
Positive selection at the protein network periphery:
Evaluation in terms of structural constraints and
cellular context
Philip M. Kim*†, Jan O. Korbel*†, and Mark B. Gerstein*†‡§

*Department of Molecular Biophysics and Biochemistry, ‡Department of Computer Science, and §Program in Computational Biology and Bioinformatics,
Yale University, New Haven, CT 06520

Communicated by Donald M. Engelman, Yale University, New Haven, CT, October 26, 2007 (received for review February 4, 2007)

Because of recent advances in genotyping and sequencing, human
genetic variation and adaptive evolution in the primate lineage
have become major research foci. Here, we examine the relation-
ship between genetic signatures of adaptive evolution and net-
work topology. We find a striking tendency of proteins that have
been under positive selection (as compared with the chimpanzee)
to be located at the periphery of the interaction network. Our
results are based on the analysis of two types of genome evolution,
both in terms of intra- and interspecies variation. First, we looked
at single-nucleotide polymorphisms and their fixed variants, sin-
gle-nucleotide differences in the human genome relative to the
chimpanzee. Second, we examine fixed structural variants, specif-
ically large segmental duplications and their polymorphic precur-
sors known as copy number variants. We propose two comple-
mentary mechanisms that lead to the observed trends. First, we can
rationalize them in terms of constraints imposed by protein struc-
ture: We find that positively selected sites are preferentially
located on the exposed surface of proteins. Because central net-
work proteins (hubs) are likely to have a larger fraction of their
surface involved in interactions, they tend to be constrained and
under negative selection. Conversely, we show that the interaction
network roughly maps to cellular organization, with the periphery
of the network corresponding to the cellular periphery (i.e., ex-
tracellular space or cell membrane). This suggests that the ob-
served positive selection at the network periphery may be due to
an increase of adaptive events on the cellular periphery responding
to changing environments.

protein structure � network centrality � single-nucleotide change �
copy number variant � structural variant

With the advent of genomic sequence data and, more recently,
large-scale genetic variation data (1, 2), it has become

possible to examine genes or genomic regions for signs of recent
evolutionary adaptation in our genome, characterized as signatures
of positive selection (3, 4). Typically, tests for positive selection
predict adaptation by testing and rejecting the hypothesis of neutral
mutation (5) or variation for a given genomic region.

Despite considerable advances in the field of genetics, the actual
molecular relationship of recent evolutionary events with biophys-
ical properties of associated proteins such as structural character-
istics and network connectivity (i.e., protein interactions) has as yet
not been studied in detail. Understanding the extent of recent
mutations, polymorphisms, and adaptation beyond their effect on
the gene level is crucial because most complex cellular processes
only come about through the interplay and interactions of many
different proteins. On the other hand, although recent proteomic
surveys have suggested that proteins with many interaction partners
are subject to considerable structural constraints, the connection
with human genome variation has not yet been considered. Thus,
by combining knowledge from evolution and biophysics, new
conclusions on cause and effect of variation on molecular processes
can be found.

Single base pair changes drift through the population after their
emergence and are visible as single-nucleotide polymorphisms
(SNPs) before becoming fixed as substitutions. A popular method
to scan for positive selection is comparing the ratio of nonsynony-
mous to synonymous substitutions (known as the dN/dS ratio) with
respect to another species, such as the chimpanzee (3). Fuelled by
the emergence of large-scale sequence and SNP genotyping data,
a number of studies have reported signs of recent adaptation for
genes or larger regions in the human genome (6–11).

In addition the spectrum of variation in the human genome goes
beyond SNPs: in particular, large-scale structural variants (i.e., kb
up to Mb rearrangements) in the form of deletions, duplications,
insertions, and inversions occur commonly in humans (12–15).
Copy number variants (CNVs) (i.e., deletions and duplications) are
the best-studied form of structural variation (12–15). They account
for a major portion of intraspecies variation (15) and have been
implicated in adaptive evolution (16). Similar to SNPs, CNVs are
expected to drift through the population and upon fixation (by drift
or selection) will be detectable in the genome as segmental dupli-
cations (SDs) (17).

