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Gene regulatorynetworkshavebeenshownto share somecommon
aspects with commonplace social governance structures. Thus, we
can get some intuition into their organization by arranging them
into well-known hierarchical layouts. These hierarchies, in turn,
can be placed between the extremes of autocracies, with well-
defined levels and clear chains of command, and democracies,with-
out such defined levels and with more co-regulatory partnerships
between regulators. In general, the presence of partnerships de-
creases the variation in information flow amongst nodes within a
level, more evenly distributing stress. Here we study various regu-
latory networks (transcriptional, modification, and phosphoryla-
tion) for five diverse species, Escherichia coli to human. We
specify three levels of regulators—top,middle, and bottom—which
collectively govern the non-regulator targets lying in the lowest
fourth level. We define quantities for nodes, levels, and entire net-
works that measure their degree of collaboration and autocratic vs.
democratic character. We show individual regulators have a range
of partnership tendencies: Some regulate their targets in combina-
tionwithother regulators in local instantiationsofdemocratic struc-
ture,whereas others regulatemostly in isolation, inmore autocratic
fashion. Overall, we show that in all networks studied the middle
level has the highest collaborative propensity and coregulatory
partnerships occur most frequently amongst midlevel regulators,
anobservation that hasparallels in corporate settingswheremiddle
managers must interact most to ensure organizational effective-
ness. There is, however, one notable difference between networks
in different species: The amount of collaborative regulation and
democratic character increases markedly with overall genomic
complexity.

coregulatory partnerships ∣ hierarchy ∣ middle managers ∣ autocracy ∣
democracy

In the cell, gene regulation is mediated by specialized regulators
that regulate the amount or activity of their targets. For exam-

ple, transcription factors (TFs) regulate the expression of target
genes (TGs) by binding to their regulatory regions. Similarly,
by virtue of phosphorylation, kinases regulate the activity of their
targets in a posttranslational manner by adding phosphate groups
to certain amino acids. These interactions can be modeled by
networks with edges pointing away from regulators to their
targets (1–4).

Previously, regulatory networks have been arranged into more
intuitive structures like pyramidal hierarchies with the regulatory
edges (chain of command) pointing downward to obtain more
insight into their architecture. There have been comparisons
between corporate and biological hierarchies to demonstrate
strikingly similar organization (5, 6). Rearrangement into hierar-
chies has also been used to identify functional modules and global
regulators by network decomposition approach (7). It has been
shown that distinct topological units (called origons) at the root
of these hierarchies are significantly affected by environmental
signals (8). These origons have been shown to be responsive at
various stages of adaptation of Mycobacterium tuberculosis allow-

ing a gradual progression of network under both replicative
(growth) and nonreplicative (dormancy) states (9). Evolutionary
analysis of Escherichia coli showed that transcriptional networks
tend to grow by expansion of existing hierarchical layers, rather
than addition of new layers (10). More recently, a study of TF
dynamics and network architecture showed that top-level TFs
in the hierarchy of yeast are relatively abundant, long-lived,
and noisy whereas middle-level TFs are more well-connected
and involved in higher number of GO processes (11).

In this study, we build upon the idea that depending upon the
layout of regulatory edges, there are two aspects of regulation
(12). In an autocracy, few top regulators influence their own
set of targets directly or through a chain of influence (Fig. 1A).
A social example of this kind would be a military hierarchy where
general officers (such as general or lieutenant general) command
over their own field grade officers (colonel, major, etc.) who in
turn, are in charge of company grade officers (captain and first
lieutenant). In a pure democracy, many genes exert regulatory
influence on all other genes and the response is the concerted
action of hundreds of genes (Fig. 1B). An example of this
would be professional organizations such as a club or a scientific
collaboration network without any apparent chain of command.
Whereas an autocracy organizes into a neat hierarchy with
well-defined levels but lacks comanagement or co-control, a de-
mocracy displays much more comanagement without well-
defined levels or a clean hierarchy. It should be noted here that
terms like democracy and autocracy used in this study do not
exactly match the political science notions; they are defined based
on analogies from Bar-Yam et al. (12).

Both autocratic and democratic scenarios are extremes and
cells operate under an intermediate situation demonstrating a
high degree of comanagement and coregulation with an architec-
ture that can be organized into hierarchies (Fig. 1C). An example
of this scenario would be a law firm formed by partners that have
a well-defined place in the hierarchy and manage a common set
of staff members such as associates and paralegals, which in turn
share a team of legal assistants and interns.

