the PDB, then covering the low-com-
plexity regions and transmembrane helices, and finally,
annotating short segments between already masked
regions as linkers, connecting domain structures with
loops. The part of the genome sequence that remains after
all of this consists of structurally uncharacterized domains
of soluble proteins. Comparison of these uncharacterized
regions with the PDB is the ultimate goal of this analysis,
as it most directly addresses the issue of how representa-
tive the known structures are of the new proteins encoded
in the genomes.

From the masking process, one gets two numbers: the
fraction of the total amino acids in a genome associated
with a particular structural feature and the number of pro-
teins in the genome (i.e. open reading frames — ORFs)
that contain this feature. Most genome analyses have
tended to focus on the latter value, characterizing, for
example, certain fractions of the proteins in the genome as
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Figure 3

A cluster tree based on amino-acid composition. This unrooted tree
shows the result of clustering the eight microbial genomes on the
basis of differences in amino-acid composition. The distance between
two genomes A and B is defined in terms of amino-acid composition
through the following formula for Euclidean distance:

(4)

where C(i,g) is the composition of the ith amino acid in genome g.
Other measures of distance were also tried, in particular the Hellinger
distance [97], which is the same as Dabs(AB) except for the
replacement:

(5)

This treats small differences differently. However, it is found that the
resulting tree topology is insensitive to the choice of distance metric —
providing a test of the robustness of the results.

( ) ( )C i C i, ,⋅ → ⋅

( ) ( ) ( )( )D AB C i A C i Babs i
= −=∑ , ,

2

1
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Table 6

Experimentally determined local structure propensities.

Propensity (kcal/mol)

TM helix α Helix β Strand

A –1.6 –1.9 0.0 
C –2.0 –1.1 –0.8 
D +9.2 –1.0 +0.9 
E +8.2 –1.2 –0.2 
F –3.7 –1.0 –1.1 
G –1.0 0.0 +1.2 
H +3.0 –1.1 –0.4 
I –3.1 –1.2 –1.3 
K +8.8 –1.5 –0.4 
L –2.8 –1.6 –0.5 
M –3.4 –1.4 –0.9 
N +4.8 –1.0 –0.5 
P +0.2 +3.0 >3.0 
Q +4.1 –1.3 –0.4 
R +12.3 –1.9 –0.4 
S –0.6 –1.1 –0.9 
T –1.2 –0.6 –1.4 
V –2.6 –0.8 –0.9 
W –1.9 –1.1 –1.0 
Y +0.7 –1.2 –1.6 

The transmembrane (TM) helix scale gives the energy in kcal/mol for
inserting this amino acid into a membrane [78]. It is used here for the
identification of membrane proteins. The α helix and β strand propensity
scales are also expressed in kcal/mol. Both scales are derived from
protein-unfolding experiments [94,95], but similar scales can be
determined from doing statistics on solved crystal structures [82].



being membrane proteins. This is somewhat deceptive,
however, as a given protein can have many different
domains and structural features. For instance, a given
ORF can simultaneously match a known domain of a
soluble protein and also contain a transmembrane helix.

Sequence similarity to known structures
The first step in ‘masking’ is just to compare the
genome proteins with the structures in the PDB. This
was done with standard sequence comparison
approaches (see the Materials and methods section). As
has been found in numerous previous analyses, about
one-eighth of the ORFs in the genomes (13%) were
homologous (or identical) to sequences corresponding to
known structures, and these structure matches involved
9% of the total amino acids in a genome (Table 7). This
number ranges considerably, however. Predictably, yeast
has the smallest fraction of its genome matched in terms
of total number of residues (6%), and MJ has the small-
est fraction matched in terms of fraction of sequences
(11%). Conversely, HI has the largest fraction of its
amino acids matched to known structures (14%), and
MG has the largest fraction of ORFs with a structural
match (19%).

As is to be expected, the segments matching known struc-
tures are more similar in composition to the PDB and to
each other (18% and 15% rms rel) than to the genomes
overall or to structurally uncharacterized regions (Tables 5
and 8, see later). And the average size of a genome region
matching a PDB structure (152 residues) is a bit less than
the average size of a domain in the known structures (but
this number varies between genomes).

Low-complexity regions, transmembrane helices and linkers
Stretches of low complexity sequence are thought not to
fold into globular protein structures [39,40]; they may cor-
respond to fibrous or disordered structures. Consequently,
it is doubtful whether they will ever be crystallized. After
removing the structure matches (as shown in Table 7),
about one-quarter of the remaining residues in the
genomes are in low-complexity regions. This number
varies considerably between genomes, with MJ having the
most and HI the fewest (37% versus 15%). Somewhat sur-
prisingly, MG has a high proportion of its minimal genome
devoted to these sequences (28%, more than EC or HI),
indicating that they must have some essential role. The
low-complexity regions are highly variable in composition
and, predictably, very different in composition from the
PDB (see Supplementary material for specific values).

About 5% of the residues in the genomes are in transmem-
brane helices (Table 7). This number ranges from a high
of 7% in EC to a low of 3% in MJ. The number of
sequences with at least a single transmembrane element
ranges from a high of ~35% in EC, SC and SS to a low of
about 20% in MJ with an average of about 28%.

