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Analyzing protein function on a genomic scale: the importance of
gold-standard positives and negatives for network prediction
Ronald Jansen1 and Mark Gerstein2�
The concept of ‘protein function’ is rather ‘fuzzy’ because it is

often based on whimsical terms or contradictory nomenclature.

This currently presents a challenge for functional genomics

because precise definitions are essential for most

computational approaches. Addressing this challenge, the

notion of networks between biological entities (including

molecular and genetic interaction networks as well as

transcriptional regulatory relationships) potentially provides a

unifying language suitable for the systematic description of

protein function. Predicting the edges in protein networks

requires reference sets of examples with known outcome (that

is, ‘gold standards’). Such reference sets should ideally include

positive examples — as is now widely appreciated — but also,

equally importantly, negative ones. Moreover, it is necessary to

consider the expected relative occurrence of positives and

negatives because this affects the misclassification rates of

experiments and computational predictions. For instance, a

reason why genome-wide, experimental protein–protein

interaction networks have high inaccuracies is that the prior

probability of finding interactions (positives) rather than non-

interacting protein pairs (negatives) in unbiased screens is very

small. These problems can be addressed by constructing

well-defined sets of non-interacting proteins from subcellular

localization data, which allows computing the probability of

interactions based on evidence from multiple datasets.
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Introduction
The availability of genome sequences for a range of

prokaryotic and eukaryotic organisms has given us a

comprehensive view of the parts list of genes encoded

in these organisms, but the biological functions of many of

these genes remain uncharacterized.
ww.sciencedirect.com
In recent years, several experimental methods have been

developed to overcome this problem. They aim to sys-

tematically and globally characterize the basic properties

of gene products and their interactions in these organ-

isms, spawning a whole field of research termed ‘func-

tional genomics’. Functional genomics experiments are

often unbiased screens of whole proteomes, on a large

scale, rather than focusing on small-scale studies of indi-

vidual proteins or groups of proteins (such as the members

of an interesting pathway), as is more common in tradi-

tional and reductionist approaches of biological research.

The hope is that functional genomics will allow us to gain

a comprehensive understanding of the basic biology

underlying cellular behavior.

Among the available techniques for globally characteriz-

ing genes and proteins are methods for the genome-wide

measurement of transcription levels [1] and protein abun-

dance [2], methods for determining deletion phenotypes

of single genes [3] or combinations of them [4], global

measurements of the subcellular localizations of proteins

[5�,6�] as well as methods for measuring interactions

between proteins [7–11] or between proteins and inter-

genic sequences in DNA [12–14].

Alongside these relatively new experimental approaches,

a variety of computational techniques have become stan-

dard that are aimed at processing, managing and inter-

preting the large amounts of data that the experiments

produce. Many of these computational techniques draw

on methods developed for artificial intelligence, data-

mining and statistical learning [15]. Machine-learning

techniques, either of the unsupervised or supervised kind

(depending on whether partial knowledge about the

desired prediction outcome in reference datasets is used

to train the algorithm or not), exploit statistical relation-

ships between various types of functional genomics data

and can be used to make computational predictions of

protein properties [16].

In this review, we discuss several issues related to the

successful application of such machine-learning algo-

rithms. Among these is the problem of how to system-

atically define protein function. A more subtle issue is the

proper definition of the reference sets. We will explain

these issues using analysis of protein–protein interaction

networks as an example.

Yeast as a model organism
The yeast Saccharomyces cerevisiae has become a central

organism on which these experimental and computational
Current Opinion in Microbiology 2004, 7:535–545
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methods converge. Yeast is likely to be the first organism

for which we will obtain a comprehensive description of

most or all gene products based on functional genomics

methods [17]. There are varied reasons for this, ranging

from the technical advantages of yeast genetics, the

relative simplicity of the single-cell organism (for

instance, a relatively minor amount of gene splicing), a

well-developed framework of existing functional annota-

tions (such as MIPS [18] and Gene Ontology [19]), a

strong tradition of yeast biology research as well as rela-

tively high consistency among conventions and standards

(for instance, yeast gene names are fairly systematically

defined). The hope is that functional genomics tech-

niques will eventually translate into a fundamental under-

standing of human biology and the causes of disease [13].

