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Abstract.  We carry out an extensive statistical study of the applicability of normal modes to 

the prediction of mobile regions in proteins. In particular, we assess the degree to which the 

observed motions found in a comprehensive dataset of 377 non-redundant motions can be modeled 

by a single normal-mode vibration. We describe each motion in our dataset by vectors connecting 

corresponding atoms in two crystallographically known conformations. We then measure the 

geometric overlap of these motion vectors with the displacement vectors of the lowest frequency 

mode, for one of the conformations. Our study suggests that the lowest mode contains useful 

information about the parts of a protein that move most (i.e. have the largest amplitudes) and about 

the direction of this movement. Based on our findings, we develop a web tool for motion prediction 

(available from http://molmovdb.org/nma) and apply it here to four representative motions -- from 

bacteriorhodopsin, calmodulin, insulin and T7 RNA polymerase. 
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Introduction 

In the analysis of protein dynamics, an important goal is the description of slow large-amplitude 

motions. These motions, while strongly damped, typically describe conformational changes which 

are essential for the functioning of proteins. Only global collective motions can significantly 

change the exposed surface of the protein and hence influence interactions with its environment. 

Such structural rearrangements in the protein can occur on a local level within a single domain or 

can involve large movements of protein domains in a multi-domain protein. Protein dynamics thus 

cover a broad time scale: 10-14- 10 s (Wilcox et al. 1988). However, many large-amplitude 

conformational changes are not on a time scale accessible by most time-dependent theoretical 

methods, such as phase space sampling techniques (e.g. molecular dynamics). Therefore, in order 

to gain insight into the mechanism of slow, large-amplitude motions, one must resort to the use of a 

time-independent approach, such as normal mode analysis (Levitt et al. 1985).  

Normal Mode Analysis (NMA) is a fast and simple method to calculate vibrational modes and 

protein flexibility. In NMA, sometimes restrained to Cα atoms only, the atoms are modeled as 

point masses connected by springs, which represent the interatomic force fields. One particular type 

of NMA is the elastic network model. In this model, the springs connecting each node to all other 

neighboring nodes are of equal strength and only the atom pairs within a cutoff distance are 

considered.  

All existing NMA techniques have important common limitations resulting from the use of the 

harmonic approximation, the neglect of solvent damping, and the absence of information about 

energy barriers and multiple minima on the potential energy surface (Elber and Karplus 1987; 

Frauenfelder et al. 1988; Hong et al. 1990). In fact, the most interesting biologically significant 

low-frequency motions in a realistic environment are overdamped and hence not vibrational at all, 
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rendering the corresponding normal mode frequencies of little physical significance (Go et al. 

1983; Kottalam and Case 1990; Horiuchi and Go 1991; Amadei et al. 1993). Therefore, the 

identification and characterization of low-frequency domain motions by using NMA might seem 

questionable. Nevertheless, comparisons of low-frequency normal modes and the directions of 

large-amplitude fluctuations in molecular dynamics simulations indicate clear similarities (Amadei 

et al. 1993; Hayward et al. 1997). Close directional coincidence of the lowest normal mode axes 

and the first principal component axes obtained from molecular dynamic simulations has been 

observed (Hayward et al. 1997). In addition, the axes of the first modes were found to be 

overwhelmingly closure axes. A lesser degree of correspondence was observed for the second 

modes.  

It has also been shown that the low-frequency modes describing the large-scale real-world 

motions of a protein can be related to fundamental biological characteristics (Brooks and Karplus 

1985; Thomas A 1999). For example, Bahar and Jernigan (Bahar and Jernigan 1998) successfully 

analyzed the vibrational dynamics of transfer RNAs, both free and complexed with the cognate 

synthetase using the elastic network model. The authors examined the global mode of motion of 

tRNAGln complexed with glutaminyl-tRNA synthetase and established that certain residues that 

cluster near the ATP binding site form a hinge-bending region controlling the cooperative motion 

and thereby the catalytic function of the enzyme. Normal modes have been successfully used to 

display concerted motions of proteins (Noguti and Go 1982; Brooks and Karplus 1983; Go et al. 