Genomewide studies of evolutionary aspects of SNPs and CNVs
have not yet been related to structural properties of the affected
proteins and their position in the protein network; consequently,
the relationship between recent adaptation events and the structure
and evolutionary dynamics (i.e., rewiring of edges and addition of
new nodes) of the interactome are unclear. Recently, initial versions
of the human protein interaction network, or interactome, have
been described following large-scale literature curation (18) and
yeast-two-hybrid screens (19, 20). Here, we study signs of recent
adaptation in terms of the human protein interaction network and
protein structure. In particular, we provide evidence for proteins at
the network periphery to be preferentially involved in recent or
ongoing adaptive evolution, manifested in two complementary
forms of molecular evolution; namely, single base pair mutations
and segmental duplications. To investigate this trend, we do further
analysis in terms of protein structure and population genetic
variation. We find that we can rationalize it both in structural and
cellular terms.

Results
Positive Selection on Single Base Pair Changes Occurs Preferentially at
the Network Periphery. To assess whether evolutionary adaptation
is biased to certain regions of the interactome, we initially focused

Author contributions: P.M.K. and J.O.K. contributed equally to this work; P.M.K., J.O.K.,
and M.B.G. designed research; P.M.K. performed research; P.M.K. and J.O.K. analyzed data;
and P.M.K., J.O.K., and M.B.G. wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

†To whom correspondence may be addressed. E-mail: pmkim@alum.mit.edu, jan.korbel@
yale.edu, or mark.gerstein@yale.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0710183104/DC1.

© 2007 by The National Academy of Sciences of the USA

20274–20279 � PNAS � December 18, 2007 � vol. 104 � no. 51 www.pnas.org�cgi�doi�10.1073�pnas.0710183104

http://www.pnas.org/cgi/content/full/0710183104/DC1
http://www.pnas.org/cgi/content/full/0710183104/DC1


on single base pair changes. We calculated two measures of
topological centrality, betweenness centrality and degree centrality
for all proteins in the human protein interaction network (21, 22).
Briefly, the betweenness of a node is the number of shortest paths
that pass through it and is, hence, a global measure of centrality.
Conversely, the degree corresponds to its number of interaction
partners and is a local measure. We then related these centrality
statistics to signatures for positive selection based on a recent scan
that used the dN/dS ratio test (6). For every protein, we compared
its centrality with the likelihood ratio from the dN/dS test (roughly,
the probability for positive selection) of the associated gene.
Intriguingly, we observed the fraction of genes under recent positive
selection to be considerably higher in the periphery of the network
than in the center. Furthermore, the probability of a gene to be
under positive selection significantly correlates with its centrality
{both for betweenness and degree [see Methods, Figs. 1 and 2A, and
supporting information (SI) Fig. 4], Spearman correlation � �
�0.06, P � 2.9e-05 for betweenness, � � �0.07, P � 6.7e-06 for
degree; this correlation is fairly weak but significant}. Put a
different way, proteins that are likely to be under positive selection
tend to be positioned at the network periphery, whereas proteins
unlikely to have been positively selected recently are at the center:
Proteins with dN/dS � 1 have an average betweenness centrality of
27,085 paths, whereas proteins with dN/dS � 1 have an average
betweenness centrality of about twice that much. This difference is
highly significant with a P value of 2.3e-05 (Fig. 2C and SI Fig. 4 for
degree).

To ensure that this observation is not a result of inherent data
biases, we examined whether it would hold up to our varying a
number of factors. Because current interaction networks are in-
complete and may suffer from biases, we examined a number of
different networks. We find the trend to be present in many
interaction datasets that are based on both literature curation
efforts and high-throughput screens (SI Table 6) (18, 20). Because
these datasets have small overlap among each other (23), it is
reasonable to assume that in a complete interaction network, one
would observe the same result. Furthermore, the trend is present in
two different estimations of positive selection based on the dN/dS
ratio test (6, 10). Yet another influencing factor that might affect