Uncertainty in functional genomics data
As we have moved from genome sequences to more

advanced functional genomics data, it has become clear

that they are associated with a considerable amount of

uncertainty (Figure 1). The linear genome sequence is

well-defined and, although there can be errors in DNA

sequencing, quite reliable. Three-dimensional protein

structures contain some more uncertainty. For instance,

the exact position of the coordinates may be unknown;

this is because of the limited resolution of X-ray crystal-

lography or other structure determination methods or

because of inherent changes in the protein structure that

may involve motions of whole domains; the chain trace,

however, is fairly certain.

On the next level, mRNA expression data from micro-

array experiments contains a much higher degree of

experimental and biological uncertainty. The readout

of such experiments is a continuous-valued, positive

signal, often containing a high amount of error and noise.

Protein–protein interaction and protein–DNA interaction
Figure 1
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Uncertainty of functional genomics data. Whereas the genome

sequences are considered to be fairly reliable (with high quality

sequences having virtually 100% base accuracy), more advanced

functional genomics datasets contain increasing amounts of

uncertainty or vagueness. Protein ‘function’, which functional

genomics aims to determine for many proteins on a large scale, is a

concept that in itself is not very clearly defined.
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screens contain a high amount of false positives and false

negatives [20–23].

There are a variety of statistical data analysis techniques

that try to address these issues. A large part of the

processing and analysis of microarray data are aimed at

filtering the real, biological signal from noise that comes

from non-biological sources; similar issues apply to the

analysis of protein chip data [24,25].

The vague definition of ‘function’
Finally, there is a degree of uncertainty related to the

ultimate goal of functional genomics: the vague concept

of protein ‘function’ itself. What do we mean by protein

‘function’? The term somehow describes the ‘biological

process’, ‘cellular component’ and ‘molecular function’ of

a protein (as organized by Gene Ontology [19]). But how

is this clearly defined? Gene names are sometimes abbre-

viations of a statement about the activity of a gene. But in

other cases they simply reflect the way a gene was

discovered historically. Sometimes arbitrary names are

devoid of any biological meaning or, even worse, outright

contradictory (Figure 2).

Another problem is that while it may be possible to find

positive examples of proteins with the same or similar

biological functions, it is difficult to find clear negative

examples of two proteins that have absolutely no biolo-

gical relationship at all.

Conceptual problems for predicting protein
properties with machine-learning algorithms
Despite advances in artificial intelligence and data-

mining, computational algorithms essentially require

clear rules for processing data, and the absence of such

clear rules negatively impacts the capability of such

algorithms to predict protein properties. Supervised

learning algorithms require that we have a subset of cases

where we know the response variable (the protein prop-

erty we would like to predict) as a function of the

predictor variables (the collection of data from which

the predictions are made). These cases are used to con-

struct training and test sets (to train the algorithm and to

cross-validate the prediction results). For a binary class

prediction (where the prediction result is either ‘positive’

or ‘negative’), it is necessary to have examples of both

positives and negatives to construct the training and test

sets [1,26]. This is an obvious statement, but how to

define the negatives is not as obvious as it may seem.

Consider, for instance, how positive and negative exam-

ples are usually constructed when genomic data is used to

predict the functional classes that proteins are associated

with (such as those of the MIPS or the Gene Ontology

functional classifications): the proteins of a desired func-

tional class are labeled as positives and all other proteins

as negatives. The prediction of multiple functional
www.sciencedirect.com
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Figure 2
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The TGFb pathway as an example of confusing and whimsical gene

nomenclature. (a) In the canonical TGFb pathway, the ligand TGFb

induces the formation of a heterodimer between two receptors

(TGFbRII and TGFbRI), which then phosphorylate the intracellular

Smad2 or Smad3 proteins. These proteins are recruited to the

receptor complex by the anchoring protein SARA. Smad2 and Smad3

phosphorylation induces the expression of Smad7 (among others),

which inhibits the receptor activity in a negative feedback loop.