In general, the presence of cross-regulation decreases the
difference in information flow between nodes within a level, re-
sulting in stress being more evenly distributed across the network.
In an autocratic hierarchy (Fig. 1A), all regulatory information
from the top regulators (Squares) to the circles pass through
a specific midlevel regulator (Triangles). Thus, if a particular
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midlevel regulator has many direct reports, it will become a major
bottleneck. In contrast, in the more democratic layouts shown in
Fig. 1 B and C, there are many paths from the top regulators to
the bottom resulting in a distributed stress and less severe bottle-
necks. In particular, in Fig. 1A, the addition of two cross-regula-
tory edges between the empty triangle and the empty circles
reduces the normalized “betweenness” of the black triangle to
3.4 (it was previously 4.1) and also increases that of empty
triangle to 3.3 (previously 1.03), thus decreasing the variation
of betweenness in the middle level and evenly distributing the
information flow. This has been shown for some larger instantia-
tions of simulated hierarchies in Fig. S1 and SI Text.

In this paper, by reorganizing the biological networks into sim-
ple intuitive hierarchies, we examine their coregulation patterns
for their similarities with comanagement collaborations in
corporate hierarchies and show that both kinds of hierarchies
bear close resemblances with one another. We essentially focus
on multi-input motifs (MIMs) where a group of nodes together
coregulate another set of nodes (2, 13) and place these motifs
(and others such as feed-forward loops) in a hierarchical context
following the chain of command.

Results
We analyzed cotranscription networks in five evolutionary diverse
species for which the data available is reasonably abundant:
M. tuberculosis, E. coli, yeast, rat, mouse, and human. The mod-
ification and phosphorylation network, however, are appreciably
available only for human and yeast, respectively; for others they
are very sparse. Fig. 2A provides the size of different networks for
all species. We constructed coregulatory network by placing an
edge between two regulators if they shared at least one target
gene. Edges that were less significant than random were removed
(Fig. 3A; see Materials and Methods). As used in previous studies
(14, 15), this step only forms the most significant partnership
associations.

Reorganization Into Hierarchies.We fractionated the regulators into
three levels using a simple technique based on in-degrees (num-
ber of a node’s regulators, Fig. 3B). In the top level are those
regulators that do not have any incoming edges; they only have

outgoing regulatory edges (top managers). Those regulators that
are regulated by other regulators and also regulate other regula-
tors were designated to the middle level (middle managers). By
this definition, all the loops in the network lie in the middle level.
Finally, the bottom level consisted of the remaining regulators
that were only regulated by other regulators (junior managers)
and their targets are the nonregulator genes at the very bottom.
Most of these hierarchies are not pyramidal (Fig. 2B).

Hierarchy Is Rationalized In the Context of Protein Function. To ascer-
tain the biological relevance of assignment of regulators to

Fig. 1. Regulatory architectures. (A) Autocratic organization with a clean
hierarchy but no coregulation. (B) Democratic organization with no apparent
hierarchy but many coregulation instances. (C) Intermediate architecture
with a hierarchical skeleton and a high degree of coregulation. (D) Various
properties for different components of the network: Normalized between-
ness (Betw.), its variance (Var. Betw.), and DNet-collab. Because there are many
more edges in a democracy than an autocracy (between the same number of
nodes), we normalize the betweenness of each node by diving it by the
average value of betweenness over the entire network. DNet-collab is the
average of Di

collab over the entire network; DNet-collab ¼ hDi
collabii ∀ i ∈ N.

Di
collab is defined as the fraction of targets that are coregulated by at least

one other regulator.

Fig. 2. Network sizes, relative population of different levels, and evolution
rates. (A) Number of regulators, targets, and interactions in each network.
Network names use the following notations: initials of the scientific name
of the species (such as Sc for Yeast and Rr for Rat) followed by the kind
of network (Tr for transcription, Mo for modification, and Ph for phosphor-
ylation regulatory networks). (B) Relative population of the top, middle, and
bottom level for each network. (C) Evolution rates of different levels for
Yeast regulatory hierarchy (Sc_Tr).
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different levels, we examined the prominent gene ontology (GO)
cellular process categories of regulators in each level (they, of
course, all have the GO molecular function of transcription).
For example, in the case of E. coli, for the top level, the two most
significant GO categories are response to stimulus and stress
response. These categories are reasonable for top regulators,
as responding to these stimuli involves a number of regulatory
steps downward. So, these regulators receive these stimuli and
respond to it by starting downstream regulatory processes. Most
of the regulators in the middle level are involved in processes
such as signal transduction and cellular metabolism. These in-
volve a lot of cross talk and interregulatory interactions, which
is reasonable for regulators in the middle level that are regulated
by and regulate other regulators. The majority of regulators in the
bottom level are involved in amino acid and carbohydrate cata-
bolic processes, which are mostly stand-alone functions. These
regulators directly bind to their target genes and carry out a spe-
cific process. GO annotation analyses, from the Database for An-
notation, Visualization, and Integrated Discovery tool (16) for all
other networks reveal similar observations (Fig. S2). The differ-
ent levels also relate roughly to previous classification of proteins
into distributors, integrators and workhorse proteins (SI Text)
(17). We also investiaged the evolutionary patterns of transcrip-
tion factors in different layers and found that top-level TFs evolve
the slowest whereas bottom-level TFs show the hightest rate of
evolution (Fig. 2C and SI Text).