1983; Levy et al. 1984; Levitt et al. 1985; Henry et al. 1986), including slow motions between 

protein domains as in the hinge-bending motion of lysozyme (Brooks and Karplus 1985; Gibrat and 

Go 1990). Recently, it has been shown that the first step of the gating mechanism in the 

mechanosensitive channel (MscL) can be described with only the three lowest-frequency modes 
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(Valadie et al. 2003). Their results clearly indicate that the movement associated with these modes 

is an iris-like movement involving both tilts and twists. Several other works showed that low 

frequency modes overlap with real conformational changes (Thomas A 1999; Tama and 

Sanejouand 2001). There is also evidence to suggest that proper, symmetric normal mode vibration 

of binding pockets is crucial to correct biological activity in some proteins (Marques 1995; Thomas 

A 1996a; Thomas A 1996b; Hinsen 1998; Miller 1999).   

Experimental data on protein motions from incoherent neutron scattering and resulting 

observations of the density of states were also found to agree with simulations (Smith et al. 1987; 

Cusack et al. 1988). In particular, inelastic neutron scattering spectra have resolved the density of 

states for myoglobin in the low-frequency regime at room temperature (Cusack and Doster 1990). 

Site-selective fluorescence spectroscopy of Zn-substituted myoglobin has obtained this density 

without the use of model shape functions (Ahn et al. 1993). Resonance Raman spectra generated by 

ps laser pulses have also been interpreted by analyzing relaxation of protein normal modes (R. 

Alden 1992). 

 Despite the large body of successful NMA applications in protein dynamics studies, both 

theoretical and experimental normal modes have only been compared to actual motions on a case-

by-case basis. Few analyses have attempted to do this comprehensively in a database framework. 

Thus, the need for statistical assessment of the overall reliability and applicability of NMA to the 

description of various aspects of protein motion becomes apparent. In our previous work (Krebs et 

al. 2002) we performed a large-scale database study of molecular motions within the MolMovDB 

(Gerstein and Krebs 1998; Krebs and Gerstein 2000; Echols et al. 2003) framework. The results 

indicate that the lowest frequency normal mode contributes the most to the decomposition of the 

real (observed) motion in a linear combination of the first twenty normal modes, in agreement with 
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the findings mentioned above. In the present work, we ask to what degree the direction of the 

observed motion, described by vectors connecting corresponding atoms of a protein in its initial 

and final conformation, coincides with the displacement vectors of the lowest normal modes for the 

initial conformation. Since structure pairs may not always be available, the other main motivation 

behind this work was to develop an easy-to-use motion prediction technique capable of assessing 

the direction of the actual protein motion. 

Therefore, we constructed a comprehensive set of observed non-redundant molecular motions 

which we used to assess the quality of NMA predictions. If structures of two alternative 

conformations (one assigned to be “initial“ and the other “final“) are known, a direct comparison 

can be done between the difference vector of the two conformations and the calculated 

displacement vector of the lowest normal mode. Our results suggest that the top 2-3% of the most 

significant inter-domain movements in a protein can nevertheless be modeled successfully by a set 

of the corresponding lowest normal mode displacement vectors. We developed ab-initio selection 

criteria based on either indirect experimental evidence (B-factors) or structural variability within 

the corresponding fold family (in the multiple structural alignment sense) to single out those NMA 

displacement vectors that accurately model the most mobile parts of the molecule. Since portions of 

the molecule moving the most usually represent the most “biologically interesting” parts in a 

protein and normally serve as an approximate description of the overall motion, the goal to obtain a 

fast qualitative prediction of the overall motion has been achieved.  
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Results and Discussion 

 

