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Introduction

The latest innovations and rapid pro-

gress in sequencing technologies have

substantially enriched whole genome data.

Each genome consists of a unique gene

inventory, which determines the specific

phenotype and interaction with the envi-

ronment. After 3.5 billion years of evolu-

tion, the number of species has expanded

considerably [1]. These species originated

from simple life forms and have been

confronted with complicated environmen-

tal changes. These variations, as a result of

natural selection, are encoded in their

genomes and provide clues to their genetic

divergence from a common ancestor. The

inference of variations between species by

analyzing compositions of gene inventories

therefore opens the door to the rich

branch of comparative genomics.

One of the fundamental issues in com-

parative genomics relates to the ‘‘causative

consequences’’ of the presence or absence

of certain genes in genomes. Before

dealing with this issue, we first need to

reconstruct evolutionary relationships be-

tween genes in different species, and then

determine whether given genes have the

same function(s). Many complicated evo-

lutionary processes, such as gene specia-

tion, duplication, and horizontal gene

transfer make this reconstruction a non-

trivial task. Events like whole gene dele-

tion, and gene fusion and fission introduce

additional complexity. However, all the

evolutionary processes in principle could

be uncovered by a phylogenetic tree [2].

Almost all evolutionary events that we

identify today through genome comparisons

indicate that a specific selection pressure is at

work. Selection pressure on certain genes

could be so strong and everlasting that the

gene could be present in all extant species, or

it could be highly transient or specific to

certain species, which indicates gene deletions

occur widely on phylogenetic trees. This

selection pressure on a gene, revealed from its

evolutionary history, is determined by the

role played by the gene, i.e., its biological

function. The known conservation of a gene’s

sequence coupled with the knowledge of the

timing/dating of evolutionary events provides

clues about the gene’s function. If a gene is

preserved in all species with high sequence

similarity and there are only a few duplication

events along its evolutionary history, we have

high confidence that its orthologs have the

same function in different species. On the

other hand, a large number of duplications

and/or deletions along a gene’s evolutionary

history could indicate neofunctionalization

and/or nonorthologous gene displacement

[3], and consequently, orthologs in different

genomes may have different functions. These

facts highlight the significance of function-

oriented ortholog identification. In this

article, we will review the general procedures

to identify orthologs and make ortholog

groups. We will focus on the functional

analyses of orthologs, review previous work to

assess functional consistency of orthologs, and

make suggestions to construct better ortholog

groups. Lastly, because orthologs can only be

identified when the whole gene inventories

from all the involved species are examined,

the distribution of identified orthologs among

species is an immediate result of looking into

the composition of ortholog groups. Compo-

sition of ortholog groups, which bears

important information for downstream re-

search and applications, will also be briefly

discussed.

Ortholog Identification

Orthologs are defined as genes in

different species that have evolved through

speciation events only. Paralogs, on the

other hand arise by duplication events [2].

It is generally assumed that orthologs have

the same biological functions in different

species [4], and duplication makes room for

paralogs to evolve new functions [5].

Identification of orthologs accomplishes

two goals: delineating the genealogy of

genes to investigate the forces and mecha-

nisms of evolutionary process, and creating

groups of genes with the same biological

functions. While both are equally impor-

tant, we focus on the latter in this review:

functional analysis of orthologs.

A function-oriented ortholog group con-

sists of orthologs that play the same

biological role in different species and also

includes recent paralogs with the same

biological function, also known as ‘‘in-

paralogs’’ [6]. Construction of ortholog

groups is fundamental to many objectives,

such as transferring annotation to newly

sequenced genomes, and pathway compar-

isons across species [7]. So, not surprisingly,

there have been many projects, over the last

decade aimed towards creating ortholog

groups. According to their construction

approaches, these ortholog resources could

be classified into two categories: ones that

cluster pairs of genes with the same

biological functions, and the others that

use phylogenetic trees to identify functional

divergence events. We briefly discuss both

these types in the following sections.