(b) The table shows the names of the pathway proteins in different

organisms, with the arrows here indicating which names influenced

the creation of others. TGFb stands for ‘transforming growth factor

b0, a confusing description, because the response to TGFb strongly

depends on cellular conditions: initially discovered as a growth

factor that enhances cell transformation (as the name suggests), it is

now of great interest in cancer biology because it inhibits cell

proliferation in epithelial cells. The term ‘Smad’ stands for ‘Sma- and

Mad- related protein’ because sma-2 or sma-3 and Mad are

homologues in C. elegans and Drosophila. ‘Mad’ is an abbreviation

for ‘mothers against Dpp’; this name was apparently chosen because

Dpp (for ‘decapentaplegic’, the Drosophila equivalent of TGFb)

controls the activity of Mad. The Smad7 equivalent in Drosophila is

called ‘Dad’ as in ‘daughters against Dpp’. ‘SARA’ is short for ‘Smad

anchor for receptor activation’; note that it is different from the

Drosophila protein named ‘Sarah’, a biblical reference to Abraham’s

wife, because the protein affects female fertility. Note another source

of confusion: there are two pathways of the TGFb family in C. elegans

(the Dauer pathway and the Sma/Mab pathway); while the Dauer

pathway is thought to be the closer relative of the canonical TGFb

pathway in vertebrates, it is the Sma/Mab pathway that contains the

sma-2 or sma-3 proteins (from which the name ‘Smad’ was derived)

[49,50]. There are many more examples of whimsical gene names in

other pathways. For instance, the Drosophila genes lush and

cheapdate reflect that their mutants exhibit a high attraction or

increased sensitivity to ethanol [51,52]. Such naming is funny, but

confusing when viewed in a genomic context and across

organisms.

www.sciencedirect.com
classes is then a succession of binary classifications for

each individual class. Defining the negative class in this

way is problematic, however, because the proteins in the

negative class are often related to the members of the

positive class by some biological process; it is difficult to

draw clear boundaries between the classes. Such proteins

tend to be predicted as belonging to the positive class by

the algorithm. It is then difficult to assess the prediction

results: did such predictions uncover interesting biologi-

cal relationships or are they in fact genuine misclassifica-

tions of the algorithm? This cannot be answered without

sufficient prior biological knowledge. An example of this

situation is given in Figure 3. The difficulty of defining a

‘negative’ functional class is one of the root causes for the

poor performance of machine-learning algorithms in the

prediction of protein function. Such problems cannot be

addressed by fine-tuning parameters of a given algorithm

or looking for better machine-learning algorithms [27�].
The issue must be addressed with a more systematic

definition of protein function.

Networks of biological molecules
A network representation of relationships between pro-

teins is potentially a unifying language that can both

describe biological concepts of function and provide

well-defined frameworks for computational analyses.

For instance, molecular interaction networks naturally

reflect the fact that many proteins engage in multiple

biological processes, and the network distance between

two molecular entities often correlates with varying

degrees of functional similarity.

In many ways, functional genomics data can naturally be

organized and represented in network structures, where

the nodes represent molecular entities and the edges

(quantifiable) relationships between them. Examples of

such networks are protein–protein or genetic interaction

networks [4] or networks describing transcriptional reg-

ulatory relationships [28,29]. Cellular pathways are in

essence networks of interactions between biological

molecules (proteins, DNA, RNA, metabolites etc.). Thus,

a potentially more systematic way of defining protein

function may be gained from analyzing the molecular

interaction networks in that proteins are embedded

[30,31��,32��,33�] (Figure 4). A complete exploration of

such networks with functional genomics methods may

lead to a systematic understanding of protein function.

The edges in a network (or the elements in a matrix

describing the network) can, in principle, be determi-

nistic or stochastic functions of time and varying cellular

conditions, yielding a dynamic rather than static view

of biological processes [34,35]. Currently, many of the

networks derived from functional genomics data reflect

information that is averaged rather than time- or context-

specific. In addition, the uncertainty of biological

information can be explicitly considered: given one or
Current Opinion in Microbiology 2004, 7:535–545
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Figure 3
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Poor performance of machine-learning algorithms as a result of the fuzzy definition of protein function. The results of a computational

prediction of protein function by Mateos et al. [27�] are shown. The prediction is based on supervised learning with a neural network (multi-layer

perceptron), and the prediction results were tested with threefold cross-validation. Yeast microarray expression data was used as input data.

The goal was to predict membership of proteins in the classes of the MIPS functional categorization for yeast proteins [18]. The figure shows the

prediction results related to the functional class ‘tricarboxylic acid cycle’ (TCA cycle) as defined by MIPS. This functional class represents a

textbook example of a central metabolic pathway and was used to test the algorithm performance against a well-understood biological standard.