Constructing a new Set of non-redundant motions 

The set of all chain sequences (~33,000 entries) extracted from all crystallographically 

determined proteins deposited in the PDB was a subject to all-vs-all sequence alignment using the 

FASTA program (Pearson and Lipman 1988). The pairs with greater than 99% identity (~700,000 

pairs) were selected for the initial pool of tentative motions. Structural alignment for this set of 

tentative structure pairs was performed using Least Square Fit (LSQ) method to select pairs with 

RMSD (Root-Mean-Squared Deviation) greater than 1.5 Å. To achieve an optimal superposition of 

the two structures we used our in-house structural alignment routine which finds the solution for 

the parameters of the RMSD-minimizing rotation matrix (RM) as suggested by Kabsch (Kabsch. 

1976). This RMSD value was used to select the final (comprehensive) set of structures within the 

chosen RMSD cutoff of 1.5 Å. 

In this comprehensive set of 13,571 structure pairs, 11217 were successfully “morphed”, i.e. a 

motion pathway could be constructed by the morph server. From those, 7467 were located in the 

CATH database (Orengo 1997) by their PDB and chain identifiers (Fig. 2). Morphs falling into the 

same near-identical CATH level (defined as all sequences with 99% identity) were taken and 

examined collectively to identify a single best representative morph. Where possible, structure pairs 

with one domain missing were discarded and the groupings were further reduced by taking only 

those pairs with sequence length greater than the mean for each set, thus eliminating truncated 

proteins. Finally, the morph with median overall RMSD between the initial and final frames was 

selected as the representative entry. In those families where the set was too small to perform this 

procedure, the morph with highest RMSD (and in some cases, the only available morph) was 
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selected by default.  Thus the final (non-redundant) set of 377 morphs had no more than 95% 

sequence identity between any two entries. These morphs, in the context of the overall CATH 

schema, are displayed at http://molmovdb.org/nma 

We calculated a histogram of RMSD values for our new non-redundant set of motion pairs (Fig. 

3). It shows that more than 90% of the RMSD values lie in the 1.5 – 5.5 Å interval.  

 

Statistical analysis of NMA directional correlations with observed motions 

We used an average correlation cosine squared, which we further refer to as S-statistic (Eq. (4)), 

as an overall quantitative measure of the NMA predicted motions. This quantity simply reflects the 

degree of average directional similarity between the observed motion vectors and the normal mode 

displacement vectors. The larger values of S correspond to the lower average angle between the two 

sets of vectors.  

First, we calculated the value of S and S2 for each motion pair in our data set, and plotted 

histograms of these values (Fig. 4 and 5). S2 statistic appears to be useful because the corresponding 

values of the average angle are mapped more uniformly to the interval [0..1]. To get a rough 

estimate of the average value for the directional overlap, one assumes that all atoms in a structure 

pair have a similar overlap O . Then the peak (most common) value 0.48 of S2 in the histogram 

would imply (see Eq. (4)) an average angle 

i

iθ  of 51 degrees, the angle between a typical normal 

mode displacement vector and an actual motion vector for the same Cα. This average value of iθ  

only marginally differs from the value of 54.7 degrees (Arfken and Weber 2000) between a pair of 

randomly generated 3D vectors. 

The behavior of the S-statistic was also studied as a function of the percentage of the selected 

Cαs. Cαs were selected based upon the length of the vector representing the actual movement of 
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that particular Cα. S-statistics were calculated again for the selected atoms. The histograms for the 

 and  (S values calculated for the 10% and 2.5% of the most moving Cαs, respectively) 

are shown in Figure 4. The average value of both  and  shifts to the right (  has no 

real peak anymore). The same trend (higher values of S for fewer selected atoms) can be seen in 

Figure 5, where S is plotted as a function of the percent of selected atoms. These results suggest 

that the direction of motion is predicted most accurately for Cα atoms that move the most.  