our result is the known anticorrelation of mutational rate and gene
expression (24). Previously reported in yeast, we found an equiv-
alent relationship also in humans (see SI Fig. 5) and furthermore
observed a similar (possibly related) correlation for genes under
adaptation: i.e., most positively selected genes tend to be expressed
at a low level (Table 1). Conversely, central proteins tend to be
expressed at a higher level than peripheral ones (see SI Fig. 6). We
thus calculated partial correlations to rule out the possibility of gene
expression biases that may have influenced the observed trends (see
Methods). Indeed, both gene expression and network topology show
independent and highly significant relationships with the likelihood
of positive selection (Table 1). This shows that positively selected
genes, aside from being expressed at low levels, are strongly
enriched at the protein network periphery. All of these findings
suggest that the trend is unlikely to stem from inherent biases in the
data but is likely to be due to the constraints imposed by interactions
on protein structures or the cellular context.

Fig. 1. The human protein interaction network and its connection to positive
selection. Proteins likely to be under positive selection are colored in shades of
red (light red, low likelihood of positive selection; dark red, high likelihood)
(6). Proteins estimated not to be under positive selection are in yellow, and
proteins for which the likelihood of positive selection was not estimated are
in white (6).
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Fig. 2. Relationship of protein network centrality and single-nucleotide
changes. (A) The periphery of the human interactome is strongly enriched for
genes under positive selection. Shown is the correlation of the likelihood to be
positively selected (6) and betweenness centrality (18). Dots are colored
according to the same scheme as in Fig. 1. As expected for a highly significant
Spearman rank correlation, almost all dots are near the x axis for high
betweenness centralities, whereas high probabilities for positive selection are
only observed at low betweenness centralities (Spearman � � �0.06, signifi-
cant at P � 1.2e-06). (B) The periphery of the human interaction network is
more variable on the protein sequence level. Shown is the ratio of nonsyn-
onymous to synonymous SNPs vs. network centrality. A higher ratio (which
corresponds to variability at the protein sequence level) tends to occur at the
network periphery (Spearman � � �0.1, significant at P � 4.0e-04). (C Upper)
Betweenness centrality of genes with some likelihood of being under positive
selection (with a log-likelihood ratio �0) vs. all other genes. (C Lower) Be-
tweenness centrality of genes with a high ratio of nonsynonymous to synon-
ymous SNPs vs. genes with a low ratio of nonsynonymous to synonymous SNPs.
The significance level of the differences is given as the Wilcoxon rank sum P
value between the bars.
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Features of Positively Selected Sites in 3D Protein Structures. A
straightforward structural explanation for the preference of positive
selection for the network periphery is stronger 3D-structural con-
straint on central proteins in the interaction network. This con-
straint (resulting from more interaction partners) would cause the
proteins to evolve more slowly and be less likely to show signs of
positive selection (e.g., when assessed by the dN/dS ratio test).
Noncentral nodes, on the other hand, should be under relaxed
constraint, and the enrichment of adaptation at the network
periphery may be due to the associated increased variability. To
investigate this influence of relaxation of structural constraints, we
sought to analyze the structural features of the sites in question.
Structural constraint would have a significant effect if positively
selected amino acids are preferentially positioned at the protein
surface, which should underlie different constraints for peripheral
proteins as opposed to central ones (hubs) (25, 26)—in particular
for hubs with multiple interfaces involved in protein complexes.
Indeed, we found that residues positioned on a protein’s accessible
surface are under significantly less evolutionary constraint [having
a substantially higher dN/dS ratio (Tables 2–4)]. Likewise, the
average relative surface accessibility of sites that have nonsynony-
mous nucleotide differences when compared with chimpanzee
genes is significantly higher than sites that only have synonymous
(silent) differences [suggesting that nonsynonymous sites are en-
riched on the protein surface (Tables 2–4)]. These results are
consistent with earlier studies (e.g., refs. 27 and 28). However, when
we examined the nonsynonymous sites more closely, we observed
another trend. We split all sites with nonsynonymous substitutions
into two groups: Those that are likely to be under positive selection
and those that are not—i.e., one group with all nonsynonymous sites
in proteins that show dN/dS � 1 in human–chimpanzee alignments
and a second group with all nonsynonymous sites in proteins that
have dN/dS � 1. We found that the average relative surface
accessibility is significantly lower for the former group (Tables 2–4).
This result indicates that mutations that lead to a fitness advantage
are likely to be somewhat buried and may lie in clefts. Hence, they
would have a higher impact on the protein structure and function
than neutral mutations. This is reasonable because mutations at

completely exposed sites would likely not have a larger impact on
the proteins’ function. In line with these findings, amino acid
changes in central proteins are significantly more exposed than
those changes in peripheral proteins, indicating that strong func-
tional and structural constraints would favor mutations that are
exposed and have a lighter effect on overall protein structure and
function (Fig. 3C).

