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Abstract 
We investigated protein motions using normal modes within a database framework, determining on a large 
sample the degree to which normal modes anticipate the direction of the observed motion and were useful 
for motions classification. As a starting point for our analysis, we identified a large number of examples of 
protein flexibility from a comprehensive set of structural alignments of the proteins in the PDB. Each 
example consisted of a pair of proteins that were considerably different in structure given their sequence 
similarity. On each pair, we performed geometric comparisons and adiabatic-mapping interpolations in a 
high-throughput pipeline, arriving at a final list of 3814 putative motions and standardized statistics for 
each. We then computed the normal modes of each motion in this list, determining the linear combination 
of modes that best approximated the direction of the observed motion. We integrated our new motions and 
normal mode calculations in the Macromolecular Motions Database, through a new ranking interface at 
http://molmovdb.org. Based on the normal mode calculations and the interpolations, we identified a new 
statistic, mode concentration, related to the mathematical concept of information content, which describes 
the degree to which the direction of the observed motion can be summarized by a few modes. Using this 
statistic we were able to determine the fraction of the 3814 motions where one could anticipate the 
direction of the actual motion from only a few modes. We also investigated mode concentration in 
comparison to related statistics on combinations of normal modes and correlated it with quantities 
characterizing protein flexibility (e.g. maximum backbone displacement or number of mobile atoms). 
Finally, we evaluated the ability of mode concentration to automatically classify motions into a variety of 
simple categories (e.g. whether or not they are “fragment-like”), in comparison to motion statistics. This 
involved the application of decision trees and feature selection (particular machine-learning techniques) to 
training and testing sets derived from merging the “list” of motions with manually classified ones. 
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Introduction 
 
Protein motions play a key role in a wide range of biological phenomena, including 
chemical concentration regulation, signal transduction, transport of metabolites, and 
cellular locomotion1-3. Motion is typically the way a structure actually carries out a 
specific function; for this reason, motions are an essential link between function and 
structure. 
 
We previously developed a database of macromolecular motions1, 4, 5, which consisted of 
crystallographically documented protein motions. We also developed a morph server 
coupled to a collection of protein “morph” movies and related statistics6. Here: 
 

(i) we identify ~4,000 putative new motions from automatic structural 
comparison on the PDB7; 

(ii) we add these to our database and present the results in a new ranking 
interface; 

(iii) we analyze the dynamics of these many motions, perform normal mode 
analysis on them, and calculate statistics to encapsulate the results of the 
normal mode analysis; 

(iv) from the normal mode analysis and the interpolations, we assemble a corpus 
of statistics and perform datamining and feature extraction on this corpus; and  

(v) we identify a number of statistics, in particular, mode concentration, that we 
find useful. 

 
Our work builds upon a rich literature in macromolecular motions8-11. Motion related to 
proteins’ mechanical function has mainly been studied experimentally by X-ray 
crystallography. Traditional X-ray crystallography has provided key insights into the 
relationships between conformational change and macromolecular function; GroEL12 and 
beta-actin13 are just two of many examples. Progress in the field of time-resolved x-ray 
crystallography14-16 has also enhanced the study of biologically significant protein 
conformational change. Recently, it has become possible to study larger protein 
conformational changes via NMR17. Other approaches have focused on the use of 
computational methods18-25. A systematic comparison of PDB-derived difference vectors 
has been published elsewhere on a much smaller scale26. 
 
Normal mode analysis is a computational approach that can be applied to protein 
conformational change. Widely used by spectroscopists for many years to associate IR 
and Raman experimental peaks with small molecule vibrational modes27, advances in 
computer technology over the last few decades has made normal mode analysis of 
proteins and other large molecules practical. This was first applied to proteins in the mid-
80s and has subsequently been scaled up28-34. The concept of normal mode analysis is to 
find a set of basis vectors (normal modes) describing the molecule's concerted atomic 
motion and spanning the set of all 3N 6−  degrees of freedom. For very large molecules, 
it is often more of interest to try to find a small subset of these normal modes that seem in 
some way especially important. By modeling the interatomic bonds as springs and 
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analyzing the protein as a large set of coupled harmonic oscillators, one can calculate a 
frequency of periodic motion associated with each normal mode, and then attempt to find 
normal modes with low frequencies. The low-frequency normal modes of proteins are 
thought to correspond to the large-scale real-world vibrations of the protein, and can be 
used to deduce significant biological properties. There is evidence to suggest35-40 that 
proper, symmetric normal mode vibration of binding pockets is crucial to correct 
biological activity in some proteins. 
 
The principal of normal mode analysis is to solve an eigenvalue equation of the form 
 

 + =q F q 0�� i       (1) 
 
where the vector q is a vector representing the displacements in three dimensions of the 
various atoms of the molecule, and F is a matrix that can be computed from the system's 
mass and potential energy functions. Solutions to the above system are vectors of 
periodic functions (the normal modes) vibrating in unison at the characteristic frequency 
of the mode. 
 