Segments of sequence already accounted for thus far —
i.e. PDB matches, low-complexity regions or transmem-
brane helices — are considered to be ‘characterized’
regions. The average length of these regions is ~100
residues, and these segments make up ~35% of the total
amino acids in a genome. Short sequences between char-
acterized segments are considered to be linkers, loops or
coils connecting known structural elements, whether
membrane-spanning helices or known globular domains.
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Table 7

Overall statistics for occurrence of different structurally characterized regions.

Average SD EC HI HP MG MJ MP SC SS

Statistics for amino acids
Total number 775,998 1,358,465 505,279 500,616 170,400 497,968 237,905 2,900,670 1,033,450
Fraction masked by...
PDB match 8.7% 3.7% 11.1% 13.7% 8.8% 12.9% 7.1% 9.7% 6.2% 9.0%
Low-complexity region 21.7% 6.9% 16.7% 13.9% 22.2% 28.2% 35.1% 24.7% 23.9% 20.5%
TM helix 4.9% 1.4% 7.3% 6.1% 4.8% 3.8% 2.9% 4.5% 5.2% 5.9%
Linker region 5.1% 0.4% 5.3% 4.8% 4.8% 5.0% 5.0% 5.2% 4.6% 5.1%

Fraction remaining
uncharacterized 59.7% 8.9% 59.6% 61.5% 59.4% 50.2% 49.9% 55.8% 60.0% 59.6%

Statistics for ORFs
Total number 2206 1731 4290 1680 1577 468 1735 677 6218 3168
Fraction containing...
PDB match 12.6% 4.8% 14.1% 16.8% 12.2% 19.2% 11.0% 14.2% 13.5% 13.2%
Low-complexity region 43.0% 12.6% 34.6% 30.6% 43.2% 51.7% 61.3% 49.3% 56.3% 39.6%
TM helix 28.8% 6.6% 34.6% 27.7% 26.9% 26.7% 19.6% 28.1% 35.6% 36.8%
Linker region 51.0% 9.1% 49.0% 46.1% 50.4% 58.8% 55.0% 56.0% 57.3% 52.8%

Fraction containing...
Uncharacterized region 76.8% 4.4% 75.2% 73.2% 75.4% 74.8% 68.8% 77.8% 84.0% 79.4%
Characterized region 65.5% 13.7% 64.2% 58.6% 65.2% 74.1% 74.9% 70.9% 79.1% 68.3%



Over all the genomes, linker regions are consistently about
11 residues in length and constitute ~5% of the total
amino acids (Table 7). Compared to the PDB they are
especially enriched in Lys and depleted in Ala and Gly
(by –29% and –23% rms rel). This latter result is some-
what contrary to expectation, as one tends to think that
the small residues, such as Ala and Gly, occur often in
flexible loops connecting domains [41,42].

Regions of sequence remaining structurally uncharacterized
After the whole masking process is done, including finding
the linkers, one is left with regions of sequence that have
not been characterized in a structural sense. These ‘unchar-
acterized regions’ presumably fold into soluble, globular
protein structures, though some of them could also be part
of all-β membrane proteins, such as porins [43]. They
provide a suitable comparison for the PDB, which also con-
sists (mostly) of soluble proteins with globular structures.

Uncharacterized regions constitute ~60% of the amino
acids in a genome. Their average size is 186 residues,
which is, perhaps not coincidentally, about the size of an
average PDB domain. This number is remarkably constant
across the genomes with a standard deviation of only ~9%
(16 residues). Interestingly, HI, followed closely by yeast,
has the highest fraction of uncharacterized regions (64%

and 60%), and MG and MJ have the lowest (50%). The
latter value reflects the large number of low-complexity
regions in MJ. For yeast there is a large discrepancy in the
total number of residues that are uncharacterized versus
the few proteins that do not have at least one characterized
region (60% versus 29% (= 100% – 71%)). This reflects the
large average size of a yeast protein (which can contain
multiple structural domains) and highlights the problem,
alluded to earlier, of characterizing an entire ORF based on
it having a single domain of known structure.

As shown in Table 8, compared to the known structures,
the composition of the uncharacterized regions is deficient
in Ala, Cys, Gly, Pro and Trp and is enriched in Ile, Lys,
Leu, Asn and Gln, with the compositions of Gln and Lys
being particularly variable.

Secondary-structure prediction on uncharacterized regions
It is possible to structurally characterize the uncharacter-
ized regions in a rough fashion through prediction of sec-
ondary structure. This was done using standard approaches
(the GOR program). Surprisingly, despite the differences
in amino-acid composition, the overall statistics for sec-
ondary structure composition (the number and size of
helices and strands) were very similar in all the genomes
(Table 9). About 39% of the residues are predicted to be in
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Table 8

Composition of structurally uncharacterized regions.