Correspondence of the Cellular Periphery with the Interactome Pe-
riphery. Another explanation for our results of positive selection at
the network periphery is that adaptive evolution may preferentially
occur there—i.e., there may be an ongoing need for adaptation.
That is, in contrast to the more ancient network center, which is
responsible for conserved essential functions, the periphery of the
network may still be more adaptable to changing environments. In
this sense, the network periphery would functionally correspond to
the cellular periphery. This correspondence would represent a
separate and complementary explanation for the trends observed
here. Positively selected genes (6–8) have been shown to be
significantly enriched in environment response genes. It is hence
reasonable to hypothesize that they would be located at the
‘‘periphery’’ to interact with the changing environment. We have
shown thus far that they are indeed located at the periphery in a
network-topology sense. However, a more straightforward notion is
the periphery in a cellular context. In this sense, extracellular
proteins can be considered as the ‘‘natural periphery’’ of the
proteome, and indeed, they have both a lower average degree and
betweenness than proteins belonging to other cellular components
(Table 5). Moreover, the average centrality statistics of proteins
belonging to various cellular components appears to follow our
intuition of central and peripheral subcellular locales. Furthermore,
when examining cellular component gene ontology (GO) terms
(which describe the subcellular localization of proteins) for enrich-
ment in positively selected proteins, only the GO terms of ‘‘periph-
eral’’ cellular components (e.g., ‘‘extracellular space’’ and ‘‘extra-
cellular region’’) are significantly enriched [with a false discovery
rate of �0.06 (see Methods)]. Therefore, part of our observed trend
may be explained by the fact that the network periphery corre-
sponds to the cellular periphery and is responsible for mediating
interactions with the environment. Although some GO categories

Table 3. Sites with nonsynonymous mutations are more exposed
than sites with synonymous (silent) mutations

Sites Synonymous Nonsynonymous

Average ASA 2.26 2.66

The average surface index (from SABLE) of all sites with nonsynonymous
nucleotide differences (between human and chimpanzee gene sequences) are
shown vs. the average surface index of sites with synonymous nucleotide
differences. Italics indicates significant differences. ASA, accessible surface
area (SABLE estimate).

Table 4. Comparison of nonsynonymous sites in proteins under
positive selection and peripheral and central proteins

Nonsynonymous sites dN/dS � 1 dN/dS � 1 Peripheral Central

Average ASA 2.26 2.66 2.45 2.79

Comparing different nonsynonymous sites, those in proteins that are esti-
mated to be under positive selection are less exposed than the ones for other
proteins. Likewise, those in peripheral proteins are less exposed than those in
central proteins. The average surface index of all nonsynonymous sites in
proteins with dN/dS � 1 is shown vs. all nonsynonymous sites in proteins with
dN/dS � 1. Likewise, The average surface index of all nonsynonymous sites in
proteins with a betweenness of �10,000 vs. all nonsynonymous sites in pro-
teins with a betweenness of �10,000. Italics indicates significant differences.
ASA, accessible surface area (SABLE estimate).

Table 1. Spearman rank correlation and partial correlation
of gene expression, betweenness centrality, and positive
selection likelihood

Parameter � P

Correlation with positive selection

Network centrality, �bp �0.06 ��0.01
Gene expression, �gp �0.04 0.01

Partial correlation with positive selection

Network centrality, �bp�g �0.06 ��0.01
Gene expression, �gp�b �0.03 0.06

�gp, rank correlation coefficient of gene expression and positive selection
likelihood; �gp�b, partial rank correlation coefficient of gene expression and
positive selection while controlling for betweenness; �gp, rank correlation
coefficient of betweenness centrality and positive selection likelihood, �gp�b,
partial rank correlation coefficient of betweenness centrality and positive
selection while controlling for gene expression.