The prediction task is essentially a binary classification: the proteins belonging to the class ‘TCA cycle’ are regarded as positives (that the

algorithm is supposed to predict) and proteins outside this class as negatives. The proteins in the green box represent enzymes that the

algorithm predicted correctly: they are indeed members of the MIPS class ‘TCA cycle’. However, the algorithm also incorrectly predicted several

proteins as belonging to the ‘TCA cycle’ class; these ‘false positives’ are shown in the red boxes. The prediction was repeated multiple times

(with slightly different sets of proteins for training the algorithm), and the numbers in parentheses next to the false positives indicate how

many times they occurred. An inspection of these false positives reveals that most of them participate in biological processes that are closely

related to the TCA cycle, such as the glyoxylate cycle, oxidative phosphorylation and ATP synthesis. Only three of the false positives cannot be

biologically associated with the TCA cycle at all (shown on the left with a question mark). This shows that many of the false positives are ‘false’

in a statistical sense, but not in a biological sense as they are closely related to the original functional class. The appearance of false positives,

rather than being a mistake of the algorithm, results from the organization of the classification scheme that, although curated by human experts,

contains rather arbitrary class boundaries around groups of proteins. Similar situations occur for the prediction of protein membership in other

functional classes. In cases where we know little about the underlying biological processes, it is nearly impossible to decide whether a ‘false

positive’ represents a mistake of the algorithm or an interesting biological prediction. This makes it difficult to rank the performance of different

algorithms. Are more false positives better or worse? This demonstrates the computational problems that can arise from the vague definition of

protein ‘function’. At the root of these problems is the difficulty of defining when two proteins do not have any function in common or, in other

words, what a ‘negative’ functional class is.
more datasets of evidence (ideally under well-defined

cellular conditions), the probability that edges in the

network are present or absent can be computed. Such

probabilistic networks (with ‘weighted’ edges) may in

the future lead to quantitative characterizations of pro-

tein function. In another context, edge weights can

represent binding affinities associated with molecular

interactions [30].
Current Opinion in Microbiology 2004, 7:535–545
An important method for computing such probabilistic

edge weights is based on comparing functional genomics

data against trusted reference datasets (‘gold standards’).

The gold standards are collections of instances where we

assume that the network edges are equal to either 1

(‘positives’) or 0 (‘negatives’). Note that this definition

of positive and negative instances in terms of presence or

absence of edges is more precise than absence or presence
www.sciencedirect.com
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Figure 4

Essential
proteins

Protein
interaction
net

mRNA
expression
net

Current Opinion in Microbiology

(a)

(b)

Analysis of interaction networks. Networks of interactions among

proteins can be based on a variety of datasets, such as protein–protein

interactions or co-expression relationships. In general, analysis of

interaction networks involves two operations: (a) the comparison

between different nets and (b) the statistical analysis of various

edge and node properties. Here, the nodes represent proteins,

and the edges relationships between them. In (b), an example of the

distribution of essential proteins (squares) in the network is shown.

A statistical analysis may be aimed at finding out what network

properties they are associated with. The information gained from (a)

and (b) can often be used for predictions of new protein properties

or nets with the help of machine-learning algorithms [53–56].
of proteins in functional classes (as outlined above). Using

the example of protein–protein interaction networks,

we will discuss these issues in some more detail in the

following sections.
Table 1a

Hypothetical subcellular localization measurements with 95% sensitiv

Number of proteins measured in each compartment with s = 95%

P/N

PPV = s/(s + (1 � s)N/P)

Number of correct compartments

Number of incorrect compartments

Data on the subcellular localization of proteins can be used to construct pro

Such pairs are good approximations for proteins that do not interact (‘neg

produces many false positives (see Figure 5), the list of negatives constru

in the underlying localization data, as demonstrated in this example calcu

proteins (with 1400 measurements resulting in ‘cytoplasm’ and 900 ‘nucle

For the cytoplasmic measurements, for instance, this results in a PPV of 9

(see Figures 5 and 6 for definition of PPV).

www.sciencedirect.com
Protein–protein interactions are well-defined
and amenable to machine-learning
approaches
Interactions between proteins represent an important

sub-aspect of cellular pathways, and in recent years the

biological research community has gathered a large

amount of experimental information on them that is

stored in publicly accessible databases such as BIND,

DIP, MIPS and GRID [18,36–38].