Ortholog Groups Based on
Clustering of Functionally Identical
Gene Pairs

To construct this category of ortholog

groups, we first need to identify pairs of
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genes with the same biological functions,

and then cluster them to make functionally

consistent ortholog groups. Such gene

pairs are usually detected by using the

Bi-directional Best Hit (BBH) strategy. As

the name suggests, a pair of BBH genes

are two genes that are reciprocally most

similar to each other when considering all

the genes from that organism [4]. The

basic assumption behind regarding a BBH

pair as a functionally identical gene pair is

the following: If a certain function is

required in two different species (e.g.,

attaching alanine to its compatible cognate

tRNA by alanyl-tRNA synthetase), it is

most likely that this function is carried out

by a pair of the most mutually similar

genes from these two species. This as-

sumption is true for many cases, i.e., a

BBH links two genes with the same

biological function together (Figure 1a).

Figure 1. Using BBH strategy to identify functionally identical genes. (a) Three grey vertical bars represent three different species. Circles on
each bar represent genes belonging to that species. Colors of the circles indicate a certain biological function; same colors indicate the same
biological function. Black bi-directional arrows represent BBHs: a solid BBH arrow means a true positive, i.e., it links two genes with the same function,
and a dashed BBH arrow means a false positive, i.e., it links two genes with different functions. Grey curved bi-directional arrows represent gene
duplication. Genes are arranged into three tiers on the panel. The top tier is a group of four red circles representing four genes with identical
functions. There is a recent gene duplication event in species A, which creates two paralogs (two red circles on the left bar) with the same biological
function. In the middle tier, there are three orange circles, which should have been all connected by true positive BBHs. However, if the function
corresponding to the orange circle has some relationships with that corresponding to red circle at the top tier, the orange gene from species B and a
red gene from species A are detected as a pair of BBH. This is an example of false positive, which is shown as a dashed BBH arrow. The bottom tier
includes four genes. The two green genes from species A and B is a pair of true positive BBH. There is a duplication event that caused a
subfunctionalization event in species C, i.e., the original green function is shared by the blue and yellow functions in this species. Green gene from
species A is connected through a BBH linkage to the yellow gene in species C, but their function are not identical. Similarly, green gene in species B is
connected to blue gene in species C. In this tier, subfunctionalization results in two false positive BBH linkages. (b) A network showing the topology
of a plausible ortholog group. Nodes are genes and edges are BBH linkages. There are three different functions in this ortholog group (indicated by
the three colors). Further partition work is required.
doi:10.1371/journal.pcbi.1000703.g001
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There are, of course, cases that breach this

assumption. This assumption includes two

essential elements: ‘‘function by single

gene’’ and ‘‘present in both species.’’

Various evolutionary events can conflict

with the two elements. For example, the

concept of ‘‘function of a single gene’’ can

be destroyed by a subfunctionalization

event [8], i.e., a gene’s function in one

organism is realized by two genes (which

could be a pair of paralogs) in another

organism. In this case, a plausible BBH

links the two genes with related but

not identical functions (false positives,

Figure 1a). The latter element, ‘‘present

in both species,’’ will be violated in case

the function is not required in one species,

or there is a compensatory pathway.

There could be other more complicated

evolutionary events for a BBH linkage to

exist between two genes with different

functions, hence increasing the false pos-

itive rate. False positive BBH linkages

cluster genes with different functions into

the same ortholog group, thus breaching

the functional consistency of ortholog

groups. On the other hand, if there is a

pair of recently duplicated paralogs that

have not acquired new functions yet, then

by using BBH-based approaches, we will

miss at least one gene in the ortholog

group (false negatives, Figure 1a). So, we

need to be careful while identifying

genuine BBH pairs that connect two genes

with the same function and clustering

genes into ortholog groups by BBH

linkages.

The probability of missing a gene in an

ortholog group can be kept low by

including a sufficient number of species.