Normal modes have proved to be highly useful in both modeling protein motions and in 
interpretation of the experimental results29, 32, 41-53 Macromolecular motions can be often 
characterized by long (nanosecond or beyond) time-scale, and it has been suggested 54, 55 
that it may be possible to identify one or a few low-frequency normal modes, which 
would connect conformational endpoints. However, in certain cases (e.g. calmodulin 
motion) the amplitudes for the actual (observed) motion and the normal modes 
displacement vectors may differ by several orders of magnitude. For these cases, our 
theory may only be valid in interpretation of the motion initiation stage and in analysis of 
facilitating factors causing the actual motion. 
 
In this paper we apply normal mode analysis to the study of protein motions. 
Fundamentally, we chose normal modes over MD and other related computational 
techniques because normal mode analysis gives a concise description of a motion (in 
terms of a small number of modes) that is ideal for subsequent statistical tabulation. Also, 
the application of normal mode analysis techniques to ~4000 conformational changes is 
much less expensive than most of the competing techniques. 
 
In this analysis, the question we are trying to answer is to what degree the direction of the 
observed motion (a set of vectors connecting the structure pair) occurs along with the 
displacement vectors of the lowest normal modes for the initial conformation. This may 
indirectly provide an insight about how much protein dynamics is dominated by 
anharmonic contributions, even though it was not a goal of this work to develop any such 
quantitative anharmonicity measure. Since the structure pairs may not always be 
available, one of the main motivations behind this work was to see if it were possible to 
develop an inexpensive motion analysis technique capable of assessing the direction of 
the actual protein motion.  
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Our normal mode analyses are related to the ‘Essential Dynamics’ (ED) methods of 
Berdensen56, 57 on normal modes, involving a singular value decomposition analysis of 
normal mode atomic displacements and how they relate to experimentally solved 
conformations. (Essential Dynamics can also be applied to other dynamical approaches 
that generate displacements including techniques which do not make a harmonic 
assumption such as MD simulations or experimentally determined ensembles of 
structures56.) However, our analysis is in many ways formally different, and we apply it 
within a database framework. Many of the problems customarily found in ED analyses 
also apply: e.g., the superfluous rotational and translational differences must be 
eliminated by superimposing the experimental structures to fix at least one domain; in the 
process, the motion’s screw-axis may be characterized58. Previously, we developed web 
software tools to solve these problems in a different way using purely experimental 
information6. We analyze a comprehensive database of thousands of putative protein 
motions, whereas existing publications limit their scope to single proteins or databases 
specific to certain types of proteins. 

Materials and Methods 

Data sources 

Full Outlier Set 
 
To identify a large dataset of proteins with conformational changes, Wilson et al.59 
performed automatic pairwise sequence, structure, and function comparisons on about 
30,000 pairs of protein domains constructed according to scop fold classification60-65. 
Using this set of alignments we were able to identify ~4,400 pairs of likely protein 
motions. We call this set the "full outlier set" (The definition of these terms are shown in 
Table 1a). Its construction is described in detail in Figure 1. Basically, we plotted RMS 
structure alignment scores against sequence percent identity for the ~30,000 scop domain 
pairs aligned in Wilson et al.59. We binned the plot into one-percent wide bins. For each 
bin, we computed a mean RMS and standard deviation. Points lying more than two 
standard deviations above the mean were removed from the dataset and used to generate 
a new dataset, the full outlier dataset, which ultimately consisted of 4,400 such pairs. This 
set is intended as a comprehensive sample of protein flexibility in the PDB. 
 

Workable Outlier Set 
 
We ran the full outlier set through our protein morphing server6. We placed the resulting 
database of pre-processed PDB files, morph statistics, and movies, on the World Wide 
Web, organized by their scop fold classification. The new automated approach was able 
to process and generate several thousand new morph movies. As described below, the 
morph server acted as a filter, eliminating about 600 pairs in the full outlier set that 
corresponded to non-physical motions. Next, we applied the normal mode analysis 
described below on the successfully morphed pairs, to produce a set of about 3,800 
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motion pairs, the “outlier set”. In this paper we concentrate exclusively on this new 
“workable outlier set” data.  

Manual Set 
 
In order to perform feature analysis, we classified two subsets of the workable outlier set 
(the “manual set” and the “extended set”) into the classification schema of the Database 
of Macromolecular Motions1 (“fragment”, “domain”, “subunit”, “complex” on the basis 
of size and “hinge”, “shear”, “neither hinge nor shear” and “unclassifiable” on the basis 
of packing). Further details about this classification may be found in our previous paper1.  
 
For the “manual set”, we performed a database merge of the “outlier set” against the 
previously published set of manually classified motions in the Database of 
Macromolecular Motions1, the “1998 motions.” The PDB identifiers in each motion pair 
in the outlier set were checked for matches against the PDB identifiers associated with 
the 1998 motions. When a match was found (meaning the protein had been manually 
classified), the motion pair was given the same classification as its constituent protein had 
been given in the database. 245 motion pairs met this criterion and were classified 
accordingly. Classifications in this manual training are expected to be accurate. (There 
was, however, one issue in applying this merge: GroEL is classified both as a subunit and 
a fragment motion. Because the Morph server analyzes single domains, not entire 
subunits, the fragment classification was used in this isolated case.) 
 