Unlike protein function, protein–protein interactions are

relatively clearly defined. Importantly, it is possible to

define proteins that do not interact. For instance, inspec-

tion of crystal structures of multi-protein complexes

allows determining which proteins have physical contacts

with each other and which ones do not [21,39]. In a

genomic context, it is possible to construct a list of

non-interacting protein pairs from information on the

preferential subcellular localizations of proteins.

Although some proteins may translocate and thus engage

in interactions with proteins outside of their primary

compartment, subcellular localization measurements turn

out to be robust negative controls of interactions in

practice (Table 1). Pairs of proteins in different primary

compartments are at least highly enriched with non-

interacting pairs. Of 8250 interacting protein pairs that

can be constructed from the MIPS complexes catalog

(often used as a standard for interacting proteins) only

1.5% represent two proteins in different subcellular com-

partments (based on assigning proteins to four basic

subcellular compartments) [40��]. Random shuffling of

the subcellular compartments of the proteins in the MIPS

complexes catalog increases this percentage to 64%,

indicating that the majority of interactions are indeed

between proteins in the same primary compartment.

Thus, the conceptual problems of defining protein func-

tional classes (in particular, with respect to a ‘negative

class’) do not exist in the context of protein–protein

interactions where positive examples of interacting pro-
ity and specificity

Cytoplasm Nucleus Sum

1400 900 2300

1.56 0.64 –

96.7% 92.4% –

1354 832 2186

46 68 114

tein pairs in which the two proteins are in different compartments [5�,6�].

ative’ interactions). While screening for protein–protein interactions

cted from the localization data are fairly robust against uncertainty

lation. Assume that we measure the subcellular localization of 2300

us’) with an experiment that has sensitivity and specificity of s = 95%.

6.7% (with P/N = 1400/900 = 1.56) or 1354 correct measurements

Current Opinion in Microbiology 2004, 7:535–545
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Table 1b

Percentage of constructed negatives that are actually

interacting (‘correct’).

Number of protein pairs with different measured

localization (list of ‘constructed negatives’)

630 000

Number of correctly ‘constructed negatives’ 564 827

Number of protein pairs of the list of ‘constructed

negatives’ that are actually interacting

424

Number of ‘constructed negatives’ that are actually

interacting/number of interacting protein pairs

9.7%

From these 2300 proteins we can construct 630000 (= 1354 � 832/2)

protein pairs where both proteins were measured in different

compartments (list of ‘constructed negatives’). Of these 630000

pairs 564827 are indeed correctly ‘constructed negatives’,

whereas the remaining ones represent protein pairs that are

actually in the same compartment because of the experimental

error. How many of these do now correspond to actually

interacting protein pairs? Assume that the prior probability of

a protein–protein interaction between any random protein pair is

1/600 (meaning that the 2300 proteins form about 4400

interactions among each other). Given the PPV calculated in

Table 1a, this results in 424 protein–protein interaction pairs

(or 9.7%) being incorrectly assigned to the negatives list. More

details of this calculation can be found at http://www.cbio.mskcc.

org/�jansen/comb/.

Table 1c

‘Correct’ constructed negatives as a function of sensitivity

and specificity (s = 90%–100%).

s Number of ‘constructed negatives’ that are actually

interacting/number of interacting protein pairs

100% 0.0%

99% 2.0%

98% 3.9%

97% 5.8%

96% 7.6%

95% 9.4%

94% 11.2%

93% 12.9%

92% 14.5%

91% 16.2%

90% 17.7%

The fraction of constructed negatives that are actually positives

(calculated in Tables 1a and 1b) as a function of different values

of the sensitivity and specificity parameter s in the interval

between 90% and 100%. The fraction of falsely constructed

negatives never falls below 18%; compare this with the

measurements of positive protein–protein interactions, where

the fraction of false positives is much higher, namely between 84

and 98% for s = 95% (see Figure 6).
teins and negative examples of non-interacting proteins

are relatively easily available. Protein–protein interaction

networks are therefore well suited for computational

analyses and prediction approaches.

The expected relative occurrence of positive and

negatives affects misclassification rates of

experiments

While protein–protein interactions are clearly defined and

are well amenable to computational algorithms, several

retroactive analyses of published protein–protein inter-

action datasets have shown that they contain a high

amount of false positives and false negatives [20–23].

