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Abstract 
 
A fundamental question in biology is how the cell uses transcription factors (TFs) to 
coordinate the expression of thousands of genes in response to internal and external 
stimuli. The relationships between TFs and their target genes can be modeled in terms of 
directed regulatory networks. These, in turn, can be readily compared to commonplace 
“chain of command” structures in social networks, which have a characteristic 
hierarchical layout. Here, we develop an algorithmic approach for identifying generalized 
hierarchies (allowing for various regulatory loops) and use this to show that clear 
pyramid-shaped hierarchical structures exist in the regulatory networks of representative 
prokaryotes and eukaryotes (i.e., E. coli and S. cerevisiae), with most TFs at the bottom 
levels and only a few master TFs on the top. These masters receive most of the input 
signals of the whole network through interactions with other proteins. They are situated 
near the center the protein-protein interaction network -- a different type of network from 
the regulatory one. The master TFs have maximal influence over other genes. However, 
surprisingly TFs at the bottom of the regulatory hierarchy are more essential to the 
viability of the cell. Moreover, one might think that master TFs achieve their wide 
influence through directly regulating many targets, but actually TFs with most direct 
targets are in the middle of the hierarchy. We find, in fact, that these middle-level TFs act 
as bottlenecks of the hierarchy. This large amount of control for "middle managers" has 
parallels in structures found to be efficient in various corporate and governmental settings.  
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Introduction 
 
Many biological processes can be modeled as networks, such as protein interaction 
networks, gene expression networks and transcriptional regulatory networks (1-4). 
Networks have been used as a universal framework to model many complex systems, 
such as social interactions, the internet, and ecological food webs (5-7). Individual 
networks have been globally characterized by a variety of graph-theoretic statistics, such 
as degree distribution, clustering coefficient (C), characteristic path length (L) and 
diameter (D) (3, 5-12). Recently, Barabási and colleagues proposed a “scale-free” model 
in which most of the nodes have very few links, with only a few of them (hubs) being 
highly connected (7, 8). Concurrently, Watts & Strogatz found that many networks can 
also be described as having a “small-world” property (12), i.e., they are highly clustered 
and have small characteristic path lengths. Complex networks can be further divided into 
two broad categories: directed and undirected. The edges of the directed networks have a 
defined direction. 
 
Previously, people have compared protein-protein interaction networks to social 
communication networks and found that protein networks share some common 
characteristics with them, such as scale-free and small-world properties (3, 9). However, 
people have yet to do this with regulatory networks. Of all biological networks, 
regulatory networks are of particular interest, because to some degree they act as the 
master control system for the cell, tightly coordinating the expression of all genes (13-15). 
From a graph-theoretical point of view, regulatory networks are different from interaction 
networks in that they are directed. Both these facts suggest that we should compare 
regulatory networks to a different type of social networks, such as governmental and 
corporate organizations that are more oriented toward control than communication. These 
are known to have hierarchical layouts, with different levels – the stereotypical example 
would be a corporation with managers who supervise workers (16) (see Figure 1).  
 
Social hierarchical networks are often very complicated, containing many network motifs. 
Motifs are defined as over-represented local network patterns (1). Four common ones in 
social hierarchies are shown in Figure 1 and described below:  
 

(1) Single-Input Motifs (SIM), where a group of nodes (i.e., workers) are only 
regulated by a single node (i.e., manager). 
 
(2) Multi-Input Motifs (MIM), where a group of nodes together regulate another 
group of nodes. 
 
(3) Feed-Forward Loop (FFL), where a node regulates another; then, the two 
together regulate a third one. 
 
(4) Feed-Back Loop (also known as Multi-Component Loop; MCL), where an 
upstream node is regulated by a downstream one. 
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What makes a hierarchical structure special is that there are central control points at the 
top. Whether such a hierarchical structure exists in biological regulatory networks is not 
currently obvious. Here, we have examined regulatory networks in both eukaryotes (S. 
cerevisiae) and prokaryotes (E. coli). We show that regulatory networks do, indeed, have 
a pyramid-shaped hierarchical structure that relates to their social counterparts. By doing 
so, we have also identified central transcription factors (TFs) in both organisms that are 
on the top of the hierarchies.  