At the same time, increasing the number

of species, especially phylogenetically

distant species, could introduce more

subfunctionalization and/or neofunctiona-

lization (genes evolving new functions)

events, thus increasing false positive rates

by including many BBH pairs that are not

functionally identical genes. In the cluster-

ing step, such false positive BBHs could

result in functionally different ortholog

groups being connected together in a

network (Figure 1b) where genes are

depicted as vertices and BBH linkages as

edges. This network is referred to as the

issue of transitivity of BBHs in ortholog

group construction [9]. Transitivity, a

property of orthologs, implies that if genes

A and B are orthologs, as are genes B and

C, then A and C should be orthologs as

well [9]. However, constructing ortholog

groups simply by joining BBHs together

tends to include genes with different

functions. Therefore, the transitivity issue

is a major challenge in accurately con-

structing BBH-based ortholog groups. To

deal with the transitivity issue, we can set

thresholds for the similarity of two genes in

the first step of detecting BBH, to reduce

the false positive rate. This threshold can

be any combination of the similarity score,

alignment E-value, and/or difference in

gene lengths [10,11].

Evolutionary and biological knowledge

could also contribute to the construction of

ortholog groups. For example, Inparanoid

[6] introduces an evolutionary outgroup

species to evaluate a BBH in the following

way. Given genes A and B from two

species that form a pair of BBH, if another

gene C from an outgroup species is a BBH

to both A and B, then BBH linkage of A-B

should be stronger than those between A-

C and B-C. If not, the linkage of A-B is

likely to be a false positive [6]. As another

example, eggNOG [12] detects events like

gene fusion and protein domain shuffling

that might lead to functionally distinct

ortholog groups to be linked together by

comparing protein domain architectures

using databases like Pfam [13] and

SMART [14]. Similarly, in the clustering

step, there have been several attempts to

purify ortholog groups. For example, a

simple but seminal idea to tackle the

transitivity issue is to use complex linkages

instead of a single BBH, as used by the

COG method [4], where a set of three

genes, with each pair forming a BBH

makes up a minimum COG and two

COGs are joined together if they share a

common BBH. Following this method,

when a gene joins an ortholog group, not

only must it have two genes in the group as

its BBH, but also the two genes themselves

must be BBHs of each other. The COG

method indicated that single linkage BBH

clustering is not as reliable to build

functional consistent ortholog groups and

pioneered the idea to build BBH-based

ortholog groups using a clustering method.

However, while the COG method works

quite well for most bacterial genes, it is not

very applicable to eukaryotic organisms

[15]. This difference is probably due to the

much higher gene duplication rates, and

hence higher subfunctionalization/neo-

functionalization in eukaryotic organisms

[16]. To address this issue of frequent

functional divergence, if a three-way BBH

linkage is not enough, more densely

connected BBH linkages can be created.

OrthoMCL is a good example that

implements this clustering strategy [17].

Following this idea, genes are clustered,

and their distances are measured by the

BBH linkages. The distance amongst a

pair of genes could be 1 or 0, depending

upon if a BBH exists between them or not,

respectively. We can also quantify this

linkage to differentiate between strong or

weak BBH linkages by using the sequence

similarity score between the two genes.

OrthoMCL used the p-value of protein

alignments as the distance [17]. Note that

when we quantify BBH, we might intro-

duce some biases that need to be normal-

ized. For example, amongst genes that

underwent recent duplications in a ge-

nome, the sequence similarities or p-values

of their alignments could be very signifi-

cant, although these quantities might not

genuinely reflect a strong selective pressure

as compared to two orthologs that speci-

ated a long time ago and have high

sequence conservation [17]. Once the

biased gene distances from the same

genome are normalized appropriately,

several clustering algorithms can be used,

for example hierarchical clustering, to

group genes into ortholog groups, al-

though it has been suggested that some

method like the Markov Cluster Algorithm

is more efficient [17].

Besides these works, there are some other

ortholog group resources worth discussion,

such as OMA (Orthologous MAtrix project)

[18] and Roundup [19]. OMA covers 352

species ranging from bacteria to eukaryotic

organisms. In addition, it emphasizes the

importance of using global sequence align-

ment in BBH identification, which reduces

the possibility of a false positive BBH owing

to sharing common protein domains [18].