50%S 2.5%S

50%S 2.5%S 2.5%S

Conveniently, these are the atoms we are most interested in because just a few such atoms are 

needed to give an idea what the overall protein motion looks like. We propose that NMA (or at 

least the lowest frequency mode) is not suitable for providing accurate details for all of the 

constituent atoms in a biological system, but has a selective accuracy in capturing the large, 

concerted motion features of a given macromolecule.   

 

Representative examples of correlations with observed motions 

Here we describe several examples we have chosen from our comprehensive set, typical 

representatives of different major classes of motions, to illustrate our approach. In particular, we 

picked a small fragment shear motion (insulin), a small domain shear motion (bacteriorhodopsin), 

domain hinge motion (calmodulin) and a large-scale multi-domain refolding motion (T7 

polymerase), for which both initial and final conformations are experimentally available (Yin and 

Steitz 2002). S-values for these motions are plotted in Figure 5. One can see that except for T7, the 

S value for all the individual structures exhibit consistent performance as the overall 377 single-

domain set with regard to selection. Predicted directions of motion for the four most mobile Cαs 

are shown in Figures 6a- 6d. In all cases, the predicted largest movement and the observed one 
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superpose well. They involve the same atoms and point in “similar” directions. These predictions 

appear to be very helpful in deducing plausible mechanisms of protein function.  

 

(i) Insulin. In Figure 6a we show the predicted motions of insulin. The first and foremost 

conclusion of structural studies of insulin is that the protein is extremely flexible and adaptable. 

Numerous crystal forms depending on their specific T and R conformations are known (Chothia et 

al. 1983; Hua et al. 1991; Hawkins et al. 1994; Hawkins et al. 1995; Ye et al. 1996; Bao et al. 1997; 

Whittingham et al. 1997; Schlein et al. 2000; Ye et al. 2001; Dupradeau et al. 2002). The flexibility 

is especially marked in the B chain: the conformation of the N-terminus gives rise to the T and R 

naming system, and the flexibility of the C-terminus is thought to be very important in a 

conformational change necessary for receptor binding. In Figure 6a, the vectors representing our 

predicted motion of insulin suggest that chain B is indeed quite mobile: all significant motion 

vectors are located in chain B. Furthermore, the vector of motion at residue PHE 1B pointing along 

the helix axes suggests that this whole helix participates in a concerted motion. The other three 

vectors in the hinge region (PRO 28B, LYS 29B, and ALA 30B) pointing in almost perpendicular 

direction to the first vector, suggest the motion of chain B is a small fragment shear motion. This 

result relates to the experimental evidence that the beta-turn motion in chain B (residues B24-B30) 

is essential for the enzymatic activity of insulin (Bao et al. 1997).    

 

(ii) Calmodulin. Figure 6b shows the predicted movement of calmodulin, a ubiquitous 

eukaryotic Ca2+- binding protein that participates in numerous cellular regulatory processes. The X-

ray structure (Babu et al. 1985; Kretsinger et al. 1986; Babu et al. 1987; 1988) of this highly 

conserved 148-residue protein has a dumbbell-like shape in which two globular domains are 

 9



connected by a seven-turn α-helix. The binding of Ca2+ to either domain induces a conformational 

change in that domain, which further induces some other catalytic activity (such as activation of 

phosphorylase kinase). Much effort was put into determining the details of calmodulin structure 

and the mechanism of its Ca2+- induced conformational change (Kretsinger et al. 1986; Sekharudu 

and Sundaralingam 1993; Cook et al. 1994; Chin et al. 1997; Wilson and Brunger 2000; Kurokawa 

et al. 2001; Han et al. 2002; Hoelz et al. 2003; Yamauchi et al. 2003). The results of our 

calculations help to interpret the available experimental data. The vectors of the predicted largest 

moving parts of the molecule (Figure 6b) indicate the direction along which the EF-hand is most 

likely to move. This movement, in agreement with the existing experimental evidence (Persechini 

and Kretsinger 1988; Reuland et al. 2003) also suggests that calmodulin’s central helix serves as a 

flexible rather than as a rigid spacer, a property that probably further increases the range of target 

sequences to which calmodulin can bind (Putkey et al. 1988). 