Table 2. Surface-exposed sites are under significantly less
evolutionary constraint than buried sites

Sites Exposed Buried

dN/dS 0.49 0.35

The dN/dS ratio is shown for sites with an average relative surface exposure
[calculated by SABLE (42)] of �70% (exposed sites) and �50% (buried sites).
Italics indicates significant differences.
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preferentially occur at the network periphery, for a sizeable number
of tested categories the significant correlations between positive
selection and network centrality/betweenness remain even when
only proteins within the category are analyzed (SI Table 7).

Proteins on the Network Periphery Have a Higher Propensity for
Nonsynonymous SNPs. In summary, we have shown that the pref-
erence of positive selection for the network periphery may be
accounted for by two complementary explanations: structural
constraint and cellular context. Next, we examine the relationship
of population genetic variability and protein networks. Relaxed
constraint would manifest itself in an increase of genetic variability
at the network periphery, comparable in magnitude to the prefer-
ence of positively selected genes at the periphery. One measure of

genetic variability at the protein coding level is given by the ratio of
nonsynonymous (having an effect on the protein sequence) to
synonymous (silent with respect to the sequence) SNPs, known as
the pN/pS ratio. This ratio is analogous to the dN/dS ratio, but
because it measures intraspecies variation, it can be viewed as a
measure of variability. We found that there generally is a higher
ratio of nonsynonymous to synonymous SNPs at the network
periphery [Spearman correlation � � �0.1, P � 4.0e-04 (Fig. 2B)].
This indeed suggested stronger evolutionary constraint for proteins
at the network center, resulting in stronger negative selection and
in turn removing a larger proportion of nonsynonymous SNPs.
However, we note that the trend for the pN/pS ratio is weaker than
for the dN/dS ratio (Fig. 2C). This suggests that if only relaxation
of structural constraints were taken into account, the observed
trends may be only insufficiently explained.

Segmental Duplications Preferentially Occur on the Network Periph-
ery. Evolution of protein coding genes by single base pair mutations
is only one of many evolutionary processes. Hence, we examined
whether other mechanisms would also exhibit a preference for
proteins on the network periphery. In particular, we initially
focused on SDs, duplications that presumably have been fixed (a
subset of SDs in the human reference genome may correspond to
unrecognized CNVs). Namely, we found that SDs have a prefer-
ence to be associated with genes positioned at the network periph-
ery [for betweenness, Spearman correlation � � �0.04, P � 4.6e-03
(Fig. 3A); for degree, Spearman correlation � � �0.04, P � 3.3e-03
(SI Fig. 7)]. In fact, the more SDs intersected with a given gene in
the human reference genome, the stronger was the preference for
the encoded protein to be positioned in the periphery of the protein
network. Genes intersecting with SDs have an average betweenness
centrality of 26,119, whereas genes that do not intersect with SDs
have an average betweenness centrality of 41,775 [rank sum signif-
icance of P � 4.8e-04 (Fig. 3C); for degree, see SI Fig. 7]. This agrees
with previous findings in yeast; i.e., that duplication events are more
frequent for proteins with low network connectivity (29), which at
least in part may be caused by the dosage-sensitivity of components
of large protein complexes (30).