RMS K Q N I C W G A F P L R E S M T V Y H D

(a) Absolute composition

EC 4.8 4.8 4.3 5.6 1.2 1.5 6.9 8.7 3.6 4.5 9.8 6.1 6.5 5.7 2.6 5.3 6.6 3.1 2.6 5.8
HI 6.7 5.1 5.2 6.6 1.1 1.1 6.2 7.5 4.2 3.8 10.0 4.9 7.0 5.7 2.2 5.1 6.4 3.3 2.3 5.5
SS 4.6 5.9 4.2 6.0 1.1 1.5 6.9 7.8 3.9 5.2 10.6 5.5 6.6 5.6 1.9 5.3 6.4 3.2 2.2 5.5
SC 7.5 3.9 6.0 6.7 1.4 1.1 4.8 5.2 4.6 4.3 9.6 4.8 6.7 8.0 2.1 5.6 5.7 3.6 2.3 6.1
HP 9.2 3.8 6.0 7.0 1.2 0.7 5.5 6.5 5.2 3.4 10.5 3.9 7.1 6.5 2.2 4.4 5.4 4.0 2.4 5.2
MP 8.7 5.3 6.7 6.5 0.9 1.2 5.3 6.2 5.6 3.6 9.8 3.8 5.8 5.9 1.6 5.7 6.3 3.6 2.1 5.5
MG 9.6 4.7 7.8 8.0 1.0 1.0 4.7 5.3 5.8 3.1 9.9 3.4 5.8 6.3 1.6 5.4 6.0 3.5 1.9 5.3
MJ 9.9 1.7 5.4 9.4 1.5 0.8 6.3 5.4 4.2 3.7 8.7 4.4 8.5 4.4 2.3 4.2 6.9 4.6 1.8 5.9

Average 7.6 4.4 5.7 7.0 1.2 1.1 5.8 6.6 4.6 3.9 9.8 4.6 6.7 6.0 2.1 5.1 6.2 3.6 2.2 5.6

SD 2.1 1.3 1.2 1.2 0.2 0.3 0.9 1.3 0.8 0.7 0.6 0.9 0.9 1.0 0.3 0.5 0.5 0.5 0.3 0.3

(b) Difference in composition versus the PDB

EC 15 –19 30 –8 0 –25 3 –12 4 –10 –3 18 28 5 –5 18 –9 –5 –16 17 –3
H 17 14 36 13 18 –33 –22 –21 –10 5 –18 20 2 14 –5 3 –12 –9 –9 3 –8
SS 19 –22 58 –9 8 –31 8 –12 –7 –3 11 27 16 6 –6 –11 –10 –8 –11 –1 –8
SC 20 28 5 30 20 –14 –21 –38 –38 16 –8 15 0 8 33 –2 –5 –19 0 6 2
HP 26 56 3 30 25 –27 –51 –30 –23 31 –27 25 –19 14 9 0 –26 –23 10 7 –13
MP 27 48 43 44 17 –48 –16 –33 –26 42 –24 17 –21 –7 –1 –29 –3 –10 –1 –5 –9
MG 34 64 25 69 43 –41 –31 –40 –36 46 –33 18 –29 –7 5 –25 –8 –15 –3 –15 –11
MJ 32 68 –55 16 70 –10 –42 –19 –35 5 –20 5 –8 37 –26 5 –28 –2 26 –20 –2

Average 30 18 23 25 –29 –21 –26 –22 17 –15 18 –4 9 0 –5 –13 –11 0 –1 –6

RMS 45 37 34 32 31 29 28 26 26 20 19 18 16 16 16 15 13 12 11 8

This table has an identical format to that of Table 5, but here all the
statistics are restricted to the uncharacterized regions of the genomes
– i.e. the regions corresponding to soluble protein domains with a
definite yet currently unknown fold. There are 160 differences reported

in this table; 18 of these are greater than the largest difference
between all-α and all-β domains (40% rel, see Table 1): K in MJ, MG,
MP and HP; Q in MJ, MP and SS; N in MP and MG; I in MJ and MG; C
in MP and MG; W in HP and MJ; G in MG; and F in MG and MP.



an α-helical conformation, 17% in a strand conformation
and the remainder in a coil conformation. This is
markedly more helical than the (predicted) secondary
structure composition of the PDB: 31% helical and 21%
strand. The difference is consistently observed across all
the genomes (standard deviation 2% rms abs), but there
are some, relatively small, variations. Yeast has the least
helical structure, and HI and HP the most (34% versus
41% and 42%).

How can genomes have such similar secondary structure
composition while having such a markedly different
amino acid composition (i.e. comparing Tables 8 and 9)?
This is analogous to how they can have very different base
compositions (AT- or GC-rich) while coding for proteins
with similar amino acid composition. To some degree it
has do with a ‘degeneracy’ in the coding of secondary
structure propensities and the ‘trading off’ of residues
with equivalent propensities between genomes. This is
evident in the similar values calculated for each genome
for average helix and strand propensity per residue (i.e.
–1.0 and –0.3 kcal/mol, Table 9).

One problem with this analysis of secondary structure
composition is that a prediction method is potentially
being applied to sequences very different from those it
was ‘trained’ on. That is, the parameters for the prediction
programs all derive from the data in the PDB, so the
results of running these programs may unduly reflect the
biased nature of the PDB and not be indicative of the
actual secondary structure in a genome. This problem is
particularly acute here in trying to contrast the PDB with
the uncharacterized regions in the genomes.

One way of comparing secondary structure without intro-
ducing the statistical biases of the PDB is to use the exper-
imentally determined propensities for α and β structure.
These propensities were used to identify regions of mostly
helical and mostly strand residues — which, hopefully, cor-
respond loosely to all-α and all-β domains — and then sta-
tistics were done on the occurrence of these regions. The
results (shown in Table 9) indicate many more putative
all-α domains in the uncharacterized regions than all-β
ones (11% versus 3% of the total residues in the uncharac-
terized regions). As was observed for the standard sec-
ondary structure prediction, yeast has relatively more
β structure and HI and HP more α (yeast has 9% all-α and
4% all-β regions as compared to 23% and 1% for HI). This
finding of the prevalence of all-β structure in yeast is
similar to what was observed in an earlier survey of super-
secondary structures in three genomes [22].