 

(iii) Bacteriorhodopsin. Bacteriorhodopsin undergoes conformational changes during its 

catalytic cycle. These conformational changes are mainly restricted to the cytoplasmic side of the 

protein and for the most part involve helices E, F and G. This conformational change represents a 

crucial step in the activity of the native protein (Luecke et al. 1999; Subramaniam et al. 1999; Sass 

et al. 2000). The largest predicted motions in bacteriorhodopsin are shown in Figure 6c. We 

observe the largest movements for residues VAL101 (helix C), PHE153 (helix E) and VAL177 

(helix F) on the cytoplasmic side of the protein. Our prediction of the described movements of the 

cytoplasmic ends of the helices correlates well with the experimentally observed structural changes 

related to the functional activity of bacteriorhodopsin (Luecke et al. 1999; Subramaniam et al. 

1999; Luecke 2000). 
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(iv) T7 Polymerase.  Studies of the Bacteriophage T7 RNA polymerase reaction are crucial in 

the fundamental understanding of the mechanism of transcription (Jia and Patel 1997a; b), and are 

also important in biotechnology development (Roe et al. 1988; Majumdar et al. 1989). The high 

efficiency of T7 RNAP makes it a widely used tool in producing RNA in vitro and in microarray 

gene expression. The motion of T7 RNA polymerase is one of the largest recorded motions in the 

MolMovDB by any set of criteria. It involves partial refolding of about 250 residues in the N-

terminal domain in order to unbind the promoter and open up an exit channel for the nascent RNA 

(Yin and Steitz 2002). Conformational changes this large are not unheard of (e.g. fusion-triggering 

conformational change of a fusion domain from influenza hemagglutinin (Bullough et al. 1994; 

Han et al. 2001)). Still, a motion of this size is quite unexpected for a polymerase that is in the act 

of transcribing RNA. There is a good chance that additional intermediate stages exist (Yin and 

Steitz 2003). The normal mode characteristics of the motion for this large multi-domain protein 

differ significantly from the single-domain motions both in terms of the magnitudes of the 

displacement vectors and statistical characteristics. For the three single-domain proteins mentioned 

above, the S-statistic exhibits the same behavior as the one calculated for the whole data set, i.e., S 

reaches its maximal values (minimal average iθ ) for those atoms that move the most. It turns out 

that a restricted Cα selection based on anticipated motion magnitude is not necessary for T7 

polymerase. Moreover, for T7 polymerase, NMA predicts the direction of movement for all Cαs 

with slightly greater accuracy compared to the predictions for 2.5% the Cα’s with the largest 

motions in our single-domain motion set. This probably happens because the employed NMA 

allows one to see only the most prominent details of motion, that are better distinguished in a 

concerted multi-domain movement rather than in a smaller fragment motion. Recently (Cui et al. 
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2004) determined that “the character of the lowest-frequency modes of the beta(E) subunit is highly 

correlated with the large beta(E) to beta(TP) transition”, which is in agreement with our findings. 

However, more experimental data is needed to prove if NMA is better suited for larger motions. 

 

Selection criteria for single-structure predictions 

The above analysis suggests that the information about the protein motion contained in the 

lowest frequency normal mode vectors can be divided onto two parts: (i) the part related to the 

large-amplitude concerted motion and (ii) the smaller scale part related to local “jittering”. We can 

exclude the latter part if we restrict our attention to the atoms that move the most.  

It becomes apparent that additional criteria are necessary to ensure a reliable prediction of the 

largest motions when only one conformation is available. The ability to predict atoms that move the 

most as well as the directions of their motion can be very useful for gaining further insight about 

the mechanism of protein function in cases where conformational changes are unknown or where 

no high resolution structures exist.  