Analysis of Copy Number Variants Provides Additional Evidence for
Adaptive Events at the Network Periphery. Analogous to our com-
parison of SNPs and fixed differences above, we investigated a
measure of intraspecies variation and its relationship to network
centrality in comparison to the results found for SDs. SDs are the
result of fixation of CNVs, in particular those corresponding to
duplications (here referred to as ‘‘Gain-CNVs’’). Given this, we
analyzed the relationship of CNVs to the protein network. Our
analysis is based on the assumption that relating both SDs and
CNVs to the network topology may enable us to recognize (or
reject) signs of recent adaptation. In particular, the prevalence of
CNVs in a given genomic region can be viewed as a measure of its
variability in terms of chromosomal rearrangements: A region
having a high incidence of CNVs is likely to be more variable than
a region having a low incidence. Variability can potentially be
influenced by a number of factors, such as genomic stability,
different propensities for occurrences of double-strand breaks, or
recombination events (31). To examine whether the prevalence of
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Fig. 3. Relationship of protein network centrality and changes in genetic
copy number. (A) Correlation of the number of overlapping SDs of each gene
with the betweenness centrality of the associated protein (Spearman � �
�0.04, significant at P � 3.3e-03). (B) The periphery of the human interaction
network is more variable on the level of genome rearrangements. Shown is
the frequency of CNVs that intersect a given gene vs. the corresponding
protein’s network centrality (Spearman � � �0.03, significant at P � 0.002). (C
Upper) Betweenness centrality of genes that intersect with at least one SD vs.
centrality of all other genes. (C Lower) Betweenness centrality of genes that
intersect with at least one CNV vs. the centrality of all other genes. The
significance level of the differences is given as the Wilcoxon rank sum P value
between the bars.

Table 5. Gene Ontology (GO Slim) cellular component terms and association of network periphery to positive selection

GO Slim cellular component Extracellular region Membrane Cytoplasm Nucleus Chromosome All

Average degree 5.89 6.51 8.07 8.62 10.22 6.85
Average betweenness 37,857 40,333 51,537 50,026 55,178 41,617

Shown is the average degree and betweenness of proteins that are annotated to the GO cellular component terms. Also shown are the Spearman correlation
of the betweenness centrality with the likelihood ratio of positive selection when only considering genes from this particular GO term. Peripheral cellular
components also tend to lie on the network periphery.
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SDs to occur in the network periphery is merely a result of increased
variability, we examined whether CNVs as well would operate
mostly on peripheral proteins. If increased variability (due to
relaxed constraints) were the only reason, we would expect the same
degree of enrichment of CNVs at the network periphery. After
mapping all genes overlapping CNVs to the protein interaction
network, we find that CNVs (Gain- as well as Loss-CNVs, or
deletions) have a significant but much less pronounced tendency
than SDs for operating preferentially on peripheral proteins [for
betweenness (see Fig. 3 B and C), � � �0.03, significant at P �
0.003; for degree (see SI Fig. 7), � � �0.03, significant at P � 0.002].
This suggests that the preference of SDs to operate on peripheral
genes is not simply a result of increased variability or relaxed
constraint at the network periphery. Taken together, we find
additional support for ongoing preferential fixation of copy number
variants at the network periphery related to evolutionary adapta-
tion. Also note that the genes intersecting segmental duplications
have been shown to be significantly enriched in environmental
interactions (16, 32, 33). It would hence be reasonable that they
would be located at the (cellular and network) periphery.

Discussion
We have presented evidence for a preference of recent and ongoing
adaptive events for the periphery of the human protein interaction
network. We present two possible explanations for this trend. First,
a structural analysis shows a preference of positive selected sites for
presumed functional clefts on the protein surface, which indicates
that structural constraints would lead to a depletion of these at
central proteins; conversely, at peripheral proteins, these con-
straints would be relaxed. Second, we find a correspondence of the
cellular periphery with the network periphery and a preference of
positively selected genes to belong to both the cellular and the
network periphery. Together with an enrichment of functions that
relate to environmental interactions, this result indicates that a
stronger exposure to the environment would cause a stronger need
for adaptation at peripheral proteins.

We examine adaptive evolution in two guises: Protein evolution
by single base pair changes and genome evolution through segmen-
tal duplications. For both of these mechanisms, we have looked at
fixed differences and intraspecies variation. The effect of relaxation
of constraint would be visible in both fixed differences and intraspe-
cies variation, whereas adaptive evolutionary events through envi-
ronmental exposure are less likely to have an effect on intraspecies
variation. In both the single base pair and the large-scale duplication
cases, we observe that the preference for the network periphery is
stronger for the fixed differences than the intraspecies variability.
We believe that this result indicates that the relaxation of structural
constraints and environmental pressure are complementary expla-
nations for the propensity of peripheral proteins to be under
positive selection or part of segmental duplications.