Discussion
At this point one has been presented with many statistics,
particularly those related to differences in amino acid and
secondary structure composition. One is naturally led to
ask how significant and meaningful they are. This ques-
tion can be answered on a number of levels.

Literal statistical significance
First, one can ask whether one has compared enough
amino acids for the differences in composition to be signifi-
cant, compared to the expected random variation. This is
statistical significance in a literal sense. It is properly
addressed through the calculation of a chi-squared (χ2) sta-
tistic. For purposes of concreteness the following discus-
sion will focus on comparing the amino-acid composition of
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Table 9

Predicted secondary structure composition of structurally uncharacterized regions.

Average SD EC HI HP MG MJ MP SC SS

Total uncharacterized residues 530,488 809,837 310,907 297,265 85,467 248,367 132,692 1,742,937 616,432

Average experimental propensity of these residues
α propensity –1.01 0.03 –1.00 –1.02 –1.05 –1.05 –1.01 –1.03 –1.00 –0.96
β propensity –0.34 0.05 –0.27 –0.33 –0.37 –0.42 –0.36 –0.38 –0.36 –0.26

Fraction of these predicted by GOR to be...
in coil conformation 45% 2% 44% 43% 42% 44% 43% 45% 49% 46%
in strand conformation 17% 1% 17% 16% 15% 17% 19% 17% 17% 16%
in helical conformation 39% 2% 39% 41% 42% 39% 37% 39% 34% 38%

Fraction of these predicted by experimental propensities to be...
in all-α domain 11% 3% 11% 12% 16% 11% 8% 10% 9% 8%
in all-β domain 2.7% 2.4% 0.6% 1.0% 2.1% 7.7% 2.4% 3.0% 4.2% 0.6%

The average β-strand and α-helix propensities are derived by
computing a weighted average of the propensities in Table 6, using as
weighting factors for each residue its fractional composition in the
uncharacterized regions:

(6)

where P(i) is the propensity of amino acid i (from Table 6) and C(g,i) is
the composition of amino acid i in genome g (from Table 8).
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a particular genome g (e.g. E. coli) against the PDB, but the
argument is general and can be extended to many of the
other statistics presented here. The appropriate null model
is that genome g has the same composition as the PDB.
One then compares the actual number of counts of each
amino acid observed with the number expected, if this
were the case, in the calculation of a χ2 statistic with 19
degrees of freedom:

(2)

where the summation is carried out over all 20 amino
acids, N is the total number of amino acids in genome g,
O(i) = NC(i,g) is the observed number of counts of amino
acid i, and E(i) = NC(i,PS) is the expected number of
counts, assuming the genome has the same composition as
the PDB. Using the definitions given previously, this can
be rewritten as:

(3)

Clearly, the χ2 statistic depends greatly on the number N of
amino acids in the genome. For all the compositional dif-
ferences reported here, N is so large that the χ2 statistic is
highly significant. For instance, in comparing the amino
acid composition of the E. coli genome to the PDB, the χ2

statistic is ~30,000 (0.022N, for N = 1,358,465 amino acids).
This has a chance (i.e. a p-value) of less than 1e–100 occur-
ring under the null model. Even if the number of amino
acids compared were only 10,000, the p-value would still be
less than 1e–30. In fact, one need only compare 2000 amino
acids to achieve a significance level of 0.1%. Considering
that the composition difference between E. coli and the
PDB is one of the smallest reported here (only 16% rms rel)
and that all the comparisons done here involve many more
than 10,000 amino acids, one can see that the composition
differences reported here are all statistically significant —
in the literal sense. This does not mean, though, that they
are free of statistical artifacts or systematic biases.

Possible sampling artifacts: clustering and non-uniform
composition of the PDB
One potential statistical artifact could result from the
method used to cluster the PDB — that is, different clus-
tering methods could give significantly different PDB
compositions (Figure 4). Two statistics that quantify this
possible effect are shown in Table 10. For the first statistic,
the same basic clustering algorithm used here is employed
but different cluster representatives are picked at random.
This gives essentially no difference to PDB composition
(average difference is 8e–8 rms abs). For another statistic,
the composition of the PDB was calculated after it had
been clustered by a completely different algorithm. This
also gave essentially the same PDB composition as
reported here, indicating that details of the clustering are

not expected to affect the results significantly. (The actual
difference in composition between the two clustering
methods, 0.03% rms abs and 1.3% rms rel, provides a
useful baseline for assessing compositional differences.)

Another potential sampling issue that may affect the quality
of the statistics is that the reference PDB data set may be
highly heterogeneous in composition. By this, one means
that a few sequences with a very biased composition may
disproportionately skew the composition of the whole PDB
(this situation is illustrated in Figure 4). For instance,
imagine if the last two folds added to the PDB were exceed-
ingly Ala-rich. This would imply that the composition of the
PDB would be contingent on exactly when the calculation
was done (i.e. before or after the new Ala-rich entries were
added). The contrasting situation, of course, would be
where Ala was distributed uniformly throughout the PDB.
Sampling bias is not expected to be as meaningful for the
genome compositions, as they are composed of an unbiased
and essentially unchanging selection of proteins.

