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Traditionally, for biomolecular packing calculations research has focused
on proteins. Besides proteins, RNA is the other large biomolecule that has
tertiary structure interactions and complex packing. No one has yet
quantitatively investigated RNA packing nor compared its packing to that
of proteins because, until recently, there were no large RNA structures.
Here we address this question in detail, using Voronoi volume calculations
on a set of high-resolution RNA crystal structures. We do a careful
parameterization, taking into account many factors such as atomic radii,
crystal packing, structural complexity, solvent, and associated protein to
obtain a self-consistent, universal set of volumes that can be applied to both
RNA and protein. We report this set of volumes, which we call the NucProt
parameter set. Our measured values are consistent across the many
different RNA structures and packing environments. However, our
volumes are only defined on well-packed atoms, those with sufficient
packing neighbors, that typically occur on the interior of RNA molecular
and not the unbounded atoms on the surface. When common atom types
are compared between proteins and RNA, nine of 12 types show that RNA
has a smaller volume and packs more tightly than protein, suggesting that
close-packing may be as important for the folding of RNAs as it for
proteins. Moreover, calculated partial specific volumes show that RNA
bases pack more densely than corresponding aromatic residues from
proteins. Finally, we find that RNA bases have similar packing volumes to
DNA bases, despite the absence of tertiary contacts in DNA. Programs,
parameter sets and raw data are available online at http://geometry.
molmovdb.org

q 2004 Published by Elsevier Ltd.
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NCORREIntroduction

Numerous methods have been developed to
determine atom radii and volumes for proteins1–11

and have been applied to DNA.12 These radii and
volumes are necessary in understanding protein
structure and particularly for uncovering the
relationship between packing and stability. Many
studies requiring accurate protein radii and
volumes have characterized a number of protein
properties including: protein energies,13 protein–
protein interactions,14 standard residue volumes,5
ublished by Elsevier Ltd.
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internal core packing,15,16 packing at the water
interface,17,18 protein cavities,7,8,19 the quality of
crystal structures,20 analysis of volume by amino
acid composition,21,22 macromolecular motions,23,24

and even measurements of the fit between enzyme
and substrate.25,26 Standard volumes and radii are
also important in an indirect sense for the predic-
tion of side-chain packing.27–29

Although a standard protein volume set has been
available for years1 and a DNA volume set was
produced recently,12 no attempts have been made to
obtain a standard volume set for RNA molecules.
This has been primarily due to a lack of RNA
structures other than tRNAs and small oligonucleo-
tides, because their crystallization was once thought
to be difficult. Within the past decade, it has been
shown that RNA structures can be crystallized in
the same way as proteins. This has created a new
S
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Figure 1. Voronoi constructs and problems. Effect of
atom typing on atom volume. (a) Two-dimensional
example of the Voronoi construction. Planes are drawn
equidistant between any two atoms. The planes are then
intersected to get a volume. (b) For atoms of different sizes
the planes are no longer placed equidistant between the
atoms, but rather as a ratio function of the van der Waals
radius of the atoms. So, large atoms are assigned a larger
volume and small atoms are assigned a smaller volume.
Three major types of Voronoi packing. (c) Well-packed:
polyhedron is closed and surface falls under cutoff value.
(d) Loose-packed: polyhedron is closed, but due to lack of
neighbors the polyhedron has a large surface area above
the cutoff value. (e) Unpacked: Voronoi polyhedron is
open and no volume can be calculated. Only well-packed
are used to determine the volumes of the atoms.
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UNCORREC
emphasis on solving RNA structures including:
ribosomes, self-splicing introns, and many others.
Now that there are several structures available,
RNA packing can be addressed and analyzed.

To calculate volumes, we employ the traditional
Voronoi polyhedra method.30 In 1908, Voronoi
found a way of partitioning all space amongst a
collection of points using specially constructed
polyhedra. Here we refer to a collection of “atom
centers” rather than “points.” Bernal & Finney31

first applied this method to molecular systems and
Richards3 first used it with proteins. The methods
used in this work have been previously described
by others,3,31 as well as in our earlier work.9–11

Figure 1 shows how a Voronoi polyhedron is
constructed. This construct partitions space such
that all points within a polyhedron are closer to the
atom defining the polyhedron than to any other
atom. The Voronoi planes are shifted from the
original equidistant planes (Figure 1(a)) to
the modified set (Figure 1(b)) determined by the
relative sizes of the van der Waals (VDW) radii of
the atoms, i.e., bigger atoms take up more space in
the Voronoi construct than smaller ones. Only
atoms whose volumes are well-defined (Figure
YJMBI 56900—8/12/2004—15:52—SFORSTER—129583—XML – pp. 1–16/A
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1(c)) and not loosely packed (Figure 1(d)) or
unpacked (Figure 1(e)) are included.11 Unpacked
and loosely packed atoms usually consist of surface
atoms or atoms near cavities and therefore do not
have enough neighbors to pack tightly. The Voronoi
method provides a good estimate of the true
volume of an atom and in turn, reliable, self-
consistent values for the comparison of atom
volumes. Atoms are assigned VDW radii based on
their atom type. The typing follows standard united
atom conventions and chemical atom typing. A new
technique applied in this study is used to test the
contributions of crystal symmetry to surface atoms.
Since we are interested in large RNA complexes,
and the RNA molecules are typically in close
contact within the crystal form, it naturally follows
to use this additional packing to our advantage as
long as there is no effect on the final numbers.