Results  
Building generalized hierarchies using breadth-first search  
 
A simple hierarchy in a strict mathematical sense requires that the network contain no 
loops (i.e., it is “tree-like”) (17). However, even though the concept of a simple hierarchy 
originally came from social studies, it is rather difficult to apply this notion to real social 
and biological networks, because both these types of networks do indeed have prominent 
loops (Figure 1A). In a more general sense, a hierarchy just refers to a pyramidal layered 
or ranked structure organized as those in social networks with few people at the top 
(managers) and most people at the bottom (workers). Consequently, for this study we 
want to create a precise construction of “generalized hierarchies” that matches our social 
intuition and allows for loops. In essence, we assign a level number to each TF in the 
regulatory network to determine which TFs are at the top and which are at the bottom.  
 
We call this construction method "BFS-level" (Breadth-First Search to define Level). As 
described in Figure 1B, it is based on a straightforward application of breadth-first search: 
we first identified all TFs at the bottom level (i.e., level 1). A TF is at the bottom level if 
and only if it does not regulate other TFs. TFs that only regulate themselves (i.e., auto-
regulation) are also placed at the bottom. Starting from each bottom TF, we then 
performed a breadth-first search to convert the whole network into a "breadth-first tree" 
(18) (see Figure 2A and Table 1A).  In other words, we define the level of a non-bottom 
TF in the hierarchy as its shortest distance from a bottom one. Here, the construction 
procedure is only focused on inter-regulation between TFs (or officials in social 
networks). A top TF could directly regulate non-TF target genes (or a higher-ranked 
official could have an assistant with no managerial responsibility), but this will not affect 
the constructed hierarchy. If the resulted layered structure has a pyramidal shape (i.e., 
few nodes at the top and most nodes at the bottom), we, then, considered it as a 
generalized hierarchy. 
 
Note a few features about this construction: 
 

(1) It is mathematically precise. There is only one unique solution for a given 
network and a node is unambiguously placed at a single level. 
 
(2) It subsumes simple hierarchies. If a network does not contain loops, the BFS-
level method would assign levels to nodes according to the perfect simple 
hierarchy of the network. 
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(3) It does not change the network topology or connections (i.e., it does not 
“amputate” the network). In particular, it preserves all loops and takes into 
account all connections in assigning level.  
 
(4) It makes biological and social sense in that it builds from the ground up. One 
could imagine doing a similar breadth-first search from the top down (see 
supplementary materials). However, we believe that this does not match our 
social intuition (e.g., putting the owner of a small business at the same level of 
hierarchy as the president of a country). 
 
(5) It is not trivial to construct a hierarchy for any given directed network. There 
are a number of possible variations as discussed below and in the supplementary 
materials.  

Pyramidal regulatory hierarchies and their non-monotonic out-
degree distributions 
 
Figure 2A and Table 1A clearly show that the yeast regulatory network has a four-layer 
pyramid-shaped hierarchical structure: i.e., the number of TFs on each level is smaller 
than that of the previous level. A similar pyramidal hierarchy was also observed in E. coli 
(see Figure 2C and Table 1B). 
 
This hierarchical structure is actually very similar to that in social networks. Figure 2B 
shows a representative social hierarchy – the Macao government. (This was chosen 
because, although it is realistic, it is sufficiently simple to represent on a single page.) In 
Figure 2B, there is only one chief executive (i.e., the president). Five secretaries are at the 
level immediately below the chief executive.  There is a clear inverse relationship 
between the level in the hierarchy and the number of people at each level.  
 
Intuitively, one might expect that the out-degree distribution at each level should parallel 
the pyramidal structure of hierarchy. For instance, it could increase uniformly as one goes 
from the bottom to the top, since, as you go up, there is more to regulate. However, this is 
not the case for social hierarchies. It has been shown that a typical organization scheme 
for companies is that middle managers supervise the most people, not those at the bottom 
or top of the hierarchies (16), as illustrated by Figure 2B.  
 
We then examined the average number of targets for TFs at different levels of the 
regulatory hierarchies for both S. cerevisiae and E. coli. We found the same relationship, 
i.e., TFs at the second level have the most targets, while those at the bottom and higher 
levels all have fewer targets, by and large (see Figure 2A and C).  
 
We also tested the robustness of our results by adding, deleting or rearranging 20% of the 
regulatory interactions at random. All results remain the same, suggesting that the global 
conclusions from our calculations would be largely unaffected by noise in the datasets 
(see supplementary materials). It is also noteworthy that there might be hidden 
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organizational structures since there are many within-level regulations, which is one of 
the possible directions for future analysis. 