Protein–protein interactions are often measured under

non-physiological conditions, leading to artifacts in the

experimental results. However, it is important to realize

that one of the main reasons for the poor accuracy of many

protein–protein interaction screens is that the expected

number of negatives (non-interacting protein pairs) is

several orders of magnitude higher than the number of

positives (interacting protein pairs). A consequence of

this imbalance is that even experiments with sensitivity

and specificity close to 100% may produce a large absolute

number of false positive predictions; in this situation, the

absolute number of false positives may be larger than that

of true positives (Figures 5 and 6) [40��,41].

Scalability to higher organisms

The imbalance between a small amount of positives and a

large amount of negatives is partially a result of experi-

mental strategies that involve testing pairwise relation-

ships between proteins. For instance, the �6000 yeast

proteins give rise to about 18M distinct protein pairs (and
Current Opinion in Microbiology 2004, 7:535–545
in the case of protein–protein interactions, most of these

are negatives). Thus, looking at pairs (or even higher

order combinations such as triplets) vastly increases the

space of possibilities and often leads to a situation with a

very low prior probability of finding a positive among

them. This also presents a problem for scaling up screen-

ing approaches to higher organisms. For instance, the

roughly 30 000 human genes give rise to about 450M pairs

— not considering different splice variants and posttran-

slational modifications that imply an even higher number.

It is therefore likely that unbiased screens of pairwise

interactions in the human proteome are a lot more prone

to false positives than those in smaller model organisms.

By contrast, protein–protein interactions studies focusing

on smaller-scale systems are usually more reliable; they

are often based on prior biological information that makes

interactions more likely (Figure 6).

Combining multiple protein–protein interaction datasets

One way to address the issue of the high amount of false

positives in the large-scale protein–protein interaction

datasets is to analyze the topology of interaction networks

for certain network motifs that are associated with more

reliable interactions [42,43]. Another approach is the

combination of multiple interaction datasets and addi-

tional evidence from other genomic data sources that

support the existence of protein–protein interactions.

Several research groups have developed methods for

combining datasets [16,40��,44–48]. Combination of mul-

tiple interaction datasets cross-validated against well-

defined reference sets of positives and negatives allows

estimating probabilities that protein–protein interactions

occur (represented as weights on the network edges); the
www.sciencedirect.com
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Figure 5
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Positive and negative reference sets are necessary for assessing functional genomics data. (a) A hypothetical array experiment (for instance,

to detect proteins with kinase activity or to find protein–protein interactions, where the circle sizes represent continuous-valued experimental

readouts). The left half represents a set of real positives (that the experiment is designed to detect), whereas the gray colored right half

represents a set of real negatives (to which the experiment ideally should be insensitive). A usual first step in the analysis of the experiment

is the transformation of the continuous-valued readouts into binary values (positive or negative experimental outcomes) by setting a threshold.

When the readout exceeds this threshold, the outcome is classified as positive, and negative otherwise. The level of the threshold fixes sensitivity

and specificity of the experiment (see definition below). The ROC curve on the right shows how sensitivity and specificity depend on the

threshold (as represented by the varying circle sizes). (b) The experimental continuous-valued readout shown in (a) transformed into a

binary-valued outcome, where filled circles represent positive and empty circles negative results. The ‘sensitivity’ is the fraction of real positives

that were classified as positive (black dots in the left half); the chosen threshold results in a sensitivity of 20%. ‘1 – specificity’ is defined as the

fraction of negatives that were incorrectly classified as positive (black dots in the right half). A third and often most important statistic is the

‘positive predictive value’ (PPV), defined as the fraction of real positives among the positive experimental outcomes. Note that the number of real

positives is equal to the number of real negatives in this example, which is often typical of experiments that are performed on small scale.

(c) In functional genomics experiments, the number of real negatives often outweighs the number of real positives. For instance, when the same

experimental method as in (a) and (b) is applied to a situation where the set of real negatives is five times larger, sensitivity and specificity of the

experiment stay the same, but the positive predictive value (PPV) drops from 71% to 33%. In other words, the positive classifications of the

experiment are now false more than twice as often as before. (d) Many published experimental datasets unfortunately do not contain information
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542 Genomics