Using Voronoi polyhedra, we report the standard
volumes (and many other statistics) for all RNA
atoms (49 in total) and all four nucleotides. These
atoms are arranged into 18 atom type volumes and
radii based on the chemical structure. Further, the
benefit of using crystal symmetry to increase the
size of the data set is presented. Crystal symmetry
had no effect on the final volumes, but increased the
population of atoms in our set. Also, we locate less
defined atoms within packed RNA structures,
such as the backbone has a low percentage of
well-packed polyhedra and is, therefore, less
defined. We measure the dependence of the volume
of the nucleotides on different RNA structural
categories (e.g. tRNA, small rRNA, or ribosomes).
The final RNA nucleotide volumes are then
compared against DNA and organic molecule
measurements. In order to evaluate the role of
water, ions and proteins in RNA packing, we
remove solvent and protein atoms from the calcu-
lations and look at the results. This had no effect on
the final volumes, but the number of well-packed
RNA atoms decreases significantly. We also com-
pare proteins to RNA by comparing the atom types
they have in common. The atom types of protein are
found to run slightly larger than those of RNA. In
addition, from these volumes, we can calculate the
partial specific volume of the RNA nucleotides and
find that RNA packs more densely than protein.
Formalism and Results

Atomic radii calculations
Nomenclature

The atomic groups for the RNA atoms are given a
nomenclature of the general form “XnHmS”, where
X indicates the chemical symbol; n, the number of
bonds, which, in most cases, is equivalent to saying
sp, sp2, or sp3 orbitals; Hm, the number (m) of
hydrogen (H) atoms attached to the atom where the
H does not change and acts a label for the number
(m); and S the subclassification for the atom type,
PPS



Figure 2. Venn diagram of protein and RNA atom
types. Diagramed are all atom types involved in RNA and
protein. Types on the right are only involved in RNA
while types on the far left are only involved in proteins
leaving the central 12 types existing in both RNA and
protein.

3

DTD 5 ARTICLE IN PRESS

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351
which is one of the following symbols: b (big), s
(small), t (tiny) or u (unique). When there are no
subclasses for the atom type; u (unique) is used.
When the atom type needs to be divided into two
separate sub-types the type with the larger volume
is designated as b (big) and the smaller volume s
(small). In one case (C3H1), the atom type requires
the addition of a new classification from the
previous two subclasses defined previously in
proteins.11 Since the new subclass is smaller than
both of the existing b (big) and s (small) subclasses,
its subclass is designated as t (tiny). Figure 2
summarizes the 24 different atom types involved
in RNA as well as protein and shows which types
are common to both.
T
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Voronoi plane positioning method

Voronoi polyhedra were originally developed by
Voronoi nearly a century ago.30 While the Voronoi
construction is based on partitioning space amongst
a collection of “equal” points, all protein atoms are
not equal. Some are clearly larger than others. In
1974, a solution was found to this problem,3 and
since then Voronoi polyhedra have been applied
to proteins and DNA. Two principal methods of
re-positioning the diving plane have been proposed
to make the partition more physically reasonable:
method B3 and the radical plane method.32 Both
methods depend on the radii of the atoms in contact
and the distance between the atoms (Figure 1(b)).
The simplified method B (or ratio method) divides
the plane between the two atoms proportionately
according to their covalent radii:

dZRC ðDKRKrÞ=2 (1)

where d is the distance from the atom to the plane,
R, the VDW radius of the atom, r, the VDW of the
neighboring atom andD is the distance between the
two atoms. This method was accepted for a long
time, but it was determined that it had a particular
flaw. The flaw is vertex error, where the planes
YJMBI 56900—8/12/2004—15:52—SFORSTER—129583—XML – pp. 1–16/APP
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created by neighboring atoms do not perfectly
intersect at precise vertices. Vertex becomes a
major problem when working with spheres of
dramatically different radii. Then the radical plane
was introduced which uses a particular quadratic
equation to properly divide up the space to obtain
precise vertices:

dZ ðD2 CR2 Kr2Þ=2D (2)

Because it creates perfect polyhedra, the radical
plane method is more pure geometrically than
method B. These precise vertices are required for
space dividing constructions such as Delaunay
triangulations33 and alpha shapes.8

In particular, when comparing the two methods
in terms of final volumes there is little difference
between the two methods. Even though method B
suffers from vertex error, it has been shown to be
quite robust for protein calculations, even more
robust than the radical plane.10 In particular, there
are two main issues where the methods differ:
vertex error and self-consistency. For arbitrary
systems with radii of significantly different values,
vertex becomes a major issue and the method B is
no longer a reasonable approach. However, the
radii of proteins atoms do not differ that much and
it has been shown that vertex error accounts for one
part in 500.17 In addition, method B has shown to
give more self-consistent volumes. It was revealed
that the radical plane method actually results in a
higher standard deviation than method B,
suggesting that it places the plane in a less
consistent manner.10 Further, method B is has been
thoroughly tested over the years, while the radical
plane is a more recent approach. In addition, the
current standard volume set in proteins uses
method B for its calculations, so to make direct
comparison we will need to have an RNA volume
set under the same methodology.
While method B suffers from vertex error, it was

reported that this only accounts for one part in of
the total volume primarily due to having radii.17

There are also a two caveats associated with the
radical plane method. First, all prior Voronoi
research in proteins is based on the method B
technique, therefore using radical planes for RNA
makes it difficult to draw parallels to protein.
Second, volumes calculated by the radical plane
result in overall higher standard deviations.10

Furthermore, in this study, the average standard
deviation of the atom types rises from 1.24 to 1.32
for the radical plane method.
Despite this, we report the base volumes for both

methods (with little difference) but we use the more
traditional method B in all figures, comparisons to
protein and radii refinement. The raw data sets and
histograms for both methods are also available on
the web.
Importance of atom typing

Described in more detail by Tsai et al.,11 the
distance between the atoms and their intersecting
S



Figure 3. Determining non-bonded VDW radius for the unassigned P4H0u atoms. (a) The normalized standard
deviation for the P4H0 atom versus its VDW radius. The minimum is found to be 1.82 Å. These values are used for the
final Voronoi volume calculations. (b) Histogram of the P4H0u atoms from our final NucProt data set showing one
distinct peak.
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planes used for Voronoi volume calculation
depends on the VDW radius of the atom type.
Due to this dependence on atom radius, it becomes
increasingly important to obtain accurate atomic
classifications and radii. Work done earlier studied
the affect of varying the number of atomic classifi-
cations and came to the determination that the atom
typing system described by XnHmS nomenclature
was the best balance between over and under fitting
for accurate measurements of the volumes for the
atoms.11
T
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VDW radii taken from protein set

The VDW radii for several of the atomic groups
involved in RNA structures have analogous atoms
in proteins. Several papers have been published on
the VDW radius of protein atoms.5,9 For these
overlapping groups, the non-bonded VDW radii of
RNA atom groups are simply transferred from their
corresponding protein atom groups using the radii
defined by the ProtOr set.9 Whenever there is a
small or big designation for the group, the atom
group is compared by volume to the protein atoms,
e.g., guanine N1, of chemical type N3H1, is more
similar in volume to N3H1s than N3H1b. Despite
vast differences, RNA structure contains only three
new atomic groups that completely lack a protein
analog, namely O2H0, N2H0 and P4H0. N2H0,
though a new type, is found to be very similar to
N3H1. Assignment of all the RNA atoms to groups
is for the most part straightforward; the only
complication came from assignment of the N2H0
nitrogen atoms and two remaining missing types.
497
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UN
Adjusting the bonded VDW radii