Roundup uses an upgraded method of

BBH, Reciprocal Smallest Distance (RSD)

[20], to identify the functionally identical

gene pairs among species. Similar to BBH,

RSD also picks a pair of genes that are

mutually most similar one to each other, but

instead of using sequence similarity, RSD

uses evolutionary distance (estimated num-

ber of amino acid substitution) to measure

similarity between proteins, i.e., a pair of

genes with the smallest reciprocal distance

is identified with the same biological

function [20]. Beyond this, Roundup

provides user-friendly data presentations

at their website, which facilitates functional

and phylogenetic analyses of ortholog

groups [19]. We list websites of the above

mentioned ortholog resources, with several

others, in Table S1. Each one has their own

specific strategies to handle BBH linkages

or clustering. Note that in many of these

works, BBH not only refers to a pair of

genes from two different species, it can also

refer to a pair of mutually most similar

genes from the same species. This strategy

is to assure recent duplications are consid-

ered in formation of ortholog groups.

Finally, BBH-based methods are all quite

efficient in terms of computing resources.
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Phylogeny-Based Ortholog Groups
Another category of ortholog groups is

based on phylogenetic trees. Phylogeny is

the evolutionary history of species, and it is

usually shown as a phylogenetic tree that

also describes the evolutionary relation-

ships between species. Phylogenetic trees

are also widely used to show how a gene

evolves. Being computationally expensive,

phylogeny-based methods were not ap-

plied to large-scale ortholog group con-

struction earlier. Recently, some automat-

ed unsupervised phylogenetic tree

construction algorithms have been pro-

posed, leading to several phylogeny-based

ortholog resources, such as PhylomeDB

[21], PANTHER [22], TreeFam [23], and

Ensembl Compara [24].

The approach behind building phylog-

eny-based ortholog groups is straightfor-

ward: analyze the topology of a phyloge-

netic tree to identify a branch of genes

with consistent biological functions. The

basic idea is to build phylogenetic trees for

candidate genes, followed by reconcilia-

tion of gene trees according to the species

tree in order to date duplication and

deletion events on the gene’s evolutionary

history (Figure 2a). On the basis of such

events, we can estimate when a gene’s

function had diverged on the tree and can

identify a branch that could be regarded as

a functionally consistent ortholog group.

There is a large amount of literature

discussing the analysis of phylogenetic

trees (their reconstruction and reconcilia-

tion) in addition to some software and

tools available for tree reconciliation, such

as RAP [25], SYNERGY [26], and

TreeBeST [23]. Obtaining the correct

gene phylogenetic tree and performing a

suitable reconciliation is crucial for ortho-

log group construction. A detailed discus-

sion of these steps is beyond the scope of

this review. Our focus here is to discuss

building functionally consistent ortholog

groups for large-scale genome data anal-

yses. In this regard, the selection of genes

Figure 2. Phylogeny-based ortholog group construction. (a) On the upper left panel, a tree delineates the phylogenetic relationships among
six species, A–F. Below the species tree, a phylogenetic tree is shown, which includes ten genes taken from the six species. The right panel shows the
tree after reconciliation, which is the process of comparing the gene tree with the species tree to date evolutionary events like duplication and
deletion. For the reconciled tree, the dashed thick lines represent the species tree as the same as the one on the upper left panel, and solid lines
indicate the reconciled gene tree. Three duplication events are dated. Duplication D1 occurs after the speciation of species A and B. D2 occurs before
speciation of C and D, and D3 occurs before CD and EF. According to current tree analysis algorithms, functional partition points will be at D2 and D3.
(b) Gene duplication close to leaf nodes does not necessarily result in function divergence. The schematic shows the evolutionary history of the same
gene, with the only difference that the tree includes five closely related species of B, instead of one, where duplication D1 occurs before speciation of
the five B species. D1 is so recent that it is hard to estimate if there will be subfunctionalization/neofunctionalization. It might result in ‘‘in-paralogs’’
where duplicated genes in all five B species have the same function. D2 and D3 are duplications that happened a long time ago. If paralogs due to D2
and D3 are present in most descendant species, there is a higher chance for them to have diverged biological functions.
doi:10.1371/journal.pcbi.1000703.g002
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to build the tree, identification of internal

nodes (nodes other than leaf nodes)

indicating function divergence, and parti-

tioning the tree at such internal nodes turn

out to be major and important tasks,

which are discussed in the following

sections.