Among many interesting examples of proteins at the network
periphery that may be under positive selection are the protein
encoded by the CHRNA5 (ENSG00000169684) gene, neuronal
acetyl-choline receptor subunit �-5; this integral membrane protein
is involved in neuronal processes likely to be under ongoing
adaptation, and CHRNA5 was recently associated with several
cognitive performance criteria (34). Another protein, the Ficolin-3
protein encoded by the FCN3 gene (ENSG00000142748), is a
secreted protein that exerts lectin activity and is presumably in-
volved in innate immunity through binding to bacterial lipopoly-
saccharides (35).

Recent studies have examined disease proteins and essential
proteins in the context of the interaction network (18, 36). Not
surprisingly, essential proteins tend to lie in the center of the
network, which is consistent with our results—the core of the
network is conserved, essential, and in no further need of adapta-
tion. Interestingly, Goh et al. (36) provide evidence that proteins
involved in genetic diseases show little preference for either the

center or the periphery. This is also consistent with our results. The
diseases in their dataset that are of a genetic nature (e.g., leukemia,
etc.)—i.e., they are ‘‘intrinsic’’ diseases and are hence not involved
with the environment—are also not that likely to be involved in
adaptive evolution. Conversely, proteins that are involved in dealing
with externally caused diseases (e.g., proteins involved in immune
response) are likely to be on the cellular periphery.

Similar trends that relate topology to variation may be expected
in other types of biological networks—for instance, in regulatory
networks that involve microRNAs, although the lack of codons in
their genes would require different types of adaptive selection tests.
Moreover, the general notion of adaptation and variation on the
periphery and constraint at the center obviously has analogies in
other types of networks—e.g., innovation coming in from the
borders of social networks. The parallels are particularly clear with
respect to security considerations in computer networks. Comput-
ers (nodes in the network, analogous to proteins) tend to be
connected in local networks (analogous to cells) that are in turn
interconnected into larger networks (the environment)—e.g., the
internet. Computers at the periphery of an internal network are
patched much more frequently to protect them against security
threats, similar to the process of genetic mutation favored by
positive selection (37). Conversely, computers that sit at the very
center of an internal network are often large servers under heavy
use, which puts great constraints on the ease with which they can
be updated. This situation is analogous to what we observe in the
protein interaction network.

Methods
Relationship of Network Structure and Positive Selection. Interaction data were
combined from the Human Protein Reference Database (HPRD) (18), which is
based on small-scale studies that were curated from the literature, and from two
recent high-throughput yeast-two-hybrid screens (19, 20). The combined net-
workcontainedatotalof30,239 interactionsamong8,383proteins.Asameasure
ofhowcentraleachprotein is in thenetwork,boththebetweenness [thenumber
of shortest paths running through a node (21)] and the degree [the number of
interaction partners (22)] were calculated. Positive selection data were gathered
from two recent scans using the dN/dS ratio test (6, 10). The screens calculated the
likelihood ratio of positive selection for 8,079 and 7,645 genes, respectively.
Significant positive deviations from neutrality (dN/dS � 1) are a conservative
measure of positive selection. Briefly, the reasoning for this notion is that during
a period of neutral evolution, the rate of synonymous or nonsynonymous mu-
tations should be equal. If there are more nonsynonymous than synonymous
mutations, at least some of the nonsynonymous mutations were fixed preferen-
tially, which indicates positive selection. (For a more detailed description, see refs.
3 and 38.) Nielsen et al. (6) used a likelihood ratio test to infer likelihood ratios
from the dN/dS data. This method detects positive selection at loci that have been
under repeated mutational selection pressure. Interaction data and positive
likelihood data were mapped to Ensembl gene IDs (39). A total of 3,727 genes
were present in both interaction data and positive selection scan (6); on these,
Spearman rank correlations were calculated. To exclude the possibility of a gene
expression prebias, we also gathered expression data from the human expression
atlas (40). We used the average of all robust multiarray average (RMA) (41)
expression values from Affymetrix microarray experiments across multiple tissues
and also calculated expression breadth across tissues by counting the number of
tissues in which a certain gene is in above the 80th percentile in RMA values. We
then inferred the relationship between positive selection likelihood and be-
tweenness by computing partial correlation coefficients. Partial correlation cor-
responds to the correlation between two variables while controlling for a third
variable. We computed the partial correlation of the ranks. The partial correla-
tion among betweenness and positive selection while controlling for expression
was still significant, demonstrating that network centrality has an effect on
positive selection independent from gene expression.