Autonomous vs. Collaborative. Regulators can be divided into two
categories based on the number of their coregulatory partners.

Some regulators have only a small fraction of their target genes
that are coregulated by other regulators (such as LexA in Fig. 4A).
These autonomous regulators regulate a majority of their target
genes in isolation. They represent a local instantiation of an
autocratic structure. On the other hand, collaborative regulators
regulate a large fraction of their target genes in combination with
other regulators (such as FhlA in Fig. 4B) and represent local
instantiations of democratic structure. For a given regulator, to
distinguish an autonomous from collaborative mode, we calculate
the fraction of target genes that are coregulated by at least one
other regulator. This fraction, which we call “degree of collabora-
tion” for a node i (Di

collab) is close to 0 for autonomous regulators
and is close to 1 for collaborative ones. Not surprisingly, GO an-
notation analysis for these regulators reveals that collaborative
regulators are enriched in processes like sensory transduction
and various signaling pathways (e.g., MAPK and TGF-β) that
require them to interact with other regulators in the system
whereas autonomous regulators are commonly involved in
stand-alone processes like degradation and phosphorylation
(Fig. S3 and Fig. S4).

To investigate if there is any bias toward autonomous or
collaborative regulation in different species, we plotted the range
of collaborative fraction of each node (Di

collab) using a box-plot
representation (Fig. 5). We observe that more complex species
(such as human and rat) are shifted significantly (P-values listed)
toward higher values of this ratio than the less complex ones
(such as E. coli and yeast). This suggests that regulators tend
to be more collaborative among higher species. Similarly, degree
of collaboration for a pair of nodes, i and j, can be defined as

Fig. 3. Obtaining coregulation network and analysis
of hierarchical structure of regulatory networks.
(A) Beginning with regulatory network, we will first
place an edge between two TFs (or kinases) if they
coregulate (or cophosphorylate) at least one com-
mon target gene. Only those edges that are more
probable than random will be retained (Solid Green
Edges in the last network; seeMaterials and Methods
for details). (B) Reorganization of regulatory net-
works into hierarchies. In the top level will be those
regulators that do not have any incoming edges.
Those regulators that are regulated by other regula-
tors but also regulate other regulators will be desig-
nated to the middle level. Finally, the bottom level
consisted of the remaining regulators that are only
regulated by other regulators. (C) Investigation of
coregulation tendencies between different levels in
the hierarchy. We define degree of collaboration
between two levels L and M using the intersection
and union of target genes between all possible pairs
of regulators from the two levels normalized for the
size of each level.

Fig. 4. Autonomous vs. collaborative hubs. The genes that are regulated by >1 TF are colored in light pink; the rest are in blue.
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Di;j
pair-collab ¼

Gi∩Gj

Gi∪Gj
where Ga is the set of targets of regulator a.

Fig. S5 plots the histogram of Di;j
pair-collab and shows that a fairly

good fraction of Di;j
pair-collab lies between the extremes of 0 and 1,

suggesting that cellular regulatory hierarchies are intermediates
betweenautocratic (Dcollab ∼ 0) anddemocratic ones (highDcollab).

Propensity of Each Level to Be Collaborative.We next wanted to de-
termine which hierarchical level has the highest collaborative
propensity. For this purpose, we define degree of collaboration
for a level L as the average of the Di

collab for all nodes i in
level L, DL

Level-collab ¼ hDi
collabii ∀ i ∈ L. Not surprisingly, we

found that in all five species, the middle level showed the highest
propensity to be collaborative (Fig. 6A). In other words, it is the

target genes of the middle level that are coregulated by other
regulators the most.