(Figure 5 Legend Continued) about negative outcomes (represented by th

sensitivity and specificity of the experimental method in a retroactive analys

a known positive because the outcome of the experiment was incorrect or

(Note that many ‘genome-wide’ experiments practically cover only a large su

it depends only on the correctly or incorrectly predicted positives. Therefore

(e) Usually, only subsets or ‘reference sets’ of the real positives and negativ

place). This makes it impossible to determine, for all experimental outcome

An estimate of the PPV, however, can still be computed from the overlap o

experimental outcomes are reported, sensitivity and specificity can be also

PPV if the relative occurrence of positives and negatives in the reference se

we need to estimate what this relative occurrence is. (f) When there is no w

the PPV. We simply do not know whether a positive experimental outcome

new discovery (a positive that was previously unknown) or a false positive (

in Figure 3. Overall, the example illustrates that having a well-defined refere

essential for assessing experimental methods. Whether an experiment is su

specificity of the experiment, but also, and most importantly, on the PPV. T

experimental method is designed to detect or, in other words, the prior pro

described in Figure 6.
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One statistic to characterize experimental methods is their specificity

(see definition in Figure 5). However, the positive predictive value

(PPV) of an experiment is often more informative, especially when

the prior probability of finding a positive is very low. Expressed as a

function of sensitivity (sens) and specificity (spec) and the number

of real positives (P) and negatives (N), the PPV is:

PPV ¼ P � sens

P � sens þ N � ð1 � specÞ

If we arbitrarily assume, for demonstration purposes, that sensitivity

and specificity are equal, with s � sens = spec, we obtain:

PPV ¼ s

s þ ðN=PÞð1 � sÞ

The graph shows the PPV in a range of relatively high sensitivity and

specificity (s > 95%) for different values of P/N (a measure of the

prior probability). When P/N = 1, we obtain PPV = s (that is, the

PPV is equal to the specificity in this special case). For low values of

P/N, however, the PPV falls off dramatically when s is only slightly

less than 100%. For instance, the PPV is less than 10% when

s = 99% and P/N = 0.001. In small-scale studies, the prior probability

is often higher than in genome-wide screens of randomly chosen

proteins. For instance, a protein–protein interaction experiment may

be performed, on a small scale, to find out how the members of a

multi-protein complex interact with each other to form a macromolecular

structure, or to find out whether proteins in a given pathway have

interactions. The chance of finding interactions among such groups

of proteins is a lot higher than among randomly picked proteins that

Current Opinion in Microbiology 2004, 7:535–545
resulting interactomes are probabilistic in nature [40��]
(Table 2).

Subcellular localization data as one of the most

informative ‘protein–protein interaction’ datasets

We would like to stress that well-defined reference sets of

negatives (non-interacting protein pairs) are just as impor-

tant as those for positives. Key statistics that characterize

an experiment, including specificity and positive predic-

tive value, cannot be computed when a negative refer-

ence dataset is not available. In the absence of a negative

reference dataset, we simply do not know whether pre-

diction of a previously unknown interaction represents an

interesting new discovery (true positive) or a false posi-

tive. An interesting point is that the ‘negative’ interac-

tions that can be derived from the subcellular localization

data tend to be more robust against experimental errors

than the positive protein–protein interaction data itself

[5�,6�] (Table 1). One reason for this is that localization,

unlike interactions, is essentially a property of individual

proteins rather than protein pairs; this leads to a better

balance between the occurrence of positive (proteins in a

given compartment, such as ‘nucleus’) and negative cases

(proteins outside of compartment ‘nucleus’).
e absence of empty circles). This makes it impossible to determine

is. For instance, we do not know whether an experiment ‘missed’

whether this instance simply was not covered by the experiment.

bset of the genome). The PPV, however, can still be computed because

it can also be used to rank alternative experimental methods.

es are known (the reason for conducting the experiment in the first

s, whether they are correct or incorrect (area surrounded by dashes).

f the predicted positives with the reference sets. If negative

computed. Note that the estimated PPV is only close to the actual

ts is similar to that of the real positives and negatives. In practice,

ell-defined reference set of negatives, it is impossible to estimate

that does not overlap with the positive reference set is an interesting

an experimental error). A practical example of this situation was shown

nce set of real negatives (in addition to having a set of real positives) is

itable for genome-wide screens depends not only on sensitivity and

he PPV depends on the underlying occurrence of the feature the

bability of finding the feature by chance. This is further quantitatively

may have completely different biological functions. By contrast,

the prior probability of finding a positive may be very low in unbiased,

genomic screens, implying a low P/N ratio. In genomic screens that

involve testing pairwise effects between two proteins this problem is

even more serious. Typical P/N ratios for protein–protein interaction

screens in model organisms are between 1/100 to 1/1000 range,

resulting in a PPV range indicated in gray: small deviations from 100%

sensitivity and specificity lead to large drops of PPV. In yeast, the

�6000 yeast proteins allow for about 18M potential interactions

between them, however, the actual number of interactions is less than

100 000 by various estimates, implying a P/N ratio of 1/200 or less.