One can measure this lack of uniformity in PDB composi-
tion through resampling: making up a ‘new PDB’ by
picking randomly from the original PDB with replacement,
calculating a composition of this new PDB and then deter-
mining the spread of these compositions. As illustrated in
Figure 4, the range of resampled compositions is directly
related to how non-uniformly amino acids are spread
through the PDB. Figure 4 also shows that the actual
resampled compositions are distributed in an approxi-
mately Gaussian (or binomial) fashion with a very narrow
variance. The narrowness of the spread in resampled com-
positions is quite small in comparison to the observed dif-
ferences in composition between the genomes and the
PDB (0.00074 rms abs or 1.7% rms rel, which is about one-
tenth of the average difference between EC and PDB, 16%
rms rel). This implies that the observed differences are sta-
tistically significant even when accounting for the variabil-
ity in the PDB due to its biased and heterogeneous nature.

Meaningful differences and practical significance
Thus far, it has been shown that the reported composition
differences are significant in the literal sense of having
enough data (counts) and are not unduly affected by the
clustering method or the heterogeneity of the PDB.
However, this does not really answer the question of
whether the observed differences in composition are bio-
logically meaningful or practically useful. The only way to
do this is to compare the observed differences to known
differences in composition that have been established to
be relevant. One area in which composition differences
have been found to be relevant is in the prediction of
membrane protein topology. The ‘positive-inside’ rule
based on composition differences of 5–10% abs for
Arg + Lys (e.g. 15% inside versus 5% outside) has been
found to be quite effective in this regard [45–47]. A
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number of the composition differences between genomes
are comparable to this and involve many more total
residues. For instance, the MJ genome has ~4% abs more
Arg + Lys than the PDB.

Another helpful yardstick to use in comparing composi-
tions is the difference in composition of all-α and
all-β domains (Table 1). These differ by 23% rms rel on
average (1.3% rms abs) and up to 40% rel (24% abs) for
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Figure 4

Illustration of possible sampling artifacts
affecting the composition of the PDB. The
reported composition of the soluble PDB,
which acts as a reference here, can be
affected by the particularities of the clustering
method and by compositional heterogeneity in
the PDB. This figure is meant to be read in
conjunction with Table 10. (a) A schematic
illustrating clustering and sampling bias in the
PDB. At the left is a representation of all the
sequences in the PDB. The black bands in
each sequence are to be read as the
occurrence of a particular amino acid. Their
frequency (~8.5%) is approximately the same
as that of Ala. The transition to the ‘clustered
PDB’ shows how the PDB is clustered into a
small number of families. By definition, the
difference in amino-acid composition between
each member in a cluster is small. Thus, no
matter whether one picks representative a, b,
or c of the second cluster, the overall
composition of the PDB will be nearly the
same. This is quantified in the ‘SD-RECLUS’
column of Table 10. The ‘skewed composition’
and ‘uniform composition’ columns to the right
show two extreme cases of how a given amino
acid (e.g. Ala) could be distributed amongst
the various cluster representatives. On one
extreme, uniform composition, it could be
distributed uniformly through each sequence,
so that the composition of the PDB would be
relatively insensitive to the addition of a new
fold (e.g. fold 5). Alternatively, one sequence
could be highly compositionally biased, so that
it contains much more of a given amino acid
than the PDB as a whole. In the extreme case
shown here for illustrative purposes, one
imagines that all the Ala in the PDB is
concentrated in a single sequence (fold 4).
Thus, the presence or absence of this
sequence would greatly affect the composition
of the PDB. One imagines that the actual PDB
(clustered PDB) is somewhere between these
extremes. The compositional bias of the PDB
can be quantified by resampling [44,98,99].
One begins with the 1135 sequences in the
soluble PDB (data set PS in Table 10). Then
one randomly picks the 1135 sequences with
replacement to make a new soluble PDB,
called the bootstrap sample PS*2. One
calculates the composition PS*2 and then
continues the procedure N times (here
N = 1000), generating PS*2, PS*3… PS*N and
their compositions. The composition of each
amino acid i varies between the various
bootstrap samples PS*j, and one can graph its
distribution. (Technically, one should really deal
with this in a multivariate sense in terms of

multinomial distributions, but it is sufficient
here to deal only with projections of these
high-dimensional distributions.) This is shown
in (b) for Ala. As is evident from the figure, the
distribution follows an almost perfectly
Gaussian (or binomial) distribution. One can
estimate the standard deviation of this
distribution and use it to quantify the degree of
non-uniformity in composition of the PDB. The
larger the width, the greater the bias. For
instance, for the uniformly distributed case, the
width would be 0. For the case where all the
Ala in the PDB is concentrated in one
sequence, the width is estimated to be about
8%. (This is derived from making up a specially
biased PDB that contains 8.4% Ala but has it
all in one sequence.) In both these extreme
cases, however, the distribution would no
longer be normal. The standard deviations for
all 20 amino acids are shown in the SD-
RESAMP column of Table 10. The average
width is 0.00074 rms abs (1.7% rms rel).