Coregulation Collaborations Within and Across Different Levels.Next,
we examined which two levels have highest coregulation
tendencies between them. To investigate inter- and intralevel cor-
egulation patterns, we defined degree of collaboration between
the levels L and M as

DL;M
betw-level-collab ¼

∑
A∈L

∑
B∈L

GA∩GB
GA∪GB

jLj • jMj
where Gi is the number of genes regulated by regulator i, and jX j
is the total number of regulators in level X (Fig. 3C).
DL;M

betw-level-collab is essentially the ratio of the number of genes
coregulated by two regulators (from the same or different levels)
and the union of their target genes summed over all such pairs of
regulators from the two levels. Note that it is normalized for the
size of each level. DL;M

betw-level-collab varies between 0 (no coregula-
tory collaborations between two levels) and 1 (all the targets of
either level are regulated by the other level and also vice versa). A
higher DL;M

betw-level-collab between any two levels indicates a higher
propensity between the regulators from those levels to coregulate
their target genes.

Interesting patterns are observed for all five species and for all
regulatory networks. First, we find that the highest degree of col-
laboration is between regulators from the middle level (Fig. 6B).
In other words, it is most frequent for regulators in the middle
level to pair up to regulate their common target genes. Second,
the next two highest degrees of collaborations exist between mid-
dle and top level, and between regulators both from the top level.
Finally, regulators that are both from the bottom level have the
lowest tendency to coregulate. It is reasonable that middle-level
regulators have a high degree of collaboration because of the
large amount of cross talk in this level. Interactions between
middle level regulators represent the “computational core” of
the regulatory network. Bottom-level regulators, on the other
hand, tend to activate terminal differentiation cascades, so lack
of coregulation between bottom-level regulators is also reason-
able. Each bottom-level regulator acts upon a different cellular
process, and we expect minimal interaction between them.
Similar observations are also obtained for an alternative ap-
proach of building the hierarchy (see Robustness of Methodology
and Incompleteness of Data).

All these above findings are also readily seen in nonbiological
hierarchies such as a corporate hierarchy. It has been shown that
in a corporate setting, middle managers play a very important role
and interact the most for organizational success (18–22). Middle
managers play a critical role in linking the vision of top managers
to the day-to-day realities of frontline managers (23, 24). More-
over, it is the junior managers that need least interaction with
their peers; they only look after their own division and carry
out the jobs assigned to them, which are mostly stand-alone (20).

As coregulation partnership between two regulators instanti-
ates aMIM, we are essentially studying these motifs in a hierarch-
ical context. Our results propose that certain kinds of MIMs are
more commonly found in the regulatory networks of the five spe-
cies than others. Fig. 7A lists the three kinds of most significantly
present MIMs in the networks. In particular, in all networks,
MIMs where both regulators come from the middle level are
more frequent than the ones where one regulator is from the mid-
dle level and the top level each or the ones where both regulators
are from the top level. We also examined the distribution of
another kind of motif: the feed-forward loop (FFL) where a reg-
ulator regulates another regulator and they both regulate another
common target (Fig. 7B). We find that the most common kind of
FFL occurs between a top-level regulator and a middle-level

Fig. 6. Collaborative tendencies of and between various levels. (A) Normal-
ized collaborative propensity for each level,DL

Level-collab. (B) Degree of
collaboration between different levels, DL;M

betw-level-collab. Network names indi-
cated in the middle follow the same notation as in Fig. 2.

Fig. 5. Box-plot of the collaborative fraction (on the Y-axis) defined as the
ratio of coregulated and total target genes for every regulator for all five
transcriptional regulatory networks. P-values for each of the neighbors are
calculated using the two sample Wilcoxon test with the null hypothesis that
the distribution for species on the right (higher) is greater than that for the
previous one (lower species). In other words, a low P-value indicates that the
distribution for the higher species is shifted significantly toward higher
values than the lower one. The smaller square corresponds to the mean
of the distribution and is essentially DNet-collab, degree of collaboration
averaged over the entire network (SI Text).
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regulator with a common target and the next most common FFL
is found between two middle-level regulators. These frequencies
of different kinds of MIM and FFL motifs are consistent with
our observation above that middle-level regulators are most
collaborative and with other previous studies (11).

Robustness of Methodology and Incompleteness of Data.One of the
issues with studies dealing with the regulatory data that use dif-
ferent methodologies is the robustness of the results to the used
definitions; it is often difficult to determine optimum values and
definitions. To address this issue, we adapted different definitions
and methodologies and repeated the analysis. In addition to
above approach, we used another technique to construct hierar-
chies using both incoming and outgoing edges. First, all regula-
tors were sorted in the increasing order of the incoming edges and
decreasing order of outgoing edges. From this sorted list, we as-
signed top 30% to the top level, the middle 40% to the middle
level, and the lowest 30% to the bottom level assigning the
regulators with the most number of outgoing edges (and least
number of incoming edges) to the top level and the ones with
the most number of incoming edges to the bottom level. This
addresses the issue of the top level diminishing in light of more
data (when they have more incoming edges). We then calculated
degree of collaboration between different pairs of levels and
obtained similar results as above (Fig. S6) for specific types of
networks (Fig. S7 and Fig. S8).