Because this new NucProt data set is to include
RNA and protein, an investigation into the bonded
radii is undertaken to make the values more
accurate for both protein and RNA. Using the
defined bond length from CNS,34 the bond radii are
YJMBI 56900—8/12/2004—15:52—SFORSTER—129583—XML – pp. 1–16/A
 P
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varied for each atom type (grouping small and big
subtypes into one type) in order to minimize the
sum over all squared bond differences (the bond
lengthKthe VDW radius of both atom types
bonded) in RNA and protein together. These new
bonded radii are not significantly different from the
previously published radii,11 but give a better
account of the atom types. For example, the
O1H0u bonded radius drops the most (from 0.66
to 0.52) reflecting a smaller oxygen atom size due to
its double-bonded character, whereas ten of the 24
types change by less than 0.01 Å. These newly
adjusted bonded radii should provide a more self-
consistent volume data set.
EDNew atom types for RNA

Next we need to determine the modal behavior
for the unassigned atoms, i.e., do they require small
and big subgroups or are they a unique type. P4H0
only contains one RNA atom and cannot be
subdivided further unless the phosphorus atom
attached to a guanosine is packed differently than a
uridine phosphorus, which is not the case. There-
fore, P4H0 is given a P4H0u designation. Further,
the P4H0u atom type produces a tight histogram
(Figure 3(b)), confirming its behavior as a unimodal
distribution. The O2H0 and N2H0 atom types
contain three atoms and six atoms, respectively, of
which neither follows a simple distribution. The
O2H0 atom consists of the 3 0, 4 0 and 5 0 sugar oxygen
atoms. Individual volume calculations show O4 0 is
significantly smaller than both of its type-equiva-
lentsO3 0 andO5 0. The histogram of theO2H0 atoms
(Figure 4(f)) shows a bimodal distribution confirm-
ing this assessment. Hence, we design two species
ofO2H0 atom: a big class,O2H0b (O3 0 andO5 0), and
a small class, O2H0s (O4 0). The N2H0 atom type is
more complex and contains six different types:
ADE-N1, ADE-N3, ADE-N7, GUA-N3, GUA-N7,
and CYT-N3. From Figure 4(d), the N3 and N7
atoms from both purines are grouped into a large
PPS
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Figure 4. Distributions of atom type volumes. (a) Distribution of all atoms composing the C3H0 group showing one
distinct volume. (b) Distribution of all atoms composing the C3H1 group, suggesting three distinct groups: tiny, small
and big. (c) Distribution of all atoms composing the C4H1 group, suggesting two distinct groups: small and big.
(d) Distribution of all atoms composing the N2H0 group, suggesting two distinct groups: small and big. (e) Volume
distribution of the twoN2H0 groups, small and big. (f) Volumedistribution of the two types ofO2H0 atoms, small and big.
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NCset and while the CYT-N3 is significantly smaller

than all of the other atoms, it is grouped with the
only slightly largerADE-N1. After grouping, a good
separation between the small and big subgroups is
found (Figure 4(e)).
U 626

627
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629
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Determining non-bonded VDW radius of new types

For the unassigned atom groups (O2H0, N2H0,
and P4H0, from above), a non-bonded VDW radius
YJMBI 56900—8/12/2004—15:52—SFORSTER—129583—XML – pp. 1–16/APP
needs to be determined. The bonded VDW radii
were assigned when the bonded radii were
adjusted for all the atom types. All nitrogen-
containing atom groups (N3Hx, N4Hx) in the
ProtOr set10 for proteins are defined as having the
same bonded and non-bonded atomic radius, so we
felt the N2H0 should have the same values as its
sister atom types because its volume is the same as
N3H1 types. The non-bonded VDW radii for the
P4H0 and O2H0 do not have existing values and so
S
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their non-bonded VDW radii are determined by
varying the non-bonded VDWradius of the atom in
question and minimizing the sum of the percent
standard deviation of volume (standard deviation
of the volume divided by the mean volume) over
each atom in RNA. The standard deviation gives an
unfair bias to minimizing the error of atoms with
larger volumes due to their larger deviations, so by
taking the standard deviation divided by the mean
this bias is reduced. This method for calculating the
missing non-bonded VDW radii results in the most
self-consistent set of volumes.

As shown in Figure 3(a), the standard deviation
of the volume for phosphorus atom, P4H0 volume
gave a convex curve when its radius was varied.
The curve is then fit to a tenth-degree polynomial
(only to smooth out the noise without loss of
generality) and the P4H0u radius is taken to be the
minimum of the polynomial fit, which is 1.82 Å.
This final value gave an extremely tight unimodal
distribution (Figure 3(b)). Likewise, a two-dimen-
sional optimization is employed for the O2H0 types
due to its bimodal distribution (Figure 4(e)), by
simultaneously varying the radius of both subtypes.
The global minimum of the percent standard
deviation is determined to be 1.50 Å for the O2H0s
and 1.62 Å for O2H0b (data not shown).

Determination of volumes

723
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Brief description of Voronoi method

The volumes of the atoms are determined with
UNCORRECT
Table 1. Summary of structure sets

Set name
Number of
PDB files

Number of
RNA
atoms

%OK no
symm

%OK with
symm

Disjoint subsets
SRP 6 10,137 35.0 37.9
Small ribo 13 19,234 36.6 40.3

tRNA 14 27,379 33.2 34.8

Small RNA 13 31,438 33.7 37.2

Ribosomes 4 188,911 38.9 39.0
All 50 277,099 37.4 38.4

Additional sets
hi-res 9 11,281 49.4 58.7

RNA only 19 33,782 33.7 38.6

YJMBI 56900—8/12/2004—15:52—SFORSTER—129583—XML – pp. 1–16/A
the same Voronoi method as published earlier.9–11,17

For every pair of atoms, a plane is constructed
approximately equidistant from both of the atoms
(in actuality the distance is adjusted by the VDW
radii of each atom type) and orthogonal to the bond
between the atoms (Figure 1). The planes are then
intersected, leaving an enclosed polyhedron for
each atom. While not every atom has a closed
polyhedron, the majority of the polyhedra is closed.
ROOF