Bottlenecks of the hierarchies lie in the middle 
 
Figures 2A and 2C clearly show that the regulatory information in the hierarchies is 
passed from the top to the bottom. A path in the regulatory network represents a specific 
regulation (activation or inhibition) of a downstream TF by an upstream one. If any 
intermediate TF along this path is disabled, the regulation is broken. If we consider each 
path as a unique flow of regulatory information, the number of paths through each node is 
therefore how much flow it controls. In graph theory, “betweenness” is an important 
topological parameter that describes precisely this concept. The betweenness of a node is 
defined as the number of shortest paths going through this node. If there are more than 
one shortest path between a pair of nodes, each path is given equal weight so that the 
overall weight of all paths is unity (10, 19). We call nodes with the highest betweenness 
“bottlenecks”, in analogy to heavily-used intersections leading to major highways or 
bridges in social transportation systems. Since the TFs in the middle of the hierarchy not 
only pass the information directly to their targets but also carry the information flows 
from the top TFs to the bottom ones, it is quite intuitive to see that these TFs should be 
the bottlenecks that control the most information flows.  
 
We calculated the average betweenness of all TFs at each level in the hierarchy. Our 
results agree well with our expectation (see Figure 2D): the TFs in levels two and three 
have significantly higher betweenness than those at the top or bottom of the hierarchy. 
Similar results were also observed in the E. coli hierarchy (see Supplementary Figure 10). 
To some degree, these results also validate the way we constructed hierarchies using our 
BFS-level method. Because the calculation of betweenness is only based on the 
connectivity of the network, completely independent of how we placed the nodes into 
layers within the hierarchy, the fact that the calculated results agree with our expectation 
confirms the plausibility of our method. Please note that one should not take the 
betweenness calculation as a definitive measure of the information flow, because it does 
not take into account some other possible contributing factors (e.g., gene expression and 
protein abundance). 

Regulatory hierarchies are well organized 
 
Next, we investigated random networks to see whether a similar hierarchical organization 
can be achieved by chance. We randomly rewired the edges between TFs and their 
targets within the whole yeast regulatory network (see materials and methods). Figure 2E 
clearly shows that the pyramid-shaped hierarchical structure does not exist in random 
networks, whose layered structures consist of many more levels (on average 7.2 levels) 
than real hierarchies (P-value < 0.001). Furthermore, the average out-degree is almost 
constant between different levels of random networks. Similar results were also found for 
randomly rewiring the E. coli hierarchy (see Supplementary Figure 9). 
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In a social context, it has been shown that flatter hierarchies give managers at each level 
more freedom (20). Moreover, the number of levels in a hierarchy is determined by the 
degree of standardization of the work processes. In a corporation where workers perform 
similar tasks (e.g., in an auto assembly plant), hierarchies tend to be flatter (21). In a 
similar fashion, different types of genes are known to cooperate together to carry out a 
certain function. Therefore, it is quite reasonable for the regulatory hierarchies to be 
flatter than random expectation. 
 
It has also been found that the number of people supervised by each manager is 
determined by the nature of the job (21). In a situation where workers under the same 
manager perform different tasks and need more mutual accommodation (e.g., in a law 
firm), the average number of people supervised by a single manager is very small (22-24). 
A similar situation exists in the cell. At the top of the regulatory hierarchies, interplay 
between top-level and downstream TFs is needed to initiate a process. Furthermore, 
notice that top-level TFs tend to regulate TFs associated with many different pathways 
and functions (see below). Therefore, it is quite reasonable that the average out-degree at 
the topmost level is small. After commitment, however, the middle-level TFs can turn on 
massive expression of many genes in response to stimuli, reflecting their larger average 
out-degree. At the bottom of the hierarchy, TFs regulate only few specific target genes. 

Decision-making schemes in regulatory hierarchies 
 
We further analyzed the regulatory hierarchies in S. cerevisiae and E. coli. We were able 
to observe two distinct types of regulatory processes in them. These are readily 
understandable as different decision-making schemes, given that we know gene 
expression is regulated in response to various internal and external stimuli. 

1. “Reflex” processes 
A non-negligible number of TFs (52 in S. cerevisiae; 30 in E. coli) do not regulate other 
TFs, nor are they regulated by other TFs. They respond to specific stimuli turning on (or 
shutting down) the expression of their targets. We call this type of decision-making a 
“reflex” process. The regulation of the trp operon in E. coli is a perfect example. The trp 
operon encodes genes for the synthesis of tryptophan. TrpR is a repressor that, when 
activated by tryptophan binding, represses the expression of the trp operon. TrpR is not 
regulated by any other TFs (25). In S. cerevisiae, a similar example is Arg81, a TF 
involved in arginine metabolism (26). Upon the presence of arginine, Arg81 shuts down 
the expression of many enzymes involved in arginine biosynthesis, such as ARG1, ARG3, 
and ARG8 (27).  (Note that some of the reflex assignments to TFs may result from 
incompleteness of the known regulatory datasets). 