Discussion
In any given genome, the genes are regulated by regulators
(which are fairly few in number) that control their expression
(hence their amount) or their activity in the cell via combinatorial
control where two or more regulators jointly regulate the target
gene forming a coregulation networks. We have analyzed three
kinds of coregulation networks for their hierarchical organization
for five diverse species. These hierarchies had chains of com-
mands going top down (or going horizontally in the middle level).

We have uncovered some interesting coregulatory patterns
between hierarchical levels common between networks from dif-
ferent species, e.g., the most frequent coregulatory interactions
are formed between two regulators from the middle level whereas
the least frequent ones are observed between those from the bot-
tom level. Because an instance of coregulation by two regulators
essentially represents a MIM motif, we have placed it in a hier-
archical context and shown that certain MIMs are more frequent
than others. We have also shown that target genes of the middle
level are coregulated the most, and their most frequent partners
are the other middle level regulators. The observations reported
above also seen readily in a typical social setting where middle
managers interact the most with their peers to manage those be-
low them (18–20, 25). Similarly, managers at the lowest level
supervise their specific department without much co-control over
the workers under other managers (20, 25). Our results are also
shown to be robust to the adopted methodologies and parameters
that can be user-subjective. Interestingly, the above findings are
seen more or less consistent across all five organisms suggesting
that the above properties are inherent to the regulatory and
coregulatory networks of all living species. However, one of
the differences between these species is the relative magnitudes
of collaborative nature of regulators: Regulators in more complex
species demonstrate a higher collaborative nature. We believe
that these are due to the vast differences between the size and
complexity of these genomes. For example, in yeast, the esti-
mated number of regulators is 250 that regulate 6,000 targets
bringing the average number of targets to approximately
25 where as for human the number is about 10 (2,000 regulators
regulating 20,000 genes).

In spite of the above similarities between social and biological
comanagement hierarchies, some differences between the two
should also be noted. First, there are fewer comanagement inter-
actions in corporate settings than in biological hierarchies—the
reason being that corporate hierarchies are more modularized by
geography or department, e.g., the middle manager of one region
does not control the staff from other regions. Second, there is less
direct control between levels that are two or more levels apart
(e.g., top and bottom levels) in social hierarchies than in biolo-
gical ones (e.g., the chief executive officer rarely gives direct
orders to the janitor), although, indirect control certainly exists
in social hierarchies. In biological hierarchies, such controls
are more prevalent (e.g., multi-input motif with one node from
the top level and one from the bottom level). Finally, whereas in
cellular regulatory machinery, most regulators only either acti-
vate or inhibit their target, most social settings exhibit simulta-
neously positive and negative regulation: A boss may task an
employee in certain instances and may also prohibit the same
employee in some others. Exceptions are regulatory agencies
such as the Food and Drug Administration or a police body that
only inhibits. It would be interesting to incorporate this kind of
dual (positive or negative) regulation in our model.

Nevertheless, our above observations are readily understand-
able through analogies to social settings. Such studies comparing
biological networks and hierarchies to social ones aid to our
intuition about the organization of the internal machinery of
the cell and give insight into the nonrandom architecture of
the biological networks.

Materials and Methods
Dataset. Various data sources were used for different species: the largest
collection of regulatory data obtained from published microarray data for
M. tuberculosis (9), regulonDB version 6.2 for E. coli (26), results of genetic
and biochemical experiments as used in previous studies for yeast (2, 14, 15,
27–31), and Transcriptional Regulatory Element Database database for rat,
mouse, and human (as of June 2008) (32). The protein modification network
was obtained from the Human Protein Reference Database database (33).
Phosphorylation data for yeast was obtained from two large scale
experimental studies (34, 35).

Fig. 7. Three kinds of most significantly present MIMs and FFLs in the
decreasing order of their frequency. Values indicate the fraction of that
particular kind of motif from all the occurrences of that class of motif
(MIM). Network names indicated in the middle follow the same notation
as Fig. 2.
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Network Transformation. To transform the regulatory network into the
coregulatory network, we placed an edge between two TFs if they regulate
the same target gene and generated 1,000 control networks with the same
degree distribution (in- and out-degree of each node) as the original
regulatory network. As in previous studies, the aim was to keep only those
coregulation edges that are more probable than random (14, 15). For every
pair, the ratio of the number of target genes regulated in real network and
the average number of target genes regulated in random networks was

calculated. Only edges with the ratio >1 were retained to keep only those
coregulatory collaborations that are more frequent than random ones.
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