Assembling the structure set

Structures were obtained from the NDB35 by
searching for nucleic acids structures containing
RNA, with strand lengths greater than 26 nt, to
avoid small synthesized RNA molecules, and
resolution better than 5 Å. The cutoff value of 5 Å
was chosen to include all four ribosomal subunit
structures, including both low and high-resolution
versions. We compare the high-resolution only data
to the entire set and find no difference in the final
volumes. After determining our criteria, the search
results in a raw structure set of 125 RNA structures.
Most of the found structures are redundant (e.g.,
50 S ribosomal subunits soaked with various com-
plexes or tRNA with and without synthetases) and
some structures contained DNA base-paired with
RNA in a complex. After removing the DNA hybrid
structures and duplicates, taking care to use the
most accurate and detailed structure within each
redundant set, a final set is created consisting of 50
unique structures. For comparison purposes, the
final sets are broken down into five smaller disjoint
ED P
% of total
atoms

% of total
“OK”
atoms PDB Ids

3.7 3.6 1hq1, 1jid, 1lng, 1mfq, 1e8o, 1l9a
6.9 7.3 483d, 1msy, 1jbs, 1i6u, 1mms,

1mzp, 1mji, 1dk1, 1g1x, 1qa6,
430d, 364d, 357d

9.9 9.0 1f7u, 1ehz, 1fir, 1qf6, 1il2, 1h4s,
1b23, 1qtq, 1ser, 1ffy, 1i9v, 1ttt,
1ivs, 2fmt

11.3 11.0 1l2x, 437d, 1et4, 1m5o, 1hr2, 1duh,
1cx0, 1kxk, 1f1t, 1l3d, 1hmh, 1kh6,
1nbs

68.2 69.2 1jj2, 1i94, 1n32, 1nkw
100.0 100.0 1b23, 1cx0, 1dk1, 1duh, 1e8o, 1ehz,

1et4, 1f1t, 1f7u, 1ffy, 1fir, 1g1x,
1h4s, 1hmh, 1hq1, 1hr2, 1i6u, 1i94,
1i9v, 1il2, 1ivs, 1jbs, 1jid, 1jj2, 1kh6,
1kxk, 1l2x, 1l3d, 1l9a, 1lng, 1m5o,
1mfq, 1mji, 1mms, 1msy, 1mzp,
1n32, 1nbs, 1nkw, 1qa6, 1qf6, 1qtq,
1ser, 1ttt, 2fmt, 357d, 364d, 430d,
437d, 483d

4.1 6.2 1jbs, 1msy, 483d, 1et4, 437d, 1l2x,
1jid, 1hq1, 1f7u, 1ehz

12.2 12.2 1ehz, 1fir, 1i9v, 1l2x, 437d, 1et4,
1hr2, 1duh, 1kxk, 1f1t, 1l3d, 1hmh,
1kh6, 1nbs, 483d, 1msy, 430d,
364d, 357d
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Figure 5. Distribution of atoms within PDB set. Pie charts showing how the structure set breaks down into the five
major categories. (a) Number of structures for each subset. (b) Number of atoms for each subset. (c) Number of
sufficiently packed or “OK” atoms for each subset. Though the four ribosomal structures account for only 8% of the
structures of the pdb set, they account for 69.2% of the atoms used in the final calculations. In the text it is shown that
ribosomal and non-ribosomal RNA have the same final base volumes.
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subsets: (i) SRP—RNA structures involved with the
Signal Recognition Particle, (ii) small-ribo—small
ribosomal RNA fragments, such the 5 S rRNA
structures, (iii) tRNA—transfer RNA with and
without synthetases, (iv) small-RNA—the other
remaining small RNA molecules including ribo-
zymes and self-splicing introns, and (v) ribosomes—
complete ribosomal subunits (Table 1). These
structure sets are unfortunately heavily weighted
towards ribosomal data (69% of atoms), because of
their immense size, despite only being only four of
the 50 structures in the set (Figure 5, Table 1). This
effect will be addressed later.
T
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863
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865
EC

Generation of final volume set

Surface atoms (as well as loosely packed interior
atoms) sometimes lack closed polyhedra or have
extended polyhedra and give rise to indeterminate
or inflated volumes, respectively. These two special
cases of atoms need to be removed from the set of
atom volumes in order to obtain a self-consistent
data set. The first case of loosely packed atoms
occurs when the Voronoi shell is heavily extended
(Figure 1(d)). Loosely packed atoms are distin-
guished from well-packed atoms by their surface
area. Atoms above a certain surface area cutoff
are characterized as “possible,” meaning that they
have a volume, but it is unsure whether it is
UNCORR
Table 2. Summary of effect of other atoms on the packing cal

50 S R

Crystal symm C K
Protein C C
Ions/water C C

Base volumes (Å3)
GUA 145.9 145.9
ADE 140.0 140.0
CYT 115.5 115.5
URI 110.8 110.8
SUG 176.1 176.1

Addition information
Count 33,245 33,204
%OK 54.0 53.9
%Closed 93.5 93.1
Mean %SD 6.89 6.89

YJMBI 56900—8/12/2004—15:52—SFORSTER—129583—XML – pp. 1–16/APP
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ROOF

relevant. The loosely packed atoms are not used in
our final NucProt data set due to their indefinite
character. The second case, an atom having insuf-
ficient neighbors, leaves the Voronoi shell open
ended and produces an indeterminate volume
(Figure 1(e)). These unclosed polyhedra are easy
to identify for they have no volume and are
designated “bad” by the software.11 Consequently,
only atomswith closed polyhedra and small surface
areas are then labeled as “ok” atoms. In should also
be noted that all atoms (protein, RNA, ions, water,
organic molecules and also modified nucleotides
and amino acid residues) within the PDB file are
taken into account for Voronoi plane positioning.
Unfortunately, modified bases volumes are not
reported due their small population within our
set, thus making it almost impossible to provide any
reasonable statistics. There are only 29 pseudo-
uridines within our PDB set and given that at most
half the atoms are well-packed, it would be a very
unreliable volume for general use.
Despite applying these standard methods for

generating the final volume set, extreme atom
volumes existed for each RNA atom. Therefore, as
an additional measure, the extreme atom volumes
are removed from the ends of each RNA atom
distribution such that the average range for each
distribution drops in half. Dropping the distri-
bution range in half is chosen, because it provides
culations

ibosomal subunit (1jj2)