In spite of tremendous advances in

computing technology, it is still not very

easy to construct phylogenetic trees with

thousands of genes. On the other hand,

the purpose of building a tree here is to

determine gene duplication events that

result in function divergence. It might not

be useful to build trees on the basis of

extremely highly conserved genes so that

such events could not be detected on

the tree. Therefore, we need to carefully

choose the scale of divergence of genes to

be included in the tree. For some phylog-

eny-based ortholog groups [21,23], genes

clustered by single BBH linkage are

selected as candidates to make a phyloge-

netic tree. From this point of view,

partitioning phylogenetic trees also be-

comes a step in making BBH clusters. For

some specific BBH clusters, such as

bacterial transcription regulators, the

number of genes included is beyond the

current capacity (over 30,000 coding

sequences from about 600 bacterial ge-

nomes are clustered into one single group

by BBH linkage, unpublished data), and

appropriate preclustering processes have

to be carried out. Once the tree is built,

determining the location of the functional

divergence cut is a rather subjective

decision. If duplication is closer to the

root of the tree and the tree covers species

with enough divergence, we have a higher

confidence in splitting the two duplicated

lineages and making two different ortholog

groups; we can do so because it is less

likely for a large number of species to

retain two paralogs with the same func-

tion. On the other hand, if duplication is

closer to the leaves, then on the basis of the

tree topology, we cannot determine if this

duplication event will lead to a subfunc-

tionalization/neofunctionalization event

with high confidence.

There have been several attempts to

perform automated function-oriented par-

titioning of a phylogenetic tree. Though

their underlying algorithms vary, the basic

premise remains the same: duplications

that occurred before any speciation are all

regarded as events leading to functional

divergence (Figure 2a) [21,26]. This strat-

egy, however, has some drawbacks. It

makes ortholog groups depend on how

closely related the species are, and the

partition strategy is somewhat stringent, as

duplication that occurred before internal

nodes close to the tree’s leaves does not

necessarily indicate functional divergence

(see Figure 2b). However, currently, this is

the best method to partition a phyloge-

netic tree due to several reasons. First,

reconciliation of gene trees is often so

erroneous that many duplication events at

internal nodes are not unequivocal. This

finding is especially true for multicellular

eukaryotic organisms in which many gene

duplications are conserved [27]. Second,

there is no universal time reference for all

the ortholog groups to decide if a dupli-

cation event is old enough to partition the

tree. Because the selection pressure for

different genes is different, a good way to

estimate functional conservation based on

the topology has yet to be found. Obvi-

ously, these challenging issues associated

with phylogeny-based ortholog group con-

struction have already been noted and

efforts have been made by the research

community to address them. For example,

to improve the quality of the data,

TreeFam, manually curates some ortholog

groups on the basis of literature and the

examination of each tree’s topology [23].

As another example, PANTHER [22]

manually identifies functionally divergent

internal nodes of a gene family tree using

not only phylogenetic relationships (e.g.,

duplication events followed by relatively

fast sequence divergence), but also curated

functional information about each gene

such as Gene Ontology (GO) annotations

[28] and descriptions from SwissProt [29].

In spite of the aforementioned issues, we

believe that a gene’s evolutionary history is

essential to study evolutionary mechanisms

and to understand the selective pressure

and function conservation and/or diver-

gence of the gene. However, generating

automatic biological function interpreta-

tions from a gene’s phylogenetic tree is just

starting to be addressed. The real events

that occur during a gene’s evolutionary

history could be much more complicated

than just a combination of duplications

and deletions. Due to space limitations,

issues about the accuracy of a phylogenetic

tree itself are not discussed here. We list

some phylogeny-based ortholog resources

in Table S1.