Extended Set 
 
To enlarge the training data for the supervised machine learning analysis, we constructed 
a second, larger training set (the “extended set”). For a variety of physical reasons, 
proteins sharing the same fold family generally share a similar motion classification -- in 
particular, we have observed this in our manual surveys of motions.1, 6, 60, 66, 67  
Consequently, we constructed this set under the assumption that domains sharing a fold 
usually share a motion classification. The outlier set is constructed in such a way that 
both pairs always belong to the same fold family. It was therefore necessary only to 
determine the scop fold classification60, 65 for each of the 245 motion pairs in manual 
training set and then assign the classification in the manual set to the entire scop fold 
family. Pairs in the outlier set belonging to this scop fold family then simply received the 
family's classification. In this way we identified a set of 1670 motions, which we call the 
“extended training set”. This set of classifications, although potentially less accurate than 
the manual training set, is still quite useful.  

Preprocessing with Morph Server 
 
We analyzed 3,814 proteins using this method from the full outlier set. Previously6, we 
modified the X-PLOR package68 to homogenize the stored coordinates, a non-trivial 
problem69, 70. Filling-in of missing non-hydrogen coordinates was necessary for the 
energy minimization subsystems to work robustly with a large number of PDB files and 
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ensured consistent numbering of atoms so the PDB files for the starting and ending 
conformations had to be pre-processed (“homogenized”) by the Morph Server6. Only 
pairs of protein conformations for which the morph server had successfully produced a 
movie were considered; this had the effect of filtering out pairs unlikely to involve a true 
motion, although no doubt some pairs which did not represent a true biological motion 
nevertheless did generate a plausible morph. The Morph Server also removes overall 
rotation and translation motions from the input structure. 

High-throughput Normal Mode Analysis of the Outlier Set 
 
We used MMTK71 to carry out normal mode analysis on the pre-processed PDB file 
pairs. The numerical Python module72 made the linear algebra computations. A master 
Perl73 script fed database information to the slave Python MMTK module. The results 
reported here were performed by computing the normal modes of the starting structures 
in each pair. Reversing the calculations by computing the normal modes of the ending 
structures did not appreciably alter the results. 
 
Finding the normal modes themselves dominated the time and memory requirements of 
our analyses. In order to process the larger proteins in our database, we approximated 
each residue as a single, virtual atom centered at its C-α coordinate and selected the 
corresponding standard force field in MMTK71. This made the memory requirements of 
the normal mode analysis tractable on our systems. To further accelerate the 
computations, we restricted MMTK to compute only the twenty lowest-frequency normal 
modes. 
 
We used the MMTK deformation force field model. In this model, the energy is 
computed as the difference between some displaced model and the experimental structure 
using the formula: 
 

 ( ) 2(0) (0) (0)

1

1
2

N

i ij ij i j
j

E k
=

ij = + − − ∑ R R d d R  (2) 

 where is a constant, is the vector from atom i to atom j in the experimental 
structure, d is the vector between the atom i in the displaced structure and the same atom 
in the ground-state experimental structure. 

k (0)
ijR

i

 
Each calculation averaged 20 seconds per protein pair on a 450-Mhz Pentium III 
processor with 0.7 Gigabytes of RAM running the Red Hat Linux operating system. An 
average analysis took about 100 Megabytes of memory to invert the matrix. 
 

Theoretical Approach For Analysis of Normal Mode Statistics 
We computed a number of key statistics on the normal modes (Table 1b), which we 
describe here. 
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Analysis of Observed Motion 
 
The lowest frequency normal modes determined by Normal Mode Analysis may be 
represented as an matrix A, where m is three times the number of atoms in the 
system (one entry for each Cartesian axis), and n is the number of normal modes of 
interest. In this paper, n is twenty. 

m n×

 
Imagine a vector v  of length n , specifying some interesting linear combination of 
normal modes. Then Av  is a vector of length , representing a trajectory of atoms. If 
we let the vectors c  and  be the vectors of length m giving the positions of the m  
atoms in conformations C  (starting) and  (ending), respectively. We determined 
these from our database of motion, which has such data, chiefly derived from 
experimental sources such as x-ray crystallography. 

m
i fc

i

/ 3

fC

 
If we now define a new vector b c f ci= − , or the differences between the ending and 
starting positions of each of the atoms of the structure along all three Cartesian axes, then 
we can find optimal v so that 
 
 =Av b  (3) 
 
In the normal case where dim 3 6N< −v , this represents an over-determined system of 
linear equations, and may be solved by an appropriate numerical technique for solving 
linear least squares, such as Single Value Decomposition (SVD)74. In practice, this is a 
very quick calculation, nearly instantaneous to the user. 