2. “Cogitation” processes 
The majority of TFs in both regulatory networks are regulated by other TFs. Most of 
these regulate other TFs, as well. Thus, TFs at the top become the global modulators for 
all down-stream ones. The decision is amplified and executed while being passed down. 
We call this a “cogitation” process.  
 



 8

Cogitation processes have some nice parallels to the overall description of decision 
making in apoptosis. Apoptosis consists of three phases: decision, commitment and 
execution (28-30).  In the first phase, the cell senses pro-apoptotic signals and determines 
whether it should die. This is reversible. In the commitment phase, however, the cell 
makes an unstoppable decision to die, which leads to the execution phase, where the 
actual destructive process is carried out (28-30). Such a multi-step decision-making 
scheme has two advantages: (1) it can work as a signal amplifier to rapidly increase the 
magnitude of the response just like the cAMP-cascade in glycogen metabolism (31); (2) 
it can act like a noise filter to convert continuous inputs into all-or-none switch-like 
outputs (32). 
 
We can see clear examples of cogitation processes in the yeast regulatory hierarchy. In 
particular, the expression of MOT3, a top-level TF involved in aerobic growth, is 
activated by heme and oxygen (33, 34) (see Figure 3), representing the decision phase. 
Mot3 in turn activates the expression of NOT5 and GCN4 (1, 35), which are both mid-
level TF hubs with a large number of targets. Once their expression is turned on, the cell 
is committed. Finally, in execution, Gcn4 activates two specific bottom-level TFs, Put3 
and Uga3, which trigger the expression of enzymes in proline and nitrogen utilization, 
respectively (36, 37).  
 
Please note that the distinction between the cogitation and reflex processes is purely 
based on the topology of the regulatory network. It is of course the case that even a reflex 
process could be very slow if the non-transcriptional events that underlie it are 
exceptionally time-consuming. However, transcriptional processes are normally much 
slower than non-transcriptional ones (e.g., phosphorylation). So it is quite reasonable to 
believe that our conclusions based on network topology reflect the actual timing of the 
processes.  

Top-level TFs receive signals through protein-protein 
interactions 
 
Through our analyses, we have shown that the regulation of gene expression in the cell 
normally happens in a multi-step fashion starting from the top TFs. Because (1) the cell 
regulates the expression of its thousands of genes in response to internal and external 
stimuli; and (2) TFs receive these signals through interactions with other molecules, 
mainly other proteins, since they usually function within the nucleus, we hypothesized 
that the TFs at the top of the hierarchy would receive most of the stimulating signals, and 
thus should have more interaction partners. 
 
Figure 4A clearly shows that the top-level TFs on average interact with more proteins 
than the others, confirming our hypothesis. Furthermore, we examined another important 
topological quantity – closeness, defined as the inverse of the sum of the distances from a 
certain node to all other nodes (19). Figure 4B shows that the top TFs, by and large, have 
significantly higher closeness in the interaction network than all other TFs, indicating that 
these TFs are at the center of the interaction network (i.e., close to all proteins) (19). This 
further confirms our hypothesis that these TFs receive signals through protein-protein 
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interactions. The signals are then processed and passed onto lower-level TFs along the 
hierarchy. Finally, we analyzed the functional composition of the interaction partners of 
the TFs at each level of the hierarchy using the MIPS functional classification schemes 
(38). As shown in Figure 4C, we found that three functional categories are significantly 
enriched within the interaction partners of the top TFs compared with those of the bottom 
ones (P < 0.05). They are:  
 

(1) Cellular organization. Most of the proteins in this category are localized to 
different organelles within the cell to keep their integrity.  
 
(2) Metabolism. The cell utilizes these proteins to respond to the nutrition changes 
in the environment, such as during the diauxic shift when the yeast cell switches 
from using glucose to using ethonal as a carbon source (39).  
 
(3) Cell defense and rescue. Obviously, most proteins in this category carry out 
defenses against various types of stress that the cell may sustain.  