K K K
K C K
C K K

145.7 146.4 146.2
139.4 138.9 138.2
115.3 115.6 115.0
110.6 110.9 110.2
175.4 179.2 177.4

28,996 23,007 20,409
47.1 37.3 33.1
91.2 90.7 84.9
6.78 7.10 6.55
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F

Table 3. Base volumes across several different structure sets

aValues converted from the work done by Lee & Chalikian.62 Volumes require conversion of units from cm/mol to Å3/residue. bThis
value is from a nucleoside, not a nucleotide, and lacks a phosphate group with a volume of approximately 43 Å3 (depending on
oxidation state). Calculated sugar volume is averaged over three base volumes subtracted from the nucleoside volumes. cValues taken
from the work done by Nadassy et al.12 dThymine values are used in place of uracil. Thymine should be approximately 27 Å3 greater in
volume than uracil, based on atom type volumes in thymine.
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the best balance between data loss and reduction of
the range. This method is very effective because to
drop the range in half only 1.25% of the data is
removed from the set. In essence, the central 97.5%
of the data has half the range of the complete set of
data, highlighting some of the extreme values
resulting from over-packed atoms due to structural
overlap errors or loosely packed atoms missed by
the surface area cutoff. After applying these
methods, only well-packed atoms are then used
in final volume calculations for self-consistency,
making it important to maximize the number of
well-packed atoms for a good sample size.
T
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Effect of surface molecules

The treatment of surface atoms plays an impor-
tant role in calculating Voronoi volumes because
Voronoi volumes rely on neighboring atoms to
create polyhedra surrounding each atom. By
increasing the number of neighboring atoms it is
possible to have more well-packed atoms. To
explore these problematic surface atoms, the effects
of crystal symmetry, bound proteins, and solvent
atoms on structure are examined for their signifi-
cance. All three factors had little effect on the final
volumes, but all make a significant contribution to
the number of observations for each atom (Table 2).
In the final volume set, atoms from both high and
low-resolution structures, both protein containing
and protein free RNA structures, and only crystal
symmetry generated structures are integrated into
our final NucProt data set.
 R
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1003

1004

1005

UNCOFinal volumes

We now can provide final volumes. Since we are
actually calculating distributions of volumes, i.e.
the probability of a volume given an atom type, we
provide both histograms and mean values. In
particular, we show a sample distributions in
Figures 4 and 8†. It is also useful to have explicit
mean values for the volumes. The final volumes
† The rest is available on http://geometry.molmovdb.
org/NucProt
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for the RNA bases are 145.9 Å3 for guanine, 139.2 Å3

for adenine, 115.0 Å3 for cytosine, and 110.8 Å3 for
uracil (Table 3). All four RNA sugar backbones are
approximately the same size and so we report only
one value of 176.1 Å3 (Table 3). The nucleotide
volumes are 322.6 Å3 for guanosine, 315.0 Å3 for
adenosine, 290.7 Å3 for cytosine, and 285.5 Å3 for
uridine.
OODiscussion

Effects on calculations
ED P
RRNA backbone and base packing

From the standard deviations and packing
percentages, we are able to locate areas within
RNA structure that are not well-packed or less
defined. In our NucProt data set, only 26.8% of the
sugar–phosphate backbone atoms are packed suf-
ficiently to make a volume measurement, which is
20.2% less than the worst base, uracil (at 47.0%well-
packed). Further, several backbone atoms have low
percentages of well-packed Voronoi polyhedra
(Figure 6(b)) and high standard deviations (Figure
6(d)). These results suggest that atoms located in the
bases benefit from the tight ring structure of purines
and pyrimidines providing inherent packing neigh-
bors as well as base-pairing and base-stacking
interactions common in RNA structure. In addition,
the atoms located in major groove edge of the RNA
bases also have high standard deviations, high
packing densities and low percentages of well-
packed atoms (Figure 6). This presumably implies a
less packed major groove in RNA structures, but
it is more likely due to no inherent neighbors in an
A-form helix. Therefore, our results suggest that the
backbone-sugar regions and major groove atoms
are less packed than the interior base atoms.
1006

1007

1008
Role of crystal symmetry in volume size

Small RNA structures, in general, consist of a
single helix and hence lack helix-helix packing,
resulting in poorly packed backbones. In an effort to
PPS

http://geometry.molmovdb.org/NucProt
http://geometry.molmovdb.org/NucProt
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Figure 6. Graphical display of different atomic packing measurements. For each atom in RNA. (a) The atom typing is
shown to showwhat decisions are made to classify the various atoms. (b) The percent well-packed atoms shows that the
backbone and extensions off the rings are in general less defined. (c) The packing density (Voronoi volume divided by
VDW volume) measures the how tightly each atoms packs. This number tends to be biased by the number of hydrogen
atoms bonded to an atom, but still provides insight as another measures of packing. (d) The percent standard deviation
of the volume (standard deviation of the volume divided by the mean volume) highlights the unbiased error involved in
the volume measurements.
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T

Figure 7. Effects of crystal symmetry. (a) Effect of the crystal symmetry on each subset of structures. Ribosomes saw
little to no effect, while small RNA molecules, including ribozymes and other small RNAs, see a large jump in their
percentage of well-packed atoms. (b) Example of one structure (1ehz), which is by no means the best, where crystal
packing helps increase the number of well-packed atoms. Shown is the packing efficiency, i.e., the Voronoi volume of an
individual atom divided by themean volume for the atom. Blue represents atoms that have unclosed Voronoi polyhedra.
Packing before crystal symmetry is shown on the left and after is on the right. You can see the dramatic effect of crystal
symmetry on obtaining information for surface atoms. The final volumes show no difference between data sets with and
without crystal symmetry.
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ORREC

prevent this single helix dilemma, we need to utilize
the crystal symmetry contained in the PDB file.
Crystal symmetry neighbors have additional rele-
vant packing interactions from their presence
within the crystal. Alas, any software found for
generating crystal symmetric neighbors is not
applicable or does not work well for our purpose.
All are incapable of outputting the information to a
file or do not have the facility to generate all
symmetry neighbors within a given distance of the
target structure. Fortunately, matrix information on
crystal symmetric rotations and translations are
contained within most PDB headers (as well as in
the online PDB format description, Appendix 136)
and once recognized, it was simple to implement a
small script to achieve the additional symmetry
neighbors.