Functional Assessment of
Ortholog Groups

Ortholog Group Benchmarking
Using Functional Genomics Data

As many ortholog group resources are

constructed, it is necessary to assess their

accuracy. The assessment of biological

function is not a simple task, because the

accurate function of protein can only be

unambiguously explored by biochemical

and/or structural studies. It has been

impossible to perform independent exper-

iments for all genes one by one, species by

species. However, there is a wealth of

genomics data, which can be used to

benchmark ortholog groups. For example,

large-scale gene expression data from

different species: if expression profiles are

significantly different among orthologs in

different species, it would be less evidential

that identified orthologs have the same

biological function. There is a recent

analysis that systematically harnesses func-

tional genomics data to examine the

accuracy of ortholog predictions [30]. In

that work, Altenhoff and Dessimoz made

comparisons between OMA and several

other resources including the above-men-

tioned OrthoMCL, Inparanoid, and En-

sembl Compara, etc., using GO terms,

enzyme (EC) number category, gene

expression profiles, and gene neighbor-

hood conservation. In their calculation of

GO terms’ consistency among orthologs, a

pair of orthologs is assigned a score

ranging from 0 (unrelated) to 1 (identical

GO term) according to the hierarchical

structure of GO terms and their frequen-

cies [30,31]. The average values of such

scores are calculated for different ortholog

resources. A higher score indicates a more

functionally consistent ortholog group.

GO term comparisons show that when

focusing on function identity (specificity),

simple BBH-based ortholog resources

outperform the others. However, as the

authors point out, GO itself is largely

constructed on protein sequence align-

ments. It should be noted that this

calculation might lead to biases because

of circular dependency [30]. Similar

comparisons of EC number consistency

are performed across different resources,

and Inparanoid outperforms others. It is

rather surprising that none of the ortholog

resources shows significant correlation

between orthologs and gene expression

profiles, using human and mouse gene

expression data [30]. The observation that

orthologs have different gene expressions

in human and mouse is probably due to

the sophisticated regulatory difference

between the two species, and/or it could

also mean there is more room to improve

the construction strategies of functionally

consistent ortholog groups. Lastly, con-

served synteny is explored to see if there is

correlation with orthologs. It has been

shown that adjacent genes are more likely

to have related biological functions [10],

so it is assumed that if two genes are

orthologs, their neighboring genes from

different species are more likely to be
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orthologs. Comparison of conserved syn-

teny also supports that simple BBH-based

algorithms provide more functional con-

sistent orthologs [30]. In this work, authors

analyzed phylogeny of orthologs as well,

which shows OMA most accurately pre-

sents the evolutionary relationships be-

tween genes, even though OMA is not

based on phylogeny [30]. Additionally,

several other works also examined whether

GO terms and EC numbers from different

species are consistent within the same

ortholog group, and evaluated the accu-

racy of orthologs in terms of conserved

synteny and evolutionary history [32,33].

Beyond the functional genomics data,

protein–protein interaction data could also

be integrated in this assessment work [33].

These comparisons and estimations of

quality using functional genomics data

highlight the individual advantages of each

ortholog resource. As we focus on func-

tional consistency among orthologs, the

BBH-based ortholog resources producing

high specificity are suggested for the

downstream analyses.

Incongruence between Ortholog
Resources and Suggestions for
Possible Improvements

Not only are there large inconsistencies

when mapping different ortholog resourc-

es to the same functional genomics data,

the cross comparisons of different ortholog

resources themselves also show significant

differences [24,30,34]. If we define con-

gruence of ortholog groups as a state of

containing exactly the same gene sets,

many of the above-mentioned resources

have less than 50% congruent ortholog

groups between them, and when more

remotely related species are considered,

the overlap is even lower (for example, see

Figure 3). Why are there such differences?

This question requires careful study, as

deeper understanding of the error-prone

steps in various algorithms could trigger

developments toward better ortholog

groups. For the BBH-based algorithms,

as we discussed in the first section, the

major challenge is how to reduce false

positive BBH linkages. We can focus on

the inconsistent sets of orthologs between

different ortholog resources and start the

analysis by asking some basic questions.