 
A good example is the protein Ire1 (see Figure 5), belonging to all of the three categories. 
It is a trans-membrane protein on the endoplasmic reticulum (ER) membrane, with serine-
threonine kinase and endoribonuclease activities (40, 41). It is one of the main factors 
involved in the unfolded protein response and myo-inositol metabolism (40, 41). Upon 
the presence of unfolded proteins, Ire1 activates the SAGA complex (comprising Ada2, 
Gcn5, Hfi1, Ngg1, Spt20, Spt3, and Spt7) through directly interacting with Ada2 to 
enhance transcriptional induction of ER stress-responsive genes (42). In the available 
regulatory network, one possible path is that Ada2 successively turns on the expression of 
three TFs: Rtg3, Hmra1, and Ime4. Ime4 then induces the expression of 18 other genes. 
For example, Egd2 is a subunit of the heteromeric nascent polypeptide-associated 
complex that binds unfolded proteins in the ER to help them form secondary structures 
(43); Vik1 is involved in ER organization and biogenesis (44); and Zwf1 is required for 
oxidative stress response and fatty acid metabolism (45, 46).  
 
One might think that most top-level TFs are involved in chromatin-remodeling 
complexes, because these complexes affect a large number of transcriptional events and 
their components have high degrees in the interaction network. However, this is, in fact, 
not the case (Please refer to Supplementary Table 1 for detailed descriptions on functions 
of top-level TFs). Even though there is no strong functional pattern for the top-level TFs. 
most of them seem to be global modulators that respond to various cellular stresses (e.g. 
anomalous levels of nitrogen or glucose). 

The paradox of influence and essentiality 

1. Higher-level TFs are more influential 
 
We next examined the influence of each TF using the Rosetta knock-out experiments 
(47). Figure 6A shows that deletions of genes at higher levels of the hierarchy affect more 
genes than deletions of those at the bottom: i.e., higher-level TFs are more influential. 
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(Note that because the Rosetta knock-out experiments were only performed on 276 genes, 
no genes at level 3 were tested in the experiments.) 
 
Furthermore, we investigated the influence of TFs in terms of the ability of their human 
homologs to initiate disease, especially cancer. We calculated the fraction of TFs at 
different layers that have cancer-related homologs in human. Our calculations show that 
human homologs of TFs at higher levels have a higher tendency to be cancer related (see 
Figure 6B), further confirming the influence of high-level TFs in the hierarchy.  
 

2. Lower-level TFs are more essential 
 
Since we have shown that TFs at higher levels are more influential, it is reasonable to 
assume that these TFs should also be more essential (i.e. lethal) (48). However, based on 
our calculations in yeast, we found that TFs at the lower levels of the network have much 
higher tendency to be essential (see Figure 6C). A similar result can also be obtained in E. 
coli (see Figure 6D). One possible explanation for the separation of the influence from 
essentiality may be that TFs at the top of the hierarchy act more like modulators 
coordinating gene expression across different pathways (e.g., Mot3); therefore, all 
pathways remain functional upon deletion of these TFs, even though the precise 
expression between most pathways will not be well organized. On the other hand, TFs at 
the bottom are in charge of specific pathways (e.g., Put3 and Uga3). Upon their deletion, 
certain pathways will cease operating, causing the cell to die.  

Discussion 
 
In general, our results show that there is a pyramid-shaped hierarchical structure in 
regulatory networks, which is well organized in a clearly non-random manner. The major 
decision-making scheme in this hierarchy is a “cogitation” like multi-step process, where 
the TFs at the top receive signals from internal and external stimuli through protein-
protein interactions. These TFs strongly influence those below (in terms of the overall 
fraction of cellular genes affected). However, surprisingly, the TFs at the bottom are 
more essential to the viability of the cell.  

 
Because bottom TFs are relatively easy to define in regulatory networks, our BFS-level 
method is a reasonable way to turn the network into a tree in graph theory (18). However, 
as mentioned above, it is not trivial to construct a hierarchy for any given directed 
network – there are a variety of possible variations that readily come to mind. In 
particular, our method essentially assigns the lowest possible level of each TF as its level 
in the hierarchy because it is shortest-path based. Alternatively, one could calculate the 
longest path from a TF to a bottom node and assign this number as its level. For simple 
hierarchies, both methods will produce exactly the same results. For networks containing 
loops, the constructed hierarchies will be slightly different. Our BFS-level method has 
problems solving feed-forward type of situations; while the longest-path method has 
problems solving feed-back type of situations. It is hard to argue which method is better. 
In the supplementary materials, we described implementing this variant and other related 
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ones. Our results show that, in fact, most variations have similar global trends, 
confirming the validity of our conclusions.  
 