As shown in Table 2, crystal symmetry had little
to no effect on the final volumes, but does contribute
a significantly larger number of acceptable atoms
for making calculations (Figure 7). The different
disjoint subcategories of structures show that even
though the set of ribosomes have little to no effect
on the number of well-packed atoms, all other sets
containing the smaller structures increase the
percentage of well-packed atoms by a dramatic
amount. The additional number of well-packed
atoms created from the symmetry neighbors not
only gives us more data for error analysis, but helps
increase the amount of information from atoms
involved in backbone packing that would normally
have unclosed polyhedra.
C 1252

1253
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1255

1256

1257

1258

1259

1260
UNRoles of different RNA structural categories

As noted, our data set consists of 69% ribosomal
atoms. A priori it is unjustified to assume short
double-stranded RNAs have the same packing
properties as large macromolecular complexes
such as the ribosome. The ribosome is large enough
in all three dimensions to truly have an interior
YJMBI 56900—8/12/2004—15:52—SFORSTER—129583—XML – pp. 1–16/A
ED P
ROOFwhile short double-stranded RNA is completely

exposed to solvent. Further, we want to confirm that
our data set, containing 69% ribosomal atoms, is
representative of small RNA molecules as well.
There is little difference in nucleotide volume (Table
3) or atom size (data not shown) among the different
RNA types. Table 3 clearly shows that the base size,
sugar backbone, and entire nucleotide volumes
differ by less than 9 Å3 from the smallest to largest
values, which is within the standard deviation.
Ribosomal RNA volumes run slightly larger than
the other structural categories. This could be due to
the larger size of the complexes and their inherent
problem of packing helices against other helices.
Despite slight variations between the structural
categories, the final outcome of the volume calcu-
lations suggests that all RNA packs in a universal
way.
Role of water, ions and proteins in RNA structures

To test the role water, ion, and protein atoms play
in RNA structures, we took the largest RNA
structure (the refined Haloarcula marismortui 50 S
ribosomal subunit, 1jj2) and conduct packing tests
by systematically removing each kind of atom
(Table 3). Crystal symmetry plays a small role in
the 50 S subunit, because there is more interior than
surface. On the other hand, when the solvent is
removed (leaving the RNA and protein), the
percentage of well-packed atoms differs by 16.7%
from the original value. Similarly, when the protein
is removed (leaving the RNA and solvent), the
percentage differs by 6.9%. Further, when only the
RNA is used the final percentage differs by 20.9%.
The final difference of 20.9% is very close to the sum
of the other differences of 23.9%, suggesting an
independence of the two atom classes. In addition,
the solvent has a much larger affect on the loss of
well-packed atoms than does the protein. This
indicates that RNA atoms pack tightly against the
PPS



O

Figure 8. Comparison of RNAvolumes to protein. (a) The comparison of aromatic protein residues to RNA bases. On
average RNA has a smaller PSV than protein, suggesting RNA packs more densely than protein. (b) Comparing protein
to RNA atoms using relative volume. Relative volume is volume divided by the median RNAvolume for that atom type.
All 12 atoms in the intersection of the protein and RNA atom types are shown for comparison.
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solvent. Despite these major differences in the
percentages of well-packed atoms, there is no
change in the final RNA volumes from the removal
of solvent and protein atoms, reinforcing the idea
that our set is self-consistent.

Comparison to proteins and DNA
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Partial specific volumes

To address the effect of RNA and protein in
packing, the partial specific volume (PSV) is
computed by taking the calculated volume divided
by the atomic mass of the RNA molecule and then
changing the units of cubic Ångströms per Dalton
(Å3/Da) to the classical form of milliliters per gram
(ml/g) (using conversion factor of 1 Å3/DaZNA!
10K24Z0.6022 ml/g). We now provide a new online
tool for calculating volumes and PSV for any
sequence†.

RNA is found to have an average calculated PSV
of 0.569 ml/g, which is significantly more dense
than the published protein calculated average of
0.728 ml/g over 13 protein structures.5 RNA bases
are more loosely packed than their complete
nucleotide form with an average calculated PSV of
0.610 ml/g and it follows that the sugar and
phosphate backbone is more tightly packed with
an average calculated PSV of 0.544 ml/g. These
values compare well to the published experimental
value of 0.540 ml/g.37 For proteins, it is shown that
calculated values are on average 0.5% less than
experimental values.5 Our average PSV is about
5.4% greater than this experimental value, but
Durchschlag explains that the experimental RNA
PSVs depended heavily on solvent content and the
values were difficult to obtain and also may
fluctuate greatly.37 Our results thus conclude that
YJMBI 56900—8/12/2004—15:52—SFORSTER—129583—XML – pp. 1–16/APP
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the calculated PSVusing Voronoi volumes for RNA
is a good estimate for the experimental PSV.
ED P
ROAtom types

There are 18 atom types each in RNA and in
protein, but when intersected they only share 12
common atom types. Figure 8(b) analyzes the 12
common types in more detail. Though proteins and
RNA for the most part share similar distributions,
most protein atom types (nine of 12) run slightly
larger (Table 4, Figure 8(b)). The three exceptions to
this rule are C3H0s, N3H1b (which run smaller) and
N3H0u is almost exactly the same size. The most
dramatic effect is shown by C3H1s, which consists
of aromatic ring carbon atoms in protein and purine
ring carbon atoms in RNA (Table 4). For C3H1s, the
25th percentile of the protein is greater than the 75th
percentile of the RNA, suggesting two distinctly
different values (Figure 8(b)). One of the reasons
why RNA atom types are smaller in volume than
equivalent protein types, is their built-in chemical
structure. Proteins are chains that have few atoms
per residue and pack against one another to achieve
tight packing, while RNA contains more than 18
atoms per residue and, therefore has inherent
neighboring packing interactions. In fact, the
worst packed atoms in RNA are either attached to
the phosphorus atom or an extension off the ring
structure (e.g. sugar O2 0, guanine O6, purine O2). In
essence, the atom type data shows that RNA is more
tightly packed than protein atoms.
Similar protein residues

An interesting question to ask is how does the
volume of RNA compare to protein amino acid
residues of similar chemical structure. Namely, how
S
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Table 4. Summary of atom types in proteins and RNA

RNA NucProt Set Protein NucProt Set (ProtOr)