Using these standard deviations in conjunction
with a ‘normal’ curve, one can estimate a
significance or p-value for each of the
observed differences between the genomes
and the PDB. Consider the difference
between the E. coli genome composition and
the PDB discussed in the text. This has an
average difference of 16% rms rel, about 10
average standard deviations, and so is clearly
significant. Finally, using an analogous
approach to the one described above, one can
also see how compositionally heterogeneous
the genomes are and derive compositional
distributions for each amino acid in the
genome. These result in narrow distributions
with even tighter standard deviations than the
PDB. Then if one wishes one can use the t-test
or a resampling approach to estimate
significance for the difference of the means of
the two distributions. 
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particular amino acids. Half of the genomes (HP, MP, MG
and MJ) differ more from the PDB than this, both overall
and in their uncharacterized regions. Moreover, when
comparing the genomes with the PDB, many of the differ-
ences in composition for particular amino acids are consid-
erably more than the maximal difference of 40% rel
between all-α and all-β domains — such as Lys in MJ,

MG, MP and HP (see Table 8 for more examples). Thus,
the composition differences between the genomes and
the PDB discussed here are comparable to observed varia-
tions in composition that are considered significant.

Overall conclusions
This analysis has attempted to determine how representa-
tive the known structures are of the proteins encoded in
the first eight microbial genomes to be completed, in
terms of simple statistics such as sequence length, compo-
sition and secondary structure. The sequence lengths of
proteins encoded in the genomes, following a long-tailed
extreme value distribution, are significantly longer than
proteins in the PDB, especially the biophysical proteins
(which are quite short). Although the genomes have a
roughly similar distribution of transmembrane helices and
linker regions, they differ in the relative amount of low-
complexity regions and structural homologues they
contain. The composition of the genomes, particularly cor-
responding to the regions of unknown soluble proteins,
differs from the PDB in having more Lys, lle, Asn and Gln
and less Cys and Trp. Bulk structure prediction applied to
the uncharacterized regions of the genomes shows them to
have a consistently more helical structure than the PDB,
though there are some differences between the genomes,
with yeast having more β structure and HI and HP having
more α structure.

Furthermore, this analysis has shown that beyond being
small, the PDB is also highly biased (with respect to the
genomes) in terms of the length and composition of the
proteins it contains. Statistical analyses and structure
prediction approaches built upon the contents of the
PDB need to take these biases into account so that they
can be more readily applied to the emerging genome
sequence data.

Materials and methods
A relational database of genome sequences and structure
assignments
Translated genome sequences were taken from the relevant web sites
(Table 3). The genome data are constantly changing and are contingent
on the current state of the art in gene finding. The data used in this
paper reflect a particular snapshot of this ongoing process. Structures
were taken from the PDB via the PDB browser [48,49]. Domain fold
and class definitions were taken from SCOP (version 1.35, May 1996)
[50–52]. Specific values quoted about the composition of the PDB,
such as that it has 5493 total structures and 222 T4 lysozyme struc-
tures, refer to the state of the databank when SCOP 1.35 was built.
(Since this analysis was performed SCOP 1.37 has been released,
which refers to 6497 total structures.) Core structures for each domain
were based on refinement of structural alignments [53–56]. The bio-
physical protein list was constructed in a subjective fashion, based on
conversations with colleagues and reading the literature.

Analysis and processing of the data were greatly expedited by the use
of a simple relational database, implemented in DBM, Perl5 [57] and
mini-SQL (http://Hughes.com.au). This was described in an earlier
paper [22] which also contains tables cross-referencing sequence
identifiers, structure matches, transmembrane helix positions, and so
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Table 10

Investigation of biases in the composition of the PDB.

PS SD-RECLUS PDB40D SD-RESAMP

Number 
of sequences 1135 1217

Number 
of amino acids 192313 202415

Residues:
A 8.40% 8e–08 8.41% 0.0012
C 1.72% 2e–08 1.63% 0.0006
D 5.91% 4e–08 5.99% 0.0007
E 6.29% 7e–08 6.16% 0.0008
F 3.94% 3e–08 4.02% 0.0006
G 7.79% 5e–08 7.82% 0.0009
H 2.19% 2e–08 2.21% 0.0005
I 5.54% 5e–08 5.55% 0.0007
K 6.02% 1e–07 5.87% 0.0009
L 8.37% 6e–08 8.37% 0.0009
M 2.15% 3e–08 2.21% 0.0004
N 4.57% 6e–08 4.64% 0.0007
P 4.70% 3e–08 4.64% 0.0007
Q 3.73% 5e–08 3.73% 0.0006
R 4.78% 6e–08 4.77% 0.0007
S 5.97% 8e–08 6.00% 0.0009
T 5.87% 7e–08 5.86% 0.0007
V 6.96% 6e–08 6.97% 0.0007
W 1.46% 1e–08 1.47% 0.0004
Y 3.64% 3e–08 3.67% 0.0006