Furthermore, as shown in Figure 2E, our BFS-level method could assign a level number 
to every node in any directed network, even one randomly generated. However, the key 
aspect of a generalized hierarchy is its pyramidal shape. As we showed in Figure 2, 
regulatory hierarchies have a similar pyramidal shape as social ones.  We are also able to 
show that the topological features of the regulatory hierarchy correspond well to aspects 
associated with efficiency in its social counterparts. As discussed in detail above, these 
features are completely different from those in random networks, suggesting their 
functional implications.   
 
Moreover, previous studies have examined the relationships between the essentiality of a 
TF and its number of descendants (i.e., out-degree). It has been shown that TFs regulating 
more targets tend to be more essential (49).  
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Materials and methods 
 
Regulatory networks. We constructed the S. cerevisiae regulatory network by 
combining the results of various genetic, biochemical and ChIp-chip experiments in yeast 
(1, 2, 50-54). To ensure the quality of the network, we manually examined the network 
and removed all questionable ORFs and DNA-binding enzymes (e.g., PolIII). The final 
network contains 8,371 regulatory interactions involving 286 TFs and 3,369 targets. The 
E. coli regulatory network was constructed in a similar manner, which consists of 2370 
regulatory interactions between 145 TFs and 1063 genes (55, 56). 
 
Yeast interaction network. The interaction network was created by combining various 
databases and large-scale experiments (38, 49, 57-63). Because large-scale experiments 
are known to be error-prone (64, 65), we only considered protein pairs with multiple 
sources of support (using the likelihood ratio ≥ 300 criteria from Jansen et al (66)). The 
final network contains 23,294 interactions involving 4,743 proteins. 
 
Generation of random networks. We first generated random networks by randomly 
connecting TFs with target genes, while keeping the total numbers of TFs (286), target 
genes (3369) and edges (8371) as constant. Then, we ran BFS-level method to build the 
layered structure from the randomized network and repeated all calculations. This 
procedure was repeated 1000 times. The results were averaged and showed in Figure 2E. 
We also performed similar calculations for the E. coli regulatory network and found 
similar results (see Supplementary Figure 9). 
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Figure captions 
 
Figure 1.  
 
(Part A). Four common network motifs in social networks. Different colors represent 
different motifs. All four schematics came from real social networks shown in 
Supplementary Figure 11. (I) SIM. For example, node 1 is a professor or a director, and 
nodes 2 and 3 are his/her students or assistants, respectively. In the yeast regulatory 
network, node 1 is NDD1; nodes 2 and 3 are STB5 and MCM21, whose only regulator is 
NDD1. (II) MIM. Nodes 1 and 2 can be professors. Nodes 3 and 4 can be two students 
that they co-advise. In Supplementary Figure 11B, nodes 1 and 2 are Senior Director and 
Executive Director; nodes 3 and 4 are different departments that they co-supervise. In the 
yeast regulatory network, nodes 1 and 2 are FKH1 and FKH2. Together, they regulate 
node 3 (DBF2) and node 4 (HDR1). (III) FFL. For example, node 1 is the chairman of a 
department. Node 2 is a professor in the department. And node 3 is a shared secretary. In 
yeast regulatory network, node 1 (MBP1) regulates node 2 (SWI4). Then, they 
collectively regulate node 3 (SPT21). (IV) MCL. In Supplementary Figure 11D, node 1 is 
a chairman; node 2 is a director; node 3 is a coordinator; and Node 4 is a scientist. Then, 
some of the scientists form an advisory committee that oversees the chairman. In yeast 
regulatory network, node 1 is REB1; node 2 is SIN3; node 3 is UME6; and node 4 is 
HSF1.  
 
(Part B). Illustration on how to determine a generalized hierarchy using our BFS-level 
method. (I) A toy example with all four motifs mentioned in part A. Each color 
represents a motif. The color coding is the same as that in part A. (II) Finding all the 
bottom nodes in the network. A TF is a bottom node if and only if it does not regulate 
other transcription factors. TFs that only regulate themselves (i.e., auto-regulation) are 
also considered as bottom nodes. All bottom nodes in the network are colored red. (III) 
Finding mid-level nodes. One does a one-level deep BFS search starting at each of the 
bottom nodes to find what regulates them. Direct regulators of all bottom nodes are 
considered as level-2 nodes, which are colored green. (IV) Finding top-most nodes. The 
procedure in the previous step (III) is repeated until all levels are determined. We call this 
overall process BFS-level. In this toy example, there are only three levels. The node at 
the top level is colored blue. But in the yeast regulatory network, there are 4.  
 