Similar trends can be observed in lethality screens of deletion mutants

of single genes or genes in combination. Roughly 17% of yeast

proteins (1 out of 6) are lethal when knocked out [3], but of the about

1.3M double knockouts that can be formed from the remaining

genes, only about 0.8% (or 100 000) are lethal. Initial studies indicate

that the fraction of lethal triplet knockouts is even lower than that [4].

www.sciencedirect.com
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Table 2a

Likelihood ratio No. of protein pairs mRNA expression MIPS functional similarity GO biological process similarity

PIP Essentiality

0 – 10 18524971 8130528 18610532 5874302 3125819

10 – 100 214686 0 65268 287503 20467

100 – 1000 25404 0 678 0 0

>= 1000 8067 0 0 0 0

Table 2b

Likelihood ratio No. of protein pairs

PIE Gavin Ho Uetz Ito

0 – 10 27377 0 0 0 0

10 – 100 30074 31304 25333 0 4393

100 – 1000 2038 0 0 981 0

>= 1000 129 0 0 0 0

Demonstrates the beneficial effects of combining multiple

protein–protein interaction datasets and supporting evidence from

other genomic datasets. The likelihood ratio L (first column)

describes how likely a protein–protein interaction is to occur based

on the evidence from multiple data sources. If the random odds of

finding a protein–protein interaction are given by Oprior, then, given

the evidence in the data, the posterior odds Opost are: Opost ¼ L Oprior .

The likelihood ratios are essentially computed by comparing

the datasets against empirical reference sets of well-defined

positive interactions and non-interacting proteins (‘negative’

interactions). The likelihood ratio increases if the overlap with the

positive references is higher and with the negative references smaller.

Table 2a shows the results from combining four genomic

feature datasets (data on whether proteins are essential or not,

mRNA expression correlations and data on the functional similarity

between protein pairs in the MIPS functional classification and the

GO biological process classification). The four datasets were

combined into a ‘predicted probabilistic interactome’ (PIP). For

instance, there are 678 protein pairs in the mRNA expression

correlation dataset that have a likelihood ratio between 100 and

1000. However, there are 25404 protein pairs in the same

likelihood ratio range in the PIP. Table 2b shows similar results

from combining four high-throughput protein–protein interaction

datasets into an ‘experimental probabilistic interactome’ (PIE).

Both the PIP and the PIE have many more protein pairs in higher

likelihood ratio ranges than the individual datasets [40��].
With this in mind, the subcellular localization data may, in

a provocative way, be called the most informative dataset

for determining protein-protein interactions. Most

experimental interaction screens focus on finding positive

interactions. Yet, it would be useful to accompany such

experiments with measurements on the localizations of

the involved proteins, providing a reliable and necessary

negative control. Similar designs, aimed at explicitly

measuring negatives, may be useful for other types of

functional genomics experiments as well.

Conclusion and perspectives
To fully leverage the results from functional genomics

experiments with computational means, it is necessary to

define protein function in a systematic way. The fuzzy

concept of protein function is one reason for poor per-
www.sciencedirect.com
formance of machine-learning algorithms. The represen-

tation of functional genomics data in networks of

relationships between proteins and other biological mole-

cules is a potential way to address this challenge. In the

context of protein–protein interaction networks, for

instance, it is possible to clearly define both positive

and (equally importantly) negative reference examples.

Such ‘gold standards’ allow the computation of edge

weights in the network that represent the probabilities

of interactions in a given context. When expanding an

experimental method for detecting a protein feature from

small-scale systems to large-scale, genome-wide screens,

it is necessary to understand that the expected occurrence

of the feature may be much different in the genome as a

whole than in the small-scale system. A low prior prob-

ability of occurrence (which is characteristic for protein–

protein interactions, for instance) can result in a high

absolute number of false positive results even for experi-

mental methods that are fairly reliable in a situation

where positives and negatives are balanced.
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