Atom
type Number %OK Count Mean

Standard
deviation %SD Number %OK Count Mean

Standard
deviation %SD

Comparison,
%vol change

C3H0s 11 81.6 30,479 9.21 0.60 6.5 20 76.1 12,097 8.77 0.63 7.2 -5.0
C3H0b 13 49.4 4418 9.77 0.77 7.9 –
C3H1t 2 24.7 1387 16.95 1.19 7.0 –
C3H1s 3 26.7 2766 17.98 1.44 8.0 8 43.5 1888 20.59 1.81 8.8 12.7
C3H1b 2 10.4 586 19.32 1.51 7.8 8 55.3 2181 21.37 1.90 8.9 9.6

C4H1s 2 64.1 16,554 12.65 0.72 5.7 18 53.2 7227 13.26 1.01 7.6 4.6
C4H1b 2 26.3 6795 13.32 0.97 7.3 6 54.8 3747 14.44 1.33 9.2 7.7
C4H2s 1 6.1 790 21.74 1.77 8.1 20 25.6 4468 23.45 2.34 10.0 7.3
C4H2b 7 27.3 1137 24.42 2.14 8.8 –
C4H3u 9 37.5 3673 36.92 3.25 8.8 –

N2H0s 2 68.7 4461 13.41 1.26 9.4 –
N2H0b 4 29.4 4285 15.33 1.51 9.8 –

N3H0u 4 81.0 10,465 8.79 0.45 5.1 1 74.1 592 8.82 0.66 7.5 0.4
N3H1s 2 74.8 4811 13.63 1.17 8.6 20 62.5 10,356 13.82 1.20 8.7 1.4
N3H1b 4 29.8 4352 15.43 1.67 10.8 4 29.0 500 15.87 2.21 13.9 2.7
N3H2u 3 21.7 2322 22.10 1.94 8.8 4 9.7 286 23.38 2.77 11.8 5.5
N4H3u 1 1.2 12 21.21 1.85 8.7 –

O1H0u 6 13.4 5052 16.29 2.09 12.8 27 36.1 8273 16.17 1.59 9.8 -0.7
O2H0s 1 37.5 4850 12.73 1.40 11.0 –
O2H0b 2 22.3 5753 13.98 1.18 8.4 –
O2H1u 1 19.1 2468 17.39 2.28 13.1 3 20.0 619 18.60 2.45 13.2 6.5

P4H0u 1 20.5 2645 11.86 0.23 1.9 –

S2H0u 2 50.1 280 29.17 2.81 9.6 –
S2H1u 1 51.6 63 34.60 5.73 16.6 –
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does the volume of an RNA purine compare to
tryptophan and how does an RNA pyrimidine
compare to phenylalanine, histidine, and tyrosine.
Figure 8(a) reports the protein volumes for the side-
chains (calculated from the residue volume subtract
the volume of glycine) of tryptophan, tyrosine,
phenylalanine, and histidine.17 While these values
for the volume are all relatively close to the RNA
base volumes (Table 3), the PSV tells a different
story (Figure 8(a)). The average PSV for the RNA
bases is 0.609 ml/g while the four protein side-
chains have an average PSV of 0.755 ml/g,
suggesting that the RNA bases are much more
dense than protein aromatic side-chains (Figure
8(a)). Further, if we divide the total volume by the
number of atoms (including the hydrogen atoms),
we get an average volume of 9.83 Å3 per atom for
the RNA bases and 11.25 Å3 per atom for the protein
residues. Though the volume per atom numbers are
biased by the atom type volumes, this also high-
lights that RNA seems to pack more tightly than
protein. These results may be due to nucleotide base
rings containing more nitrogen atoms than the
amino acid aromatic rings. In addition, the RNA
rings have more atoms attached to them, creating a
large number of inherent neighbors. In addition,
RNA duplex base stacking may contribute favor-
ably to achieve this tighter packing. Though it is
difficult to directly compare these vastly different
chemical structures, we find that the RNA bases are
more tightly packed than the aromatic protein
residues.
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DNA volumes

In 2001, Nadasssy et al. published the standard
atomic volumes of double-stranded DNA.12 Com-
paring the volume of RNA in large macromolecular
structures to that of A-form DNA (A-DNA) we see a
small deviation (Table 3). RNA bases: adenine,
guanine and cytosine are larger by only 0.9 Å3,
0.5 Å3, and 1.1 Å3, respectively, to that of A-DNA.
Since we cannot directly compare uracil to DNA,
we compare its volume to the volume for thymidine
and they are within the expected difference of 27 Å3,
due to the extra methyl group. We found that in
RNA structures about half of the base volumes are
within a standard deviation of the A-DNA base
volumes (Table 3), suggesting similar packing of
the bases. The sugar–phosphate backbone on the
other hand reports a slightly larger difference.
The A-DNA sugar plus phosphate reported by
Nadasssy et al. is 5.7 Å3 larger than the RNA
backbone reported here (Table 3). Though one
should expect the backbone atoms of A-DNA to
be 8.3 Å3 smaller (based on our atom type volumes)
due to the additional volume taken up by the 2 0

oxygen, this is not the case. Furthermore, in DNA
the 2 0-carbon volume is reported as 18.0 Å3, while
we report a volume of 12.67 Å3; this drop is
expected because of the loss of the hydrogen. But
if we take the 2 0-oxygen volume of 17.39 Å3 into
account, we now have a total volume of 30.07 Å3 to
YJMBI 56900—8/12/2004—15:53—SFORSTER—129583—XML – pp. 1–16/APP
fit into the space of 18.0 Å3. RNA structure must
accommodate for this additional occupied space. In
summary, the published A-DNA volumes are
approximately equal for the bases and differ slightly
for the backbone where A-DNA is packed less tight
than RNA.
ED P
ROOF

Implications in RNA packing

Early results for proteins showed protein
interiors are more tightly packed than amino acid
crystals.3 These results also indicated that tight
packing and detailed interactions are important in
protein folding. RNA tends to be seen as a loosely
packed molecule, held together primarily by base-
pairing and electrostatic interactions through back-
bone alterations and metal ion coordination. This is
borne out by a survey of a number of prominent
papers in RNA structure and folding.38–55 These
papers mention electrostatics and hydrophobic
effects as important factors in RNA folding, but
none of them mention the importance close pack-
ing. For instance, Doudna & Doherty argue that the
hydrophobic effect, hydrogen bonding, metal ion
coordination and VDW forces all contribute to the
formation of compact structures.51 They say that
hydrophobic effects in RNA occur mainly at the
level of secondary structure, making a contribution
to vertical base stacking. Additionally, they assert
that RNA folding is opposed by electrostatic
repulsion from the negatively charged phosphate
backbone.
However, our results show, surprisingly, that