 

Analytic Measures  
 

Overlap of Each Mode with Direction of Motion 
 
For every motion pair, we computed the overlap of each normal mode against the vectors 
giving the differences between the structures corresponding to the motions. For one 
particular atom, we define the ‘overlap’ O as the cosine of the angle between the mode 
and the direction of motion, 

ij

i ij
ij

i ij

O
⋅

≡
⋅

b f
b f

.      (4) 

In the above formula O  is represented as a normalized dot product between some 

reference vector 
ij

ib  (in this case, the displacement between the PDB structures of the 
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motion pair in question) and ijf , the jth normal mode displacement vector for the same 
atom.  
For the ensemble of atoms in a structure, we can define ‘average overlap’ O  as the mean 
overlap averaged over all N atoms in the structure, i.e. 

j

1

1 n

j
i

O
n =

≡ ijO∑ .     (5) 

We can also calculate an average absolute value of the cosine 1
1

n
ijn i

O
=∑ , which provides 

a quantitative measure of the first-order overall deviation for a particular normal mode 
from the observed motion. The larger values of this quantity indicate that a given mode’s 
atomic displacement vectors are more similar in directionality to the vectors giving the 
differences between the PDB files. The mode of ‘maximum overlap’ is the mode with the 
greatest ‘absolute average overlap’ and most matches the protein motion’s directionality. 
 

S-correlation 
A means of quantifying the similarity of the displacement between the PDB structures 
and the normal mode displacement vectors can be also achieved by calculating the 
following quantity, 

 
2

2 2 2

1 1

n n

j
j j

s j O jO
= =

 
= − 

 
∑ ∑ j   (6) 

where  is defined as above. This formula, directly adapted from Hinsen's workjO 39 with 
a lowering of dimensionality, gives the s-correlation between the reference vector and the 
set of normal mode displacement vectors. This may be used to provide an overall 
quantitative measure of the similarity in directionality between the observed 
displacements and those of the various normal modes. Thus, the convention used to 
number the modes does not affect s-correlation in a meaningful way. 

In the present work we also utilize an interesting mathematical property of this statistic: 
its positive definite values imply that the displacement vectors from only the lowest two 
normal modes may coincide with the direction of the observed motion. 

Mode Concentration 
 
Based on the fit of the modes to the observed motion, we calculate a number of statistics 
that show the degree to which the fit is dominated by a single mode. We define norm zero 
(“norm0”) as simply the weight of the largest component (i.e., the largest value in the 
vector v), the one norm as the average component (“norm1”), and the two norm as simply 
the Euclidean mean (“norm2”) of the component’s weight. 
 
All of these statistics give a measure of the degree to which the vector v is dominated by 
a single component. In somewhat more sophisticated fashion we can measure this using 
information theory approaches. 



Krebs et al Page 10 3/11/2002 

  
In coding theory, information content is related to the negative entropy of a physical 
system. It specifies how much information is stored in a given set of numbers, and is 
typically used to compare the efficiencies of compression techniques. Therefore, once v  
has been obtained, a statistic may be computed to summarize the information contained 
in the vector v : 

 
1

ln
n

i
i

I
=

= −∑ v vi  (7) 

This statistic specifies how much movement is concentrated in any given mode, hence its 
name, “mode concentration”.  
 
We can normalize I to unity by dividing it over its maximal value, corresponding to the 
uniform movement distribution over all available modes, and obtain the ‘percentage 
mode concentration’ statistic I� , that specifies the degree to which a given motion is 
localized within a few modes relative to the uniform distribution (maximal disorder). As 
mentioned above, one can also directly relate information content (and, thus, also our 
normalized information content) to the well-known Boltzmann formula  for 
the entropy (measure of the system disorder in statistical mechanics) expressed through 
the number of states N available to the system, i.e. 

lnS k N=

lnI N� ∼      (8) 
The normalization ensures that I�  approaches zero if all movement is concentrated in 
only one normal mode (N=1), whereas the value of 1I =�  corresponds to the even 
distribution of motion over all available normal modes (i.e. to the maximal value of I  
computed from Eq. (7)).  

Results 

Application of these Statistics to the Outlier Dataset 
 
Figures 2 through 5 illustrate some properties of the above statistics on the outlier dataset. 
 
Figure 2 shows distributions of the normalized mode concentration and norm0 statistics. 
Using the logarithmic dependence Eq.(8) of the normalized mode concentration with 
respect to the number of available modes, one can arrive at the number of most heavily 
involved modes. This would be the value of N, for which the value of I�  is most 
frequently observed. The observed peak in the normalized mode-concentration histogram 
at 0.6 (Figure 2a) suggests that the actual direction of the motion lies most often along the 
direction of two modes. Analysis of norm0 histogram (Figure 2b) further confirms this 
finding: the most commonly observed weight of the major contributing mode lies within 
the range 0.5-0.6 (i.e. there is usually one mode that dominates the motion fit) whereas 
the normal mode approximations with values of norm0 below 0.4 are quite rare (the latter 
would imply that there are usually more than two mostly contributing normal modes exist 
for each normal mode fit). 
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Figure 3 shows that most often the low-frequency modes tend to be the ones with 
maximum overlap with the actual direction of motion (Figure 3). There is also a 
relationship between protein size (measured in number of residues), mode frequency, and 
maximum overlap (Figures 4 and 5). 
 