In general, Cαs with large motions can not be reliably selected based on the calculated NMA 

amplitudes – the correlation coefficient between the sets of normal mode displacements and the 

corresponding real motion vectors in our data set turns out to be only 0.34. Therefore, we used B-

factors to select the Cαs with the largest motion vectors. The correlation coefficient calculated for 

the B-factors versus observed motion amplitudes averaged over our data set appeared to be 0.77. 

When predicting the direction of the motion, we are guaranteed on average to have seven or eight 

out of ten atoms that move the most in our NMA description of the real motion based on a B-factor 

selection criterion. When B-factors for a particular structure are not available, one can select the 

Cαs that move the most based on their structural variation in the multiple structural alignment for 
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the corresponding fold family. In our study, we built multiple structural alignments for every 

motion pair in our data set in the following way. For each initial conformation, ten structures (if 

available) were selected from the corresponding fold family. In order to find an average core 

structure, the ten structures are aligned and the average RMSD value is minimized (Alexandrov 

2004). The Cα consensus positions with the largest structural deviation are assumed to represent 

the positions that move the most in the observed motion of the original structure. The correlation 

coefficient between the positional variations and the observed motion amplitudes averaged among 

all Cαs in the data set was found to be 0.83. Thus, the core structures can serve as an independent 

reliable criterion for selecting the most mobile atoms in a protein family and particularly for NMA 

predictions of directions of motions.  

 

Results of single structure predictions from testing and training data  

Since the number of proteins in our non-redundant set of motions is limited, we refined the cut-

off value for our S-statistic by using 10-fold cross-validation. The data set of 377 proteins was split 

into ten equally balanced subsets, each containing ~38 structures from the original set. Structures in 

each subset were selected completely randomly. Each structure belonged to only a single subset, 

and there were no duplicated structures in any subset. The optimal value for the cut-off, which 

turned out to be 2.5%, has been determined in each subset based on the remaining ~340 structures 

that belonged to the other nine subsets.  

In practice, selecting four atoms based on their B-factors for a single structure is sufficient to 

satisfy this threshold requirement as well as to build an overall qualitative picture of the overall 

protein motion. Motion prediction based on only a single “best” atom selection is also a viable 

alternative. The distribution of average absolute angles 
max

( ) 1

B

NB
N i

iN
θ θ≡ ∑  based on the one-atom 

( )
1

B
θ  
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and four-atom 
( )
4
B

θ  largest B-factor selection criteria for the entire data set is shown in Figure 7. 

Both distributions appear to be very similar. One can see that accurate motion direction predictions 

(<30 degrees deviation from the observed direction) occur commonly but not all the time. This is 

expected, however since NMA is not a very accurate description of real-life motion and the longest 

trajectory in a protein motion is rarely a straight line. Therefore, an otherwise correctly predicted 

initial direction of motion (NMA prediction) might deviate noticeably from the vector connecting 

its initial and final positions. This suggests, in turn, that a picture represented by four atoms with 

the largest B-factors tends to be a better visual description of the overall motion, particularly, in 

cases involving hinge motion or large-domain motion (from a statistical point of view, however, 

both one-atom and four-atom motion descriptions are nearly equivalent, since they both satisfy the 

2.5% selection criterion).  

 

Implementation of working prediction server 

We have set up an NMA web tool at http://molmovdb.org//nma/ to illustrate the main findings 

in the paper and to provide a motion-prediction service to the community (Figure 8). The tool 

allows a researcher to identify the key residues involved in the motion and their most probable 

direction. Given either a PDB/SCOP ID or an uploaded structure (Figure 8a), the server calculates 

the lowest normal mode of the submitted query, finds and highlights the most mobile structural 

regions and shows the direction of the four Cα atoms that move the most (Figure 8b). Selection of 

the four most accurate NMA vectors is based on either supplied B-factors or the pre-built multiple 

structural alignment for the corresponding fold family. The four selected atoms are shown in red in 

the calculated lowest-frequency-normal-mode movie. A static picture with all residues ranked and 
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highlighted based on their motion amplitudes (red: largest motion, blue: smallest motion) is also 

provided (Figure 8b). 