Figure 2. Common characteristics of the hierarchical structures between regulatory 
networks and the Macao governmental organization. A. Illustration of the yeast 
regulatory hierarchy. The light blue arc arrows indicate the regulations between TFs at 
the same level. Many of these regulations are involved in loop structures (FFLs and 
MCLs). B. Illustration of the Macao governmental hierarchy. The bottom layer consists 
of people who do not manage anyone based on the available information, which are 
similar to the non-TFs in yeast. Therefore, level 1 of the hierarchy consists of peoples 
managing those at the bottom. C. Illustration of the regulatory hierarchy in E. coli. 
Average out-degree and total number of nodes at different levels are shown parallel to the 
hierarchies. P values in panels A and C were calculated using the student T tests to 
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compare the average out-degree of level-1 TFs with that of the TFs at other levels. D. 
Average betweenness at each level of the year hierarchy. P values are calculated using 
the student T tests to compare the average betweenness of the top and bottom TFs with 
that of the middle-level TFs, respectively. E. Comparison between yeast regulatory 
network and randomized networks. 
 
Figure 3. A biological example to illustrate the multi-step cogitation processes in the 
regulatory hierarchy: aerobic growth mediated by Mot3. We divided the whole figure 
into two parts: nucleus and cytoplasm, because TFs only function in the nucleus whereas 
other proteins (such as the enzymes Put1, Put2, Uga1, Uga2, and Uga3) normally 
function in the cytoplasm. 
 
Figure 4. (A). Average number of interaction partners for the TFs at each level. (B) 
Average closeness for the TFs at each level. P values in panels A and B were calculated 
using the student T tests to compare the top bar with the sum of the test bars. (C) 
Enrichment of functional categories relative to level 1. For each functional category in 
the MIPS functional classification schemes, we calculated the percentage of the 
interaction partners of the TFs that have this function. The percentage of a certain 
category was then normalized against the corresponding one at level 1. Therefore, all bars 
at level 1 have a value of 1. Because we are analyzing the transcriptional regulatory 
networks, we ignored the functional category “transcription”. P values were calculated 
using cumulative binomial distributions to compare the statistical significance of the 
enrichment at level 4 to that of the sum of the other levels (see supplementary materials). 
 
Figure 5. A biological example to illustrate that the top-level TFs receive internal and 
external signals through protein-protein interaction: unfolded protein response mediated 
by Ire1. 
 
Figure 6. A. Deletion of TFs at higher levels disrupts the expression of more genes. A 
gene is defined as disrupted if it has a P-value smaller than 0.05 determined by Rosetta 
knock-out experiments (47). Because the knock-out experiments were only performed on 
41 TFs, T tests cannot be performed to examine the statistical significance of the 
differences between the average numbers of affected genes across different levels. 
Therefore, we performed a χ2 test and found that deletion of TFs at higher levels disrupts 
the expression of more genes, which is statistically significant when compared with 
random expectation (P < 10-45; see supplementary materials). B. TFs at higher levels in 
the hierarchy have a strong tendency to have human homologs associated with cancer. P 
values measure the statistical significance between the fractions of human cancer gene 
homologs among TFs at a certain level with that at level 4. C. TFs at the bottom of the 
yeast hierarchy have a strong tendency to be essential genes. P values measure the 
statistical significance between the fractions of essential genes among TFs at a certain 
level with that at level 2. P values were calculated using cumulative binomial 
distributions (see supplementary materials). D. TFs at the bottom of the E. coli hierarchy 
have a strong tendency to be essential genes. All calculations are similar to those in panel 
C. 
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Table 1. 
A. Hierarchy of S. cerevisiae regulatory network 

Level Genes 
4 SPT23 HIR3 ADA2 GAT1 NGG1 DAT1 MOT3 GZF3 

3
MIG2 ZMS1 SWI3 SET2 IMP2' MIG1 HFI1 XBP1 RTG3 ZAP1 
SIR2 SIR4 HAP1 DAL80 CYC8 ARO80 PHO80        SUI2 PHO2        SPT20 
GAT3 BDF1 NOT5 RIM101       SIN3 OPI1 CDC47 MSN4 HPR1       HMRA2 