Protein size (measured in number of residues) is negatively correlated to maximum 
overlap (Figure 4). Larger proteins have additional fragments that can be involved in a 
motion and, hence, additional degrees of freedom, decreasing the overlap between the 
tested normal modes and the observed motion. (An alternative explanation for this 
observation is that the various approximations used in normal modes approximation work 
less well for larger proteins.) Maximum overlap decreases with protein size, but the effect 
is not dramatic, so it should be possible to design a standard analysis that works well on 
proteins comparable to those in our database.  
 
Increasing protein size (in residues) corresponds to modes of maximum overlap of 
decreasing frequency (Figure 5). A standard analysis concerned with larger proteins may 
need to consider more low-frequency normal modes than would suffice for smaller 
proteins. It would be desirable, given a protein of specific size, to deduce a frequency cut-
off value, above which normal modes could be expected to be less useful in an analysis 
of motion. Analyses of individual proteins in the literature support the existence of such a 
cutoff46, 75 showing a slight dependency on the force field used. Our results show that it is 
possible to determine such a cut-off frequency statistically from our database (Figure 5) 
and thereby empirically deduce a reasonable number of normal modes to use in a given 
type of analysis. Researchers using an identical force field to the one used in this study 
may consult Figure 5 directly to determine the appropriate cut-off for their particular 
protein; researchers using slightly different force fields or dynamical methods may wish 
to obtain access to the database to compute a cut-off value appropriate for their specific 
dynamical analysis. 
 

Validation of Mode Concentration with Feature Extraction 
Techniques 
 
The physical and information theory basis of the mode concentration statistic suggested it 
might be useful in classification problems. Subsequent analysis via machine learning 
techniques (below) supports this. 
 
Artificial intelligence feature analysis techniques, particularly, supervised machine 
learning, provide one way of validating the usefulness of our mode concentration 
statistic. In general, the concept of supervised machine learning is that the system is 
“taught” to classify a given set of inputs by being given a “training set” that matches a 
sample set of inputs to a correct set of outputs.76 
 
As described above, we created the manual and extended data sets as training sets to 
perform feature analysis. Using supervised machine learning techniques76, 77, we 
constructed two decision trees in S-Plus (MathSoft, Inc.) using the software’s default 
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parameters77-79 (one for each of the two training sets) to classify the statistics, including 
the new ones (Table 2), in the morph server6. The use of S-Plus to construct decision 
trees from a specific training data set is a straightforward operation. 
 
Decision trees, a form of supervised machine learning, attempt to partition the examples 
in the training set based on the values of individual statistics (Figure 7). In the actual 
decision tree, each statistic used in the classification decision appears in at least one 
branch junction. Features more relevant to the classification problem tend to appear 
earlier in the decision-making process, corresponding to a higher-level branch in the 
trees. By recording the depth any statistic first appears, decision trees may be used for 
feature analysis (Table 3). Mode concentration ranks prominently with a low depth, 
indicating that it appears high in the tree and is therefore useful for classifying motions. 
 
Using appropriate, simple physical and mathematical concepts (normal mode analysis, 
singular value decomposition) we postulated several statistics (mode concentration and 
the various analytic norm measures) and confirmed our initial hypotheses using artificial 
intelligence techniques. These culled the morph server’s6 output of 36 physically-
motivated statistics down to a set of nine “essential” statistics that proved most useful in 
this particular classification problem (Table 4), which agree roughly with our own sense 
of the statistics most related to motion size. Similar databases of heterogeneous biological 
statistics may be “distilled” from a larger body of experimental data with these and 
similar techniques. In this case, the automatic classification features of the decision trees 
are only a side benefit. Feature analysis confirmed our earlier intuition that mode 
concentration can be useful for classifying motions. 
 
Depending on the supervised machine learning technique used (decision trees) larger 
training sets can sometimes produce a more accurate automatic classifier than a smaller 
classifier. For this reason it is possible that an automatic classifier produced from the 
larger extended training set may classify more accurately than one produced from the 
smaller, more accurate manual set, although this may seem counterintuitive. Comparing 
the results produced by the manual and the extended training sets thus will serve as a 
useful check. 

Web and Database Integration 
 
We used the results of our decision tree analysis (Table 3) to improve the ordering and 
presentation of statistics in Macromolecular Motions Database web reports 
(http://molmovdb.org). In addition, a new web tool (Figure 8) on this site graphically 
depicts output from the normal mode analysis as well as older experimental information.  
 
The new data from normal mode analysis has been integrated into both the 
Macromolecular Motions Database and the Partslist Database (http://partslist.org/) as 
well80. This allows comparison by fold of motion and other data by a number of 
techniques, including regression analysis. Interactive users can test a number of statistics 
for correlation against the new data, as well as identify outlying folds that do not maintain 
the normal regression pattern by mouse over. Figure 9 gives a screen shot of motions 

http://www.molmovdb.org/
http://partslist.org/
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ranked by average mode concentration in the Movie Gallery page of the Macromolecular 
Motions Database, which will show the animation of the corresponding motion on click. 
 