RNA is actually packed more tightly than proteins.
In essence, we demonstrate that close packing is as
important for RNA folding as for proteins. This
suggests a number of interesting energetic calcu-
lations that might be worthwhile doing. To empha-
size this point, we have modified the text as shown
below and changed the title to: “Calculation of
Standard Atomic Volumes for RNA Cores and
Comparison with Proteins: RNA is packed more
tightly than protein”.
Another interesting aspect of RNA packing

illuminated by our volume calculations concerns
the 2 0-carbon atom. In DNA the 2 0-carbon volume is
reported as 18.0 Å3,12 while we report a volume of
12.67 Å3; this drop is expected because of the loss of
the hydrogen. But if we take the 2 0-oxygen volume
of 17.39 Å3 into account, we now have a total
volume of 30.07 Å3 to fit into the space of 18.0 Å3.
Therefore, RNA structure must accommodate this
additional occupied space.

Practical applications

We now point out in the paper how our
parameter set is useful for RNA studies and, in
fact, directly increases our understanding of RNA
structure. Many applications of our volumes and
radii come to mind. We provide three new data sets:
a set of atomic RNA volumes, a set of RNA VDW
radii and a variety of annotated sets of large,
S
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non-redundant, RNA-containing PDB structures.
Many programs used for structure solving and
model refinement use VDW radii. Any RNA
informatics endeavor requires begins with anno-
tated sets of PDB structures, which we provide.
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Packing density

Structure–function research can involve the
atomic radii and volumes of RNA in order to locate
non-standard regions and possibly functional areas.
In particular, the volumes can be used to measure
the local packing density, the ratio of a given atom
to its expected volume within a particular region.
The local packing density can be used to determine
more and less packed regions within a particular
structure. Second, we can use the packing density to
locate atoms with extreme volumes. This is useful in
evaluating the quality of a crystal structures by
locating areas that are packed too loosely or too
tightly. Additionally, regions with extreme volumes
may pinpoint active sites or other functional
features. Finally, packing density is an accepted
method for measuring the tightness of fit between
RNA and a substrate, such as polymerases, RNases
and other RNA-binding molecules.
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Volume and PSV calculation

Before our volume results, calculating molecular
volumes for RNA containing macromolecules was
limited. Two techniques have existed for determin-
ing the volume of unknown particles: electron
microscopy and small-angle X-ray scattering.56

Both methods are problematic. Previous studies of
50 S ribosomal subunits to determine their volume
did so with a large range of 1.8–4.4 million cubic
Angstroms.56

Using our published volume set, we can estimate
the molecular volume of any RNA based solely on
its sequence. For example, the Voronoi volume of
50 S small subunit structure is 1,374,538 Å3. Based
on the actual three-dimensional coordinates of the
solved ribosome structure, the Richards’ rolling
probe method16 calculates the molecular volume to
be 1,400,281 Å3. This slight difference of 1.8% is
reasonable considering we are only using sequence
information. Therefore, in essence, we can get a
good estimate for the volume without knowing
three-dimension coordinates. Further, if the
sequence is known then the mass is readily
calculated to obtain a partial specific volume for
any unknown structure. Using our volumes, we
calculate the partial specific volume of the 50 S
subunit to be 0.617 ml/g which compares well to
the published value of approximately 0.592 ml/g.56,
57

We have also built a web tool† to perform this
calculation of volume and PSVon an arbitrary RNA
or protein sequence. For instance, application of
the tool to the U65 snoRNA 172 nt consensus
sequence,58 which currently has an unknown
YJMBI 56900—8/12/2004—15:53—SFORSTER—129583—XML – pp. 1–16/A
structure, shows it to have a volume of 41,700.4 Å3

and a PSV of 0.569 ml/g.
Exploration of the ribosome

One immediate future application of our para-
meter sets is the analysis of the ribosome.59 The
ribosome has an extremely complex intertwined
folding of protein and RNA that is currently not
fully understood. It is an open question how this
large macromolecule packs together. We can now
use our volume and radii parameters to analyze
internal solvent volumes. In a similar sense we can
evaluate which helices within the ribosome struc-
ture interact with which other helices. This is
similar in spirit to work done on membrane
proteins.60,61 Finally, the exit tunnel is a site of
antibiotic binding; using our new parameter sets we
can trace out the volume and diameter as a function
of distance from the active site to better understand
how these molecules are functioning to block
translation.
ED P
ROOFConclusions

In this study, we performed a careful parameter-
ization of currently available RNA structures to
obtain a universal, self-consistent set of volumes,
denoted as the NucProt parameter set. This compo-
site set can be applied to both RNA and protein. In
addition, several factors such as crystal symmetry,
structural complexity and protein and solvent
interactions are taken into account for their influ-
ence on the final results. Using two measures, the
percentage of well-packed atoms and final volumes,
the impact of each factor was assessed on the data.
While all the factors affected the percentage of
well-packed atoms, none of them had any affect on
the final volumes. From these volume calculations,
it is immediately apparent that the RNA backbone
is not as tightly packed as its base as determined by
its standard deviation and also its percentage of
well-packed atoms. For RNA, the calculated partial
specific volume corresponded well with its experi-
mental value. When compared to proteins, RNA is
found to be more dense, because its partial specific
volume is smaller. Comparing common atom types
between protein and RNA showed that in nine of 12
cases, RNA has a smaller volume and is therefore
packed tighter. Further, when comparing aromatic
protein side-chains to the RNA bases, the partial
specific volume for RNA bases was again smaller
than the protein side-chains as well as their average
volume per atom. Thus, RNA packs more tightly
than protein, but based only on well-packed atoms.
A-form DNA, on the other hand, has approximately
the same base volumes as RNA, though the back-
bones differ by more than the bases it is within the
standard deviation of the total volume. In con-
clusion, RNA packs more tightly than protein and
approximately the same as DNA.

Location of files, programs, scripts and statistics.
PPS
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Further details on parameter sets, additional statis-
tics, perl and shell scripts, packaged program files,
and the raw volume data are provided online†.
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