How many BBH pairs from the two

species are not functionally identical? Does

the number of BBHs with different

functions vary between closely and re-

motely related species? If they do, is there

some correlation between phylogenetic

distance and the number of false positive

BBHs? If such a correlation exists, could it

be used in the clustering of BBH pairs? Do

such pairs have any GO term preferences?

What are the genes that are always

ambiguous in ortholog group construction?

Can we introduce more stringent or

relaxed criteria for certain ortholog groups?

Such questions are helpful in providing

clues about how a gene’s function evolves.

For the other category of ortholog

resources (phylogeny-based), the underly-

ing idea is that duplication leads to

subfunctionalization/neofunctionalization

such that two paralogs play different roles.

We can assume it to be true for most cases,

but there are exceptional cases as well.

These exceptions provide us good resourc-

es to develop some better-founded theo-

ries. Since phylogenetic trees delineate a

gene’s evolutionary history and record all

the evolutionary events, there is room

for improvement as compared to that

for BBH-based approaches. Technically

speaking, challenges for BBH approaches

center around how to reduce false positive

BBH linkages and cluster functionally

consistent genes into groups. In contrast,

phylogeny-based approaches have many

more aspects to consider: (1) selection of

genes to build the tree, (2) the accuracy of the

tree reconciliation with known phylogeny,

and (3) identification of functionally diver-

gent internal nodes. Besides improving the

accuracy of the tree, a way to identify a more

appropriate function-oriented partition strat-

egy, which is currently somewhat stringent

and may separate nodes that are not

functionally divergent, needs to be devel-

oped. The function-oriented partition issue is

highlighted particularly for Ensembl Com-

para whose specificity is not significantly

improved in spite of reporting fewer ortho-

logs [30]. For developing better function

partitioning strategies, a few questions need

to be answered. Can we take the number of

duplication events into account when decid-

ing where to partition the tree? Whether the

branch lengths and the similarity of the two

paralogs are worth exploring towards iden-

tifying recent subfunctionalization/neofunc-

tionalization events? Can we map functional

genomics data on the tree and find

Figure 3. Cross comparison of human-fly ortholog pairs from three different ortholog
resources: Inparanoid, OrthoMCL, and TreeFam. Due to the asynchronous updates of
these data resources, the gene sets used in the three are slightly different. To make a cross
comparison, we mapped their gene IDs to the most recent human and fly gene IDs in Ensembl 53,
using biomart (http://www.ensembl.org/biomart). After ID mapping, we got 10,834 pairs of
human-fly ortholog genes from Inparanoid, 12,784 pairs from OrthoMCL, and 6,824 from
TreeFam. Intersections of the three pairs sets are shown in the Venn diagram. Among these
ortholog pairs, only 1,955 pairs of orthologs exist in all three ortholog resources, accounting for
18% of Inparanoid human-fly ortholog pairs (15% and 28% in OrthoMCL and TreeFam,
respectively). Details of this and other orthologs comparisons can be found at http://wiki.
gersteinlab.org/pubinfo/Ortholog_Resources.
doi:10.1371/journal.pcbi.1000703.g003
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more clues to locate the partition point?

What kinds of tree topologies make the

tree difficult to partition? Should we treat

the topologically different trees separately?

All such questions are just starting to be

addressed.

A Short Discussion of the Definition
of Ortholog’s Biological Function

A final issue worth discussing is how to

define a gene’s function [30]. If we have

different views about a gene’s function, we

cannot easily reach an agreement about

the quality of ortholog groups. One of the

many views is that a gene’s function is its

relationship with other biological objects

in the cell [35], including its interactions

with other genes, proteins, chromosome

intergenic regions, etc. If we define the

gene’s function in this way, then a

predefined term or several words might

not be enough. For example, the gene

dnaE codes DNA polymerase III a subunit

in both gamma-proteobacteria and firmi-

cutes. However, in gamma-proteobacteria,

DnaE is responsible for the synthesis of

both leading and lagging strands, whereas

in firmicutes, this subunit only synthesizes

lagging strand. Due to this difference,

there are .78% genes in firmicutes

genomes coding on the leading strand,

compared to ,56% genes in gamma-

proteobacteria genomes [36]. It might be

more appropriate to assign a list of

physical interactions with other biological

objects to the definition of a gene’s

function. The definition of biological

function is bound to be controversial, but

a discussion in this regard is highly

valuable. With the current data, some

studies have already been done to explore

gene function by conducting large-scale

surveys of the conservation of protein-

protein interactions (interlogs) and pro-

tein-DNA interactions (regulogs) [37].