Discussion 
 
Comprehensive structural studies within a database framework, such as the one described 
here, can complement more traditional computational studies of single molecules in a 
number of ways. The most immediate benefit is that a database study makes more data 
available to researchers, and can sometimes make more general statements about trends 
and patterns in the results than would be possible from similar studies on a smaller 
sample of macromolecules. A disadvantage of the type of database study performed here 
is that they require greater computational resources than equivalent studies on single 
macromolecules. Also, the implementation of automatic methods to handle a large class 
of macromolecules may require somewhat greater algorithmic sophistication since steps 
requiring manual processing are less desirable when dealing with a large number of 
structures. 
 
Researchers who have developed their own, novel computational structural studies may 
expand their computations from analyses of single molecules to a comprehensive study of 
an entire structural database, such as the Database of Macromolecular Motions. The 
results of such structural studies constitute databases in their own right. Artificial 
intelligence techniques can then be applied to such derived databases to append 
additional, useful statistics, “distill” a derived database down to a set of “essential” 
statistics, as well as construct automatic classifiers. This has obvious practical 
applications; e.g., pharmaceutical companies might mine existing biological databases 
and apply existing or new algorithmic techniques (e.g., variants on normal mode 
analysis) to generate derived databases describing potential drug targets within a 
statistical framework. Artificial intelligence techniques can be used to extract key 
features and empirically assess the validity of new statistical models. 
 

Conclusions 
 
We have developed a framework that allows for a statistical study, in combination with 
our Database of Macromolecular Motions, of the importance of normal mode vibrations 
in biologically significant macromolecular motions. A statistic calculated from our 
analysis of normal mode displacements, mode concentration, is corroborated by feature 
selection as a useful statistic in classification. Feature selection techniques can be used to 
“summarize” databases of experimentally derived statistics into an especially salient set 
of “essential” statistics. 
 
Examining the relationship between the aggregate directionality of the normal modes and 
structures’ conformational change through a statistic such as mode concentration can be 
used to classify the motion (“fragment”, “domain”, or “subunit”). Normal modes have 
already been used58 to identify dynamic protein domains. An analysis of the distribution 
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of low-frequency normal mode trajectories should provide information about the type of 
protein motion and size of the domains involved in the motion. Our data empirically 
supports earlier results46 that analysis of only a small number of low-frequency modes 
should suffice for qualitative analysis of protein dynamics. The database can also be used 
to determine statistically the cut-off for normal modes computed using different force 
fields. 
 
In addition to being made available through the Macromolecular Motions Database, our 
new data sets are integrated into the external Partslist database80. We have provided 
additional web tools associated with this paper that allow molecular biologists to perform 
flexibility analysis on structures with putative motions, thereby identify key residues 
involved in the motion, and compare the results with similar analysis on the over 4,000 
new motions now available in the database. 
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Tables 
Table 1a. Definitions table. This table lists the various data sources used in this 
paper, giving the location of each, along with a brief explanation of its use or importance.  
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Table 1b. Definitions of the key statistics and other terms used in subsequent tables as 
well as in the text of the paper. 
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Table 2. Summary of new statistics added to morph server. This table presents mean, 
standard deviation, minimum, maximum, and median values for the new statistics that 
were added to the database following normal mode analysis of approximately 3,800 
motion pairs in the database. The statistics are defined in Table 1b.  
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Table 3. This table compares the percentages and absolute counts of domain, 
fragment, and subunit motions in each of the classified, extended, and manual training 
sets. Definitions of the different sets in the header are given in the text as well as Table 
1a. “Count” gives the number of times the particular motion size classification (Domain, 
Fragment, and Subunit) occurs in that dataset. “Percent” is the percentage out of the total 
number (“Total”) of domain, fragment, and subunit motions in the dataset. The two 
columns on the left for the auto-classified set (“count” and “percent”) represent a 
prediction made by an auto-classifier; the remaining columns represent observations.  
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Table 4. This table indicates the earliest depth of the supervised machine learning 
decision tree each statistic first occurs, thus quantifying the relevance of each statistic to 
the particular motion property at hand (“fragment”, “domain”, or “subunit” motion, in 
this case). 