This table gives some indication of how the reported composition of
the soluble PDB can be affected by the particularities of the clustering
method and by biases in the PDB. The last three columns give
measures of how dependent the composition of the soluble PDB (PS)
is on the representative structures chosen by the clustering algorithm.
As should be evident, the clustering algorithm has little effect on the
overall composition calculated for the PDB. The SD-RECLUS column
shows the standard deviation in the composition of PS when different
representatives were randomly chosen for each of the 1135 clusters.
The average (RMS) deviation is 6e–8. The PDB40D column gives the
composition of another clustering of the PDB. This is a standard data
set available over the web (via http://scop.mrc-lmb.cam.ac.uk [62]). It
was prepared in a completely different fashion from the clustering here,
so that representative sequences are roughly no more than 40%
similar to each other. (There is a length correction via the HSSP
equation [74].) Furthermore, unlike PS, PDB40D includes a few
membrane proteins. The average (RMS) difference between PS and
PDB40 is ~4e–4. The units of PS-SD are the same as those of the PS
composition column. Thus, a 8e–8 value for Ala means that with one
SD unit, Ala ranges in composition from 0.084 – 0.00000008 to
0.084 + 0.00000008. These very narrow bands imply that the bulk
composition does not depend on the choice of cluster representative.
The SD-RESAMP column gives a measure of the compositional
heterogeneity of the PDB. It gives the standard deviation of the
distribution resulting from resampling the PDB, as described in
Figure 4. That is, each standard deviation in this table is derived from a
Gaussian like that shown for Ala in Figure 4b.



forth, and cross-tabulation reports giving the occurrence of various pat-
terns. Most of these tables and reports will be made available over the
internet (as text tables and via a simple query interface) from the
GeneCensus system at http://bioinfo.mbb.yale.edu/genome. The
tables are structured in such a way that all the genome features (e.g.
location of a transmembrane helix or PDB match) are annotated in a
consistent fashion, with thresholds and scoring schemes applied con-
sistently over multiple tools. This attempt at consistency is similar to
what has been achieved in other genome annotation systems that aim
to integrate multiple tools [58,59].

Sequence comparison
All sequence comparison was done with the FASTA program (version
2.0) with k-tup 1 and an ‘e-value’ threshold of 0.01 [60,61]. The e-value
describes the number of errors per query expected in a single data-
base scan, so a value of 0.01 means that about one out of a hundred
cluster linkages will be in error [27,51,62–65]. To extend the sensitivity
of the analysis, transitive comparisons were sometimes used [66].

FASTA with k-tup 1 is considered to be one of the most sensitive
single-sequence comparison methods, essentially as sensitive as a
Smith–Waterman comparison and much faster [62,67]. However,
there are a number of other potentially more sensitive methods of com-
paring sequences to structures that are based on multiple-sequence
information — e.g. profiles, hidden Markov models, PSI-BLAST, and
motif analysis [68–72]. A number of these were tested and, as
expected, they find more homologues for certain folds. The sensitivity
improvement is not uniform, however, as these multiple-sequence
methods do considerably better matching structures, for which many
sequences are known. This creates a subtle bias: one finds more of
what one already knows a lot about. This is obviously disadvantageous
for a large-scale census where uniform sampling and treatment of the
data are more important than sensitivity – i.e. one is more concerned
with accuracy in relative rather than absolute numbers. Moreover, cob-
bling together a census through the use of a disparate collection of
tools and patterns creates the problem of devising consistent scores
and thresholds. This is particularly acute in the case of manually
derived sequence patterns and motifs, as an expert on a particular fold
or motif would expect his pattern to find relatively more homologues
than a pattern not constructed by an expert. The approach here, apply-
ing the same single-sequence procedure to each fold, circumvents
these problems to some degree. Furthermore, it has an added advan-
tage in that it can be performed automatically without manual interven-
tion and, consequently, can easily be scaled up to deal with much
larger datasets.

Nevertheless, it is undoubtedly the case that in the future multiple-
sequence methods will enable a more complete exploration of the
genome. Recent work assigning folds to the MG genome using PSI-
BLAST in combination with duplication analysis gives a hint of what is
to come [73]. This work shows that by using a very up-to-date data-
base (SCOP 1.37) and a multiple-sequence-based fold-recognition
method (PSI-BLAST), a considerably larger percentage of the genome
can be assigned to known folds (27% by amino acid and 41% by
ORFs in comparison to the values of 13% and 19% in Table 7). These
fold assignments were integrated into the sequence-masking proce-
dure done here and this, in turn, shows that 61% of the amino acids in
the MG genome can be given a structural annotation (i.e. structure
match, transmembrane, low complexity, or linker).

Clustering
The structures in the PDB were clustered into 1135 representative
domains. The few membrane protein structures in the PDB were
excluded from this clustering so that all the membrane proteins would
be identified, in a uniform fashion, by prediction. (This is not expected
to be a major factor as, for instance, the yeast genome contains only a
single homologue to a known membrane protein structure.) The clus-
tering was similar in spirit to the many previous divisions of the PDB
into representative chains (e.g. see [28,62,74,75]). However, a slightly

different multiple-linkage algorithm was used [76]. This is described in
detail elsewhere [24]. Cluster trees based on distance matrices were
built with the Kitch program, which is part of the Phylip package [77].
Trees were built on the basis of the difference in amino acid composi-
tion vectors, as described in the caption to Figure 3. Di-amino acid
composition was also used and gave a similar tree. 

Transmembrane helix, low-complexity and linker region
identification
Transmembrane segments were identified using the GES hydrophobic-
ity scale, shown in Table 6 [78]. The values from the scale for amino
acids in a window of size 20 (the typical size of a transmembrane helix)
were averaged and then compared against a cutoff of –1 kcal/mol. A
value under this cutoff was taken to indicate the existence of a trans-
membrane helix. Initial hydrophobic stretches corresponding to signal
sequences for membrane insertion were excluded. (These have the
pattern of a charged residue within the first seven, followed by a
stretch of 14 with an average hydrophobicity under the cutoff.) These
parameters have been used, tested, and refined on surveys of mem-
brane protein in genomes [12,37,47].