However, the fallacies of these interaction

datasets are well known, such as inconsis-

tencies of protein–protein interactions

reported by different experimental meth-

ods, and/or across different species. But

such issues inspire us to integrate the two

seemingly disparate projects: identification

of orthologs and the functional genomics

of interactions. We can design functional

genomics experiments to check the func-

tional consistencies of putative orthologs

for species that are evenly distributed on

the phylogenetic tree. This way, we can try

to set up ‘‘gold standards’’ for orthologs

from such experiments [7]. Even if we

observe some interaction differences be-

tween our putative orthologs, we obtain

clues from these differences to understand

why some predictions are correct while

others are not.

Composition of Ortholog
Groups and Distribution of
Orthologs among Species

Ortholog groups contain genes from

different species and composition of an

ortholog group provides a direct and very

valuable factor for downstream analyses:

the distribution of orthologs across species.

First of all, composition of an ortholog

group could give us information about its

biological function. For example, if we are

going to select ‘‘high quality’’ ortholog

groups across species (with a high confi-

dence that the genes in a group have

consistent function), from the phylogeny-

based ortholog groups, we can select the

groups with genes widely distributed on

the tree with few duplication and deletion

events. Similarly, for BBH-based ortholog

groups, we can pick up clusters covering

enough species with a dense (close to a

clique) BBH-network as the high quality

groups.

Genes from such ortholog groups are

called persistent genes [26,38], as they

have strong selective pressure, high func-

tional consistence, and indispensability in

extant species. An example of the system-

atic comparison of persistent genes be-

tween gamma-proteobacteria and firmi-

cutes set up clear cause-effect relationships

between several genotypes and pheno-

types, and provide functional predictions

and clues for further experiments [38].

A good amount of knowledge can be

gained from ortholog groups by compar-

ing their component genes’ distribution

among species and evolutionary profiles

[39]. There are several tools available for

such comparisons and one good example

is Roundup [19]. Using Roundup, one can

explore the co-presence and/or co-ab-

sence of genes in a certain clade, i.e.,

correlation or anticorrelation between

genes’ evolutionary profiles. There are

various biological questions that could be

raised regarding genes’ evolutionary pro-

files. Are there unique features associated

with clade-specific genes that are pre-

served only in a branch of species on a

phylogenetic tree? On the other hand,

could niche-specific genes, which are

present in species from a particular

environment and absent under other

circumstances provide clues about their

interactions with environmental factors?

Additionally, it is known that some

essential biological processes in all organ-

isms are associated with genes only present

in some clades. How can we identify

candidates in other clades performing the

same function? We can use correlation

and anticorrelation between evolutionary

profiles to narrow down the number of

candidate genes or even boost the predic-

tion of genes as experimental targets.

Conclusion

In summary, accurate ortholog group

construction is fundamental to compara-

tive genomics and it accomplishes some-

thing beyond the mere purpose of provid-

ing high quality data resources for other

applications. It deepens our understanding

of biology because studying BBH linkage

or phylogenetic trees for gene orthology

will lead to the combined results of various

selective evolutionary events. In turn,

selective pressure, explored by sequence

or protein structure similarity, is borne by

a gene’s function. Hence, the study of

refining ortholog groups is virtually the

study of how genes’ functions evolve,

remain conserved, and/or further diverge.

Many rewarding projects that revolve

around this study are waiting to get started

on.

Supporting Information

Table S1 Selection of Ortholog resources.

Found at: doi:10.1371/journal.pcbi.

1000703.s001 (0.03 MB XLS)
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