2

SMP1 INO2 CLN3 SIR3 SUT1 HAC1 SNF5 IME1 SKN7 RGT1       
CUP9 RFX1 YOX1 TUP1 YAP6 CIN5 HIR2 YFL044C YML081W                 
HSF1 HAP3 HCM1 PHO4 NDD1 FKH1 CLN1 UME6 CAD1 REB1      
MET4 ASK10 FAR1 TOS4 CRZ1 SPT16 STP2 SUM1 DOT6 LEU3       
GAL4 MATA1 HAP4 GCN4 RAP1 RLM1 KTI11 FKH2 IXR1 YHP1       
YAP1 MBP1 TYE7 FZF1 POG1 NRG1 MET32 HMLALPHA1 STE12       
ASH1 HMLALPHA2 SPT5 NHP6A GAL11 OAF1 HAP5 SWI5 DIG1       
HMS2 SET1 SOK2 BCK2 SNT2 PDR3 PDR1 PHD1 ACE2 ADR1       
CBF1 RTG1 CAT8 CSE2 MCM1 ROX1 SWI6 PAF1 KSS1 SWI1       
RME1 ABF1 ATS1 TEC1 SFP1 MAC1 ALPHA1 GLN3 AZF1 FHL1        
SWI4 MET31 HAL9 STB1 TOS8 NAB3 YAP5 

1

HAA1 ARG81 RSC3 UPC2 THI3 SSN2 RDR1 DST1 MED8 PDC2 
DAL82 CHA4 EAF3 RGA1 CDC36 SNF1 YAP3 PPR1 ARG80 NOT3 
MAF1 ARR1 YJL206C IWS1 YDR520C GCR2 RCO1 FLO8 TOA1 NDT80 
AFT2 SDS3 SNF6 CTI6 CDC73 GIS1 PGD1 SRB7 MED2 MGA2 
CAF4 SPT3 THI2 SPT4 SKO1 SSU72 SPT7 RSF1 LYS14      YPL230W
 CAF16 HAP2 TPO1 WAR1 SSN8 STB4 ITC1 ROX3 NUT2 
MBF1 MSS11 NUT1 RAD9 STE5 MIG3 RFA1 ACA1 RSC2 RDS3 
MET28 MAL13 STB5 SMK1 CDC39 CAF130 YRR1 TFA2 MSN1 PIP2 
HST1 BAS1 CAF40 PUT3 YKU70 NRD1 RDS1 CDC50 MGA1 CST6 
KAR4 RFA2 RAD50 MF(ALPHA)2 GTS1 RPH1 GCR1 CLN2 RAD18 
STP1 NRG2 MSN2 RCS1 YDR026C SFL1 HIR1 RPI1 TOA2 RLR1 
NHP6B RIM4 WHI2 HMS1 PHO23 MF(ALPHA)1 IME4 PLM2 SIP4 
MAL33 RPN4 WTM1 RDS2 STP4 STO1 MET18 RSC1 TFA1 TIS11 
CUP2 ECM22 STB2 UME1 RGM1 MOT2 SPT8 SRB4 SRD1 SPT21 
HOG1 SPT2 UGA3 DAL81 SET3 HTZ1 STD1 

B. Hierarchy of E. coli regulatory network 

Level Genes 
4 yhiW gntR soxR cspE 

3 oxyR lrhA cspA yhiX rob marR soxS exuR 

2

yhiE fur crp lrp metJ cytR tdcR flhC rhaR gutM 
narL himA rpoS feaB cysB fis B2087 cpxR flhD rcsB  
rpoN fruR fhlA glnG marA nac fnr srlR dnaA rpoE 
uxuR modE himD hns ompR galR arcA mlc feaR lysR   
rhaS phoP pdhR fadR 

1

metR appY trpR tyrR argR glcC xylR purR rpiR gals    
lldR mtlR malT atoC malI hydG emrR hycA cadC asnC  
yeiL idnR ilvY hupB betI uidR lexA rpoH gcvA fucR 
hcaR B2531 ada melR yiaJ glpR rcsA fliA cynR putA    
cbl dsdC treR arsR nagC csgD tdcA rtcR farR phoB 
araC hupA hipB yhhG fecI iclR B2090 torR caiF sdiA  
uhpA yjdG xapR evgA nadR adiY narP B1399 deoR gcvR 
acrR leuO ygaE envY alpA pspF ylcA hyfR yjbK ebgR 
kdpE yhdM slyA ygaA lacI rbsR nhaR mhpR birA 