Low-complexity, non-globular sequences were identified with the SEG
program [39,40,79] using the standard parameters K(1) = 3.4 and
K(2) = 3.75, and a window of length 45. These parameters are the ones
used to find ‘long’ domain-size low-complexity regions. The average size
of a low-complexity region found here is ~110 residues. Many of these
transmembrane regions are also low-complexity regions (almost half).
Taking a conservative approach, it was decided to annotate these
doubly identified regions as low complexity, not as transmembrane. This
will tend to reduce the total amount of identified transmembrane
helices. This is especially true for MJ, which has the largest number of
low-complexity regions. SEG is a standard program for the annotation
of low-complexity regions and has been integrated into a number of
genome analysis systems, in particular the PEDANT system [80]. Char-
acterized regions are considered to be PDB matches, transmembrane
helices, or low-complexity regions. Linker regions were considered to
be stretches of uncharacterized sequence that connected two charac-
terized regions and were less than 50 residues in length. Linkers also
included short sequences at the N or C terminus. Initial Met residues
were excluded from the statistics on linker regions.

Secondary structure prediction
Secondary structure prediction was done using the GOR program
[1,2,81]. This is a well-established and commonly used method. It is
statistically based so that the prediction for a particular residue to be in
a given state (say Ala to be in a helix) is directly based on the frequency
that this residue occurs in this state in a database of solved structures
(taking into account neighbors at ±1, ±2, and so forth). Specifically,
version 4 of the GOR program is used here [1]. This bases the predic-
tion for residue i on a window from i–8 to i+8 around i, and within this
window, the 17 individual residue frequencies (singlets) are combined
with the frequencies of all 136 possible di-residue pairs (doublets). The
GOR method uses only single-sequence information and because of
this achieves lower accuracy (65% versus 71%) than the current
‘state-of-the-art’ methods that incorporate multiple sequence informa-
tion [3,82–84]. However, it is not possible to obtain multiple sequence
alignments for most of the proteins in each of the genomes. Conse-
quently, bulk predictions of all the proteins in a genome based on multi-
ple-alignment approaches are skewed, in the same sense as discussed
above for multiple-sequence-based fold-recognition methods. One
gets two distinctly different types of prediction, depending on how
many homologues a given protein has. For the bulk prediction done
here a simpler single sequence approach was deemed more consis-
tent. This is especially appropriate given that the goal here is to charac-
terize the part of the genome that is least well understood from a
structural perspective. Note also that the analysis here is not at all
focused on the particular secondary structure prediction for any individ-
ual residue. What is of concern is aggregate secondary structure
content of whole proteins (and genomes). Prediction of aggregate
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quantities is expected to be more accurate than the prediction of indi-
vidual residues [5]. This is evident in the greater success that has been
had in predicting overall class of protein fold than just the secondary
structure [85,86].

All-α and all-β regions were highlighted in a simple fashion based on
the experimental amino-acid propensities (shown in Table 6). A window
of length 50 was moved over the sequence, and the average propen-
sity for the amino acids in the window was calculated. If this was less
than –0.65 kcal/mol using the β propensity scale, the region was con-
sidered all-β. Alternatively, if it was less than –1.25 kcal/mol using the α
propensity scale, the region was considered all-α. These thresholds
were determined from an analysis of how well they discriminated the
known all-α and all-β domains in the PDB.

Supplementary material
A table showing the difference in composition of various regions of a
genome versus the PDB is published with this paper on the internet.
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S1Supplementary material

Table S1

Difference in composition of various regions versus the PDB.

Average SD EC HI HP MG MJ MP SC SS

Overall 23% 10% 16% 17% 27% 36% 38% 28% 21% 20%
PDB match 18% 9% 12% 14% 24% 27% 34% 20% 12% 15%
Low-complexity region 36% 13% 32% 33% 39% 50% 52% 40% 42% 35%
TM helix 49% 15% 55% 53% 55% 57% 55% 56% 56% 51%
Linker region 27% 10% 22% 24% 29% 39% 33% 35% 21% 25%
Uncharacterized region 23% 6% 15% 17% 26% 34% 32% 27% 20% 19%

The difference in composition of a specific region of a genome (e.g.
linker regions) versus the PDB averaged over all 20 amino acids (in an
RMS sense). That is, each value in this table is an Rrel(g) value as
defined in the text, but now restricted to just comparing the
composition of a specific region of the genome. Because of the large
number of amino acids involved in all comparisons, all the
compositional differences reported here are statistically significant in a
literal sense (see text). The number of amino acids compared is listed
in Table 7. The smallest number of amino acids compared is for the TM
helices in MG: 38% × 170,400 = 6475. Some notes on the

compositional differences follow. For the low-complexity regions, the
average difference in composition between the genomes is 29% rms
rel, with the most variable amino acids being C, H, K, M, Q and W
(data not shown). The average difference from the PDB is 36% rms rel,
with the genomes being enriched in K, S and I and depleted in C, A, H,
Y, W and M. As is necessitated by their definition, the transmembrane
regions have a relatively constant composition across the genomes,
and relative to the PDB they are depleted in amino acids such as D, E,
K, N, Q and R and enriched in A, F, G, I, L, M, V and W.
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