Krebs et al Page 25 3/11/2002 

Figures 
 
 
Figure 1. Construction of full outlier set. The crosses on this page illustrate motion pairs 
plotted in terms of RMS structure alignment scores against sequence percent identity for 
the 30,000 SCOP domain pairs Wilson et al.59 identified from the PDB. Data points were 
binned into one-percent wide bins, and the mean RMS and standard deviation in each 
one-percent bin was computed. Points more than two standard deviations above the mean 
were removed from the original 30,000 pair dataset (red crosses) and used to compose the 
full outlier set (green crosses), which ultimately consisted of 4,400 such pairs. 
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Figure 2. Panel A: analysis of the normalized mode-concentration statistic to assess the 
normal modes populations. The center of the normalized mode-concentration histogram 
is traced to the number of available states (modes) using the Boltzmann logarithmic 
dependence relation. Panel B: histogram of norm0 statistic calculated over all entries in 
our database. The plot clearly shows that the large contributions (over 50%) from a single 
normal mode are not uncommon. 
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Figure 3. Our software places the twenty lowest-frequency normal modes in an array, 
thereby assigning each normal mode an index, from zero to nineteen. Increasing index 
numbers identify higher-frequency normal modes. We computed the overlap of each 
normal mode and recorded the index of the normal mode of greatest overlap. We plotted 
the number of times each index had greatest overlap in this histogram. 
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Figure 4. Relationship between protein size and maximum overlap. To make the effect 
clearer, the y-values were binned into groups of 15 residues. The mean and standard 
deviation were computed for the values in each bin, with the results plotted. Each heavy 
horizontal bar indicates the mean in each bin, while the vertical bars indicate two 
standard deviations above and below the mean.  
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Figure 5. Correlation between the frequency of the mode of maximum overlap and 
protein size. 
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Figure 6. Relationship between mode concentration and norm0 (concentration of motion 
in the mode with greatest concentration). 
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Figure 7. Decision Tree Concepts. Two decision trees (not shown here) were generated 
by S-Plus (MathSoft, Inc.) using default parameters from the 245-element manual 
training set and the 1,670-element extend training set (defined in Table 1a). These trees 
classify motions as “fragment”, “domain”, or “subunit”. The decision tree associated with 
the extended training set defined an automatic classifier (implemented in Perl by 
examination of the tree) that produced the “classified set.” This figure shows the 
conceptual operation of decision trees. At each node, the classifier chooses either the 
right or left branch, respectively, depending on whether or not the node’s associated 
statistic is greater than the value associated with the node. For illustration, the structure of 
an actual decision tree is shown in miniature in the box in the upper right hand corner. 
The classifier follows the decision tree until it reaches one of the terminal leaves, where a 
classification is made. A “training set” providing a set of examples and associated 
“correct” classifications is run through the S-Plus program, which generates a decision 
tree that can classify the training set correctly. 
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Figure 8. Output of new set of Web tools associated with normal mode analysis that the 
user may request on any protein for which a PDB structure file is available. The URL for 
this server is http://www.molmovdb.org; these features may accessed by browsing to a 
specific movie and selecting one of these analyses from the menu. Panel B performs a 
normal mode flexibility analysis on the structure. Regions that are more flexible are 
colored in red, while less flexible regions are colored in blue. Panel A gives similar 
information, using experimental temperature factors supplied in the PDB file, if available. 
Panel C, shows the parts of the protein that actually move, as calculated from comparison 
of the starting and ending PDB structures for the motion. Areas that move are colored in 
red, while areas that remain stationary are colored in blue. The user may compare these 
three panels to deduce structural information. Hinge locations involved in the motion 
may be deduced, as these are highly flexible regions (as identified by panels A and B) 
located near the moving domains (show in red in panel C). The specific protein example 
shown is that of an immunoglobulin elbow joint motion (morph ID d2fb4l1-d1afvl1).  

http://www.molmovdb.org/
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Figure 9. Screenshot of the Movie Gallery web page. This shows a Movie Gallery page in 
the Macromolecular Motions Database that ranks different motions according to the 
average mode concentration.  
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Tables 
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A) 
 

TERM Definition or URL Location 
Macromolecular 
Motions 
Database 

http://bioinfo.mbb.yale.edu/MolMovDB 
 
Used for classification and annotation of motions in outlier database 

SCOP Database http://scop.mrc-lmb.cam.ac.uk/scop/ 
 
Used for classification and annotation of motions via SCOP extension technique. 

  

Wilson et al. set As shown in Figure 1, a set of 30,000 of SCOP identifier pairs was constructed 
for Wilson CA, Kreychman J, and Gerstein M (2000), J Mol Biol 297: 233-49. 
This was then separated into two sets: the 30,000 pair “Wilson et al.” set used in 
that paper, and the “Full Outlier Set” (described immediately below), which we 
use in this text. See the caption to Figure 1 for more information. 

Full Outlier Set Text file 
http://bioinfo.mbb.yale.edu/molmovdb/datasets/outliers.txt 
 
Pairs of proteins (SCOP domains) whose structural similarity score was more 
than two standard deviations above the mean structural similarity for their 
sequence similarity. See the caption to Figure 1 for more information on the 
construction of this set. 

Workable Outlier 
Set 

This is the subset of the full outlier set on which both morph server processing 
and normal mode analysis were successful. It consists of 3,814 motion pairs. 

Manual Training 
Set 

This is the training set that was produced by examining the SCOP domains in the 
outlier set for matches against PDB IDs in the set of manually classified motions 
in the Database of Macromolecular (Gerstein and Krebs (1998) Nuc. Acid. Res., 
26(18):4280). Matches received the same classification as in the database, which 
were determined by manual examination of the scientific literature. Thus, 
confidence in the accuracy of these classifications is high. 