 

Conclusion 

An extensive statistical study to show the applicability of Normal Modes Analysis to the 

prediction of protein flexibility has been performed on a new, comprehensive dataset of non-

redundant single-domain motions. The motions were modeled by using the lowest frequency 

normal mode and predictions were assessed by directional overlap statistics. Our results suggest 

that it is possible to extract information from the lowest frequency normal mode, which identifies 

the most mobile parts of the protein as well as their directions by focusing on a few Cα atoms that 

move the most. We propose that the lowest frequency NMA can selectively predict the atoms and 

the direction of conformational changes occurring in proteins. While the normal mode analysis is 

based on finding vibrations that do not actually occur in the over-damped condition of a protein in 

its environment, it appears to usefully indicate the propensity of the structure to change in a 

particular direction. We find that motion prediction gains reliability if additional criteria, such as 

crystallographic B-factors and RMSD values from multiple structural alignments, are built in the 

motion analysis. A web tool for prediction of protein motion and flexibility has been developed to 

demonstrate the described approach. 
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Materials and Methods 

 

Basic NMA framework and its MMTK implementation 

The concept of Normal Mode Analysis is to find a set of basis vectors (normal modes) 

describing the molecule's concerted atomic motion and spanning the set of all 3  degrees of 

freedom. For very large molecules, it is often of more interest to find a small subset of these normal 

modes that in some way seem especially important. By modeling the inter-atomic bonds as springs 

and analyzing the protein as a large set of coupled harmonic oscillators, one can calculate a 

frequency of periodic motion associated with each normal mode, and then attempt to find normal 

modes with low frequencies.  

6N −

The principal of normal mode analysis is to solve an eigenvalue equation of the form 

 + ⋅ =q F q 0       (1) 

where q is a vector representing the displacements in three dimensions of the various atoms of the 

molecule, and F is a matrix that can be computed from the mass of the system and potential energy 

functions. Solutions to the above system are vectors of periodic functions (the normal modes) 

vibrating in unison at the characteristic frequency of the mode. 

We used MMTK (Hinsen 2000) to carry out Normal Mode Analysis on pre-processed PDB 

file pairs containing only Cα coordinates. The numerical Python module (Ascher et al. 2000) was 

employed to carry out all linear algebra computations.  Each residue was approximated as a single 

virtual atom with mass of the corresponding amino acid and centered at its Cα coordinate. The 

MMTK deformation force field was used to model inter-atomic Cα interactions. In this model, the 

energy is computed as the difference between a displaced model and the experimental structure 

using the formula: 
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where is a constant, R is the vector connecting atom i to atom j in the experimental structure, 

is the difference vector between atom i in the displaced (final) structure and the same atom in the 

initial structure. Furthermore, in the practical implementation of the NMA used here (Hinsen 2000), 

the force constant value decreases with distance as an exponential function to allow its efficient 

evaluation with a cutoff not significantly larger then the interatomic equilibrium distance .   

k (0)
ij

id

(0)
ijR

In order to accelerate our computations, we restricted MMTK to compute only the twenty 

lowest-frequency normal modes. In our earlier work (Krebs et al. 2002) we showed that this 

truncation is adequate for qualitative characterization of the lowest frequency protein motions. 

 

Statistical measures for assessing overlap 

A means of quantifying the similarity of the displacement between the PDB structures and 

the normal mode displacement vectors can be achieved in terms of the following quantities 

( )cos i i
i i

i i

DO abs
D

θ
 ∆ ⋅≡ =
 ∆ ⋅ 

      (3) 

In the above formula, we define the ‘directional overlap’ O  for one particular atom i as the 

absolute value of the cosine of the angle between the displacement vector  of the lowest 

frequency mode and the observed direction of motion 

i

iD

i∆  (Fig. 1). 