Relationship of Network Structure and SNPs. dbSNP was used as the source for
SNP data. SNP locations, annotations into nonsynonymous and synonymous, and
its mapping to Ensembl gene IDs was downloaded from Ensembl.

Calculation of Protein Surface Index of Mutated Sites. The predicted surface
accessibility of each residue was calculated by using the relative surface accessi-
bility predictor SABLE (42). The mutated sites were identified by using the
translations of the nucleotide alignments of human and chimpanzee genes by
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Nielsen (6). For each protein, all surface indices were averaged and compared
with the likelihood ratio of positive selection.

Relationship of Network Structure and SDs. SDs were downloaded from the
Segmental Duplication Database [http://humanparalogy.gs.washington.edu
(43)], a database reporting recent duplications according to the criterion �90%
sequence identity and �1 kb length. For each SD, all Ensembl (39) genes anno-
tatedasbeingaffectedbyaSD(includingpartialaswellas fulloverlapswithgiven
coding regions) were presumed to be associated with it. A total of 25,318 SDs
were analyzed, intersecting 2,173 genes. For genes that were annotated as
affected by more than one SD, we counted the number of SDs intersecting each
gene and refer to it as the number of SDs affecting the gene.

Relationship of Network Structure and Variation. The locations of CNVs were
downloaded from the Database of Genomic Variants [http://projects.tcag.ca/
variation (13)]. We focused on the set of Redon et al. (15) generated by using
genomewide high-resolution SNP genotyping arrays, which represents the high-
est-resolution comprehensive CNV mapping carried so far. CNVs are classified as
‘‘Gain-CNVs’’ and ‘‘Loss CNVs’’ based on observed array signals (15). While it is
thought that Gain-CNVs correspond to amplifications (i.e., an increase in copy
number)andLoss-CNVstodeletions (copynumberdecrease), it isalsoknownthat
because of a number of confounding factors [such as the control individual(s)
used in a DNA microarray experiments], this correlation is not perfect. For each
CNV, all Ensembl genes that are annotated as being affected by a CNV (including
partial and full overlaps of given coding regions) were presumed to be associated
with the CNV. A total of 406 Gain-CNVs and 697 Loss-CNVs were analyzed,
intersecting with 1,649 and 1,443 Ensembl genes, respectively. Frequencies were

estimated by dividing the number of times a CNV was observed in a set of
experiments by the total number of studied samples.

Analysis of GO Terms. All analyzed genes were mapped to terms of the GOA GO
Slim ontology (44), obtained from www.ebi.ac.uk. For the proteins assigned to
each GO term, rank correlations between dN/dS likelihood ratios and network
parameters were calculated separately. For the enrichment of GO terms in
peripheral and central proteins under positive selection, GoMiner was used (45).
We report only GO terms that have significant enrichment after applying a
multiple hypothesis testing correction, and that have a false discovery rate
of �0.06.

Network Visualization. The human interactome in Fig. 1A was drawn with the
visualization package Cytoscape (http://cytoscape.org). The layout was done
automatically by using a spring-embedding algorithm. Thereby, node order
(whether coinciding nodes are visible in the front or invisible/covered in the back)
wasrandom(Cytoscapedefault).Aftermappingthepositiveselection likelihoods
(6) to thenodes, thetrendofpositive selectionat theperipherywasclearlyvisible,
despite the fact that the layout algorithm did not optimize according to be-
tweenness. However, high betweenness nodes tend to get put in the center of
the graph because it usually connects a number of larger clusters. Putting them
on the outside would also lead to a large increase in potential energy.

Complete data files from our analysis are available at www.gersteinlab.org/
proj/netpossel.
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