Extended 
Training Set 

The outlier set was searched for pairs that shared the same SCOP fold family as 
pairs classified in the Manual Training Set; these then received an identical 
classification. We found empirically that, because proteins which share the same 
SCOP fold often share similar mechanisms, proteins with the same SCOP fold 
have a high probability of undergoing similar conformation change and, hence, 
sharing the same motion size classification. Consequently, these classifications 
should be accurate but are less reliable than the classifications in the Manual 
Training Set. 

Classified Set This is simply the entire workable outlier set (minus those already classified in 
the extended training set) run through the automatic classifier defined by the 
decision tree which we produced when we analyzed the extended training set. 
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B) 
 

TERM Definition  
Mode 
Concentration 

This is discussed extensively in the text. It is a simple measure of how much the 
protein’s motion is concentrated into any single low-frequency normal mode. 

#CAatoms Number of C-alpha atoms in the protein 

Residuals This is the Euclidean length of the residual difference between the atomic 
displacements between protein pairs and the SVD fit of the normal modes to the 
atomic displacements (in Angstroms) 

Norm0 Maximum Value of the SVD displacement vector (unitless) 

Norm1 Mean of the SVD displacement vector (unitless) 

Norm2 Root-mean-square of the SVD displacement vector (unitless) 

Frequency The frequency in relative units of the normal mode with the highest SVD 
coefficient. 

Ranking Overlap Rank of the normal mode with the largest overlap (unitless). Overlap is defined in 
the caption to Figure 2. 

Maximum 
Overlap 

Value of the largest overlap (unitless quantity). Overlap is defined in the caption 
to Figure 2. 

Size of 2nd Core This is the number of residues in the 2nd core (the 2ndCoreCAs key in the 
database). This is typically related to the size of the protein, although in poorly 
matches protein pairs the number can be less. 

Trimmed RMS This is the trimmed RMS score, as defined in Wilson CA, Kreychman J, and 
Gerstein M (2000), J Mol Biol 297: 233-49 and Gerstein and Krebs (1998) Nuc. 
Acid. Res., 26(18):4280-4290. 

Maximum CA 
Movement 

This is the largest movement (in Angstroms) of any residue during the course of 
the motion, as computed by the Morph Server. 

Number of Atoms This is the number of atoms in the protein as computed by the Morph Server. 
(Atoms in non-standard amino acids are excluded.) This is a measure of the size 
of the protein. 

Energy of Frames The Morph Server computes energies for the various intermediate structures. 
These show a strong relationship to the sequence similarity between the two 
structures, and are indicator of how “good” a given morph is. The relationship of 
intermediate energies (energy of 4th frame, for example) with endpoint frames 
(energy of 8th frame, for example) can sometimes provide a rough sense of 
activation energies. 

Translation In hinge motions, the approximate translation (in Angstroms) the moving 
domains undergoes in the course of the motion, as automatically computed by the 
morph server. (This number is also computed for non-hinge motions, where it is 
less meaningful.) 

Hinge Rotation In hinge motions, the rotation (in degrees) of the moving domain around the 
screw axis in the course of the motion, as automatically computed by the morph 
server. (This number tends to be small in non-hinge motions.) 

Number of 
Hinges 

The number of putative hinges, or flexible linkages involved in the motion, as 
determined by the Morph Server 

Traditional RMS This is simply the traditional RMS score between the domains. 

Rank of Norm0 
Mode 

This is a software index that identifies the normal mode contributing the most to 
the motion as computed within our SVD framework. (The same normal mode that 
sets norm 0.) 
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key #CAatoms Residuals Norm1 Norm2 Frequency 
Ranking 
Overlap 

Maximum 
Overlap 

mean 220 480 -0.001 540 3.1 2.7 0.0031 
std. dev. 110 660 0.051 360 0.89 3.6 0.005 
minimum 39 0.23 -0.14 15 4.2E-08 0 4.7E-5 
maximum 1000 8800 0.15 2700 8.6 19 0.11 
median 210 330 0.00093 520 3.1 1 0.0017 
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 Predicted Observed 
Motion Size Classified Set Extended set Manual Set 

 Count Percent Count Percent Count Percent 
Domain 2165 95% 1549 93% 180 73% 

Fragment 94 4% 107 6% 50 20% 
Subunit 14 1% 14 1% 15 6% 
Totals 2273 100% 1670 100% 245 100% 
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Database 
Statistic Depth in Tree Built upon 

Extended Set 
Depth in Tree Built upon 
Manual Set 

Size of 2nd Core 1 1 
Trimmed RMS 3 2 

Maximum CA Movement 5 2 
Number of Atoms 4 3 

Mode Concentration 6 4 
Energy of 2nd frame 6 4 

Translation 4 5 
Hinge Rotation (Degrees) 4 6 

Number of Hinges  6 
Energy of 3rd frame  6 

Norm0 (maximum value) 5 9 
Energy of 9th frame 3  

Number of Residues 5  
Frequency 5  
Residuals 6  

Norm1 (average norm) 6  
Rank of Norm0 Mode 7  

Traditional RMS 8  
Norm2 (Euclidean norm) 8  

Energy of 4th frame 9  
Energy of 9th frame 9  
Energy of 8th frame 13  
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