We use these individual directional overlaps O  to define the second order statistic, S-statistic:  i

( )( )22

1 1

1 1 cos
N N

i
i i

S O
N N

θ
= =

= =∑ ∑ i ,     (4) 

 17



which serves as an overall quantitative measure of the similarity in directionality between the 

observed motion vectors and the normal mode displacement vectors. 

We also define an overlap measure in relation to atom selection. The quantity %PS  is defined as 

2
%

1

1 M

P i
i

S
M

∆

=

= O∑ ,      (5) 

where the sum is carried over the first P percent of Cαs with the largest difference vectors i∆  

( 0.01M N≡ ⋅

%

P ). When the number of selected atoms is small, it is convenient to rewrite the 

quantity PS ∆ as 

2

1

1 M

topM i
i

S
M

∆

=

= O∑ ,       (6) 

in order to explicitly indicate the number M of Cαs with the largest difference vectors entering the 

sum in Eqs. (5) and (6). Quantities %
B
PS  and  are defined in exactly the same way as their 

counterparts 

B
topMS

%PS ∆  and  except that the selection of Cαs is carried with respect to their 

corresponding B-factors, rather than the difference vectors.  

topMS ∆

 For robustness, we can also define an average angle 
( )B
Nθ  

max

( ) 1

B

NB
N i

iN
θ θ≡ ∑ ,     (7) 

where summation is carried over N<M angles iθ  corresponding to the Cα atoms with the largest B-

factors. 
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Figure legends. 
 
Figure 1. Notations used in the paper. Rij is the vector connecting atom i to atom j in the 
experimental (initial) structure; ∆j is the difference vector between atom i in the displaced (final) 
structure and the same atom in the initial structure; Dj is the lowest normal mode displacement 
vector for atom j in the initial conformation; θj is the angle between vectors Dj and ∆j for atom j. 
 
Figure 2. An illustration of the scheme that was used to identify the data set of non-redundant 
domain motions 
 
Figure 3. Distribution of RMSD scores (in Angstroms) for the non-redundant set of domain 
motions. 
 
Figure 4. Histogram of S2 statistic and the corresponding average θj angle. Values are shown for 
100% (dotted), 10% (dashed) and 2.5% (solid) of selected Cα−atoms based on the motion 
amplitudes in the non-redundant data set of domain motions. Selection of the most moving atoms 
results in larger values of S2 (the larger values of S and S2 correspond to the lower average angle 
between the two sets of vectors). Dotted line points to the location of θj  equal to 54.7°, the average 
angle between two randomly generated vectors. 
 
Figure 5. S statistic as a function of percentage of the largest selected Cα displacements for single-
domain and multi-domain protein motions  
 
Figure 6. Real motion (red) and NMA-predicted (blue) vectors for the motion of (a) insulin 
(d7insb_ SCOP domain), (b) calmodulin (d2bbm__ domain), (c) bacteriorhodopsin (d1c8sa_ SCOP 
domain) and (d) T7 polymerase (elongation complex). In (d) labels 1,2,3 and 4 represent residues 
THR 596, VAL 597, THR 598 and GLY 603 respectively. Arrows indicate only the directions of 
the motion. 
 
Figure 7. Histogram of the average angle between the lowest frequency normal mode vectors and 
the corresponding observed displacement vectors for the selected Cα with the largest B-factors in 
the non-redundant data set of domain motions. ( )

4
Bθ  distribution is represented by the solid line, and 

( )
1

Bθ  by the dashed line. 
 
Figure 8. Screenshot of the NMA motion and flexibility prediction server: (a) input page and (b) 
results page. 
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