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Frameworks for Organizing 
Molecular Interactions
Because of the information available to date,
much work has been done to define modules
based on properties of network structure. A
structural module can be viewed as a static
representation of all the interactions that are
possible between the elements of a module. In
this case, the analysis of aggregated data
sources provides enough information to de-
fine modules. However, knowledge of net-
work structure is often not sufficient to infer
function, and dynamic modularity can exist in
the absence of structural modularity. A clear
understanding of dynamic modularity

emerges only when the time-dependent activity
of molecular networks is monitored. As more
dynamical data become available, it will be
possible to complement our understanding of
the structure of molecular networks with an
understanding of their dynamics, and thereby
to understand more about biological function
and how interactions between molecules gen-
erate cellular phenotypes.

Analysis of Network Structure
Generating data on molecular interactions at
the genome scale is still a difficult enterprise.
As of 2008, only about 20% of the predicted
interactome in yeast has been experimentally
characterized (1). Time-resolved molecular
interaction data are even scarcer, so a substan-
tial amount of research effort has been ex-
pended elucidating biological function from
structural parameters of molecular interaction
networks (2). The first step in finding mod-
ules from protein interaction data includes
f inding fully connected subnetworks or
cliques, or defective cliques that have lower
connectivity (3, 4). Proteins on the shortest
path between many pairs of nodes in the net-
work, called bottlenecks, often represent inter-
faces between modules (5), whereas highly
connected nodes or hubs often lie in the cen-
ter of modules (6) (Fig. 1).

Here, we highlight examples of structural
features of molecular networks for which the
importance of dynamics is evident even in the
absence of dynamical information. First, by
mapping known three-dimensional structures

of interacting proteins onto the yeast protein
interaction network, two classes of hubs with
distinct dynamical behavior were identified
(7). Multi-interface hubs have several interac-
tion surfaces and interact with multiple part-
ners simultaneously, anchoring them into
complexes that are stable across multiple con-
ditions and time points. Single-interface hubs
have one or sometimes two interaction sur-
faces and interact with partners one or two at
a time. Multi- and single-interface hubs, de-
fined by these biophysical properties, resem-
ble party and date hubs, respectively, which
were defined on the basis of their different
signatures in gene expression data (8).  Distin-
guishing conclusively between these two
classes of hubs requires dynamic information.

The analysis of network motifs, pioneered
by Alon (9), provides information about struc-
tural modularity on the scale of a few interact-
ing molecules. Network motifs can be recog-
nized from network structure alone by finding
groups of molecules connected in the network
more often than would be expected at ran-
dom. The feed-forward loop (FFL) and sin-
gle-input module (SIM) are classic examples
where just knowing network structure can
provide insight into dynamics and function
(Fig. 1). For example, FFLs often play a role
in noise filtering, turning on gene transcrip-
tion only in response to sustained input sig-
nals (10). SIMs are often present in terminal
differentiation cascades, where they lead to
expression of a battery of functionally related
genes in response to an activation signal (11).
However, for another common network motif,
the bifan, it is difficult to infer anything about
its function from structure alone: Depending
on the strength and sign of the interactions be-
tween nodes in the bifan motif, completely
different dynamical behavior can result (12)
(Fig. 1). A systematic analysis of network
motif dynamics showed that several classes of
real biological networks are enriched with
network motifs that are robust to changes in
dynamical parameters, like the FFL and SIM.
The same networks were found to be depleted
in network motifs that exhibit widely varying
behavior in response to perturbation of their
dynamical parameters, like the bifan (13).
This work suggests that natural selection acts
on network dynamics and that network struc-
ture and dynamics are coupled.

Examination of condition-dependent ex-
pression of network motifs in the yeast regula-
tory network found some conditions enriched
in FFLs and other conditions enriched in SIMs
(11). In conditions that monitor the cell’s inter-
nal state (endogenous conditions), FFLs buffer
multiple layers of internal signal processing,
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The era of genome sequencing has produced long lists of the molecular parts from
which cellular machines are constructed. A fundamental goal in systems biology is to
understand how cellular behavior emerges from the interaction in time and space of
genetically encoded molecular parts, as well as nongenetically encoded small
molecules. Networks provide a natural framework for the organization and quantita-
tive representation of all the available data about molecular interactions. The structural
and dynamic properties of molecular networks have been the subject of intense re-
search. Despite major advances, bridging network structure to dynamics�and there-
fore to behavior�remains challenging. A key concept of modern engineering that re-
curs in the functional analysis of biological networks is modularity. Most approaches
to molecular network analysis rely to some extent on the assumption that molecular
networks are modular�that is, they are separable and can be studied to some degree
in isolation. We describe recent advances in the analysis of modularity in biological
networks, focusing on the increasing realization that a dynamic perspective is essen-
tial to grouping molecules into modules and determining their collective function.

C O M P U TAT I O N A L B I O L O G Y
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whereas in conditions that involve
external stimuli (exogenous con-
ditions), SIMs generate rapid re-
sponses to external conditions by
expressing batteries of output
genes appropriate to the condition.
This work took advantage of the
functional information inherent in
the structure of FFLs and SIMs to
predict dynamical behavior in dif-
ferent situations. It also revealed
that hubs in some conditions are
not hubs in others, showing that
important features of network
structure are transient and condi-
tion specific (11). Another dy-
namic extension of the concept of
network motifs is the activity mo-
tif. There, activity is defined using
some quantitative functional ge-
nomics data set that is overlaid on-
to the network structure. The net-
work is then searched for series of
nodes with quantitative patterns
that are present more often than
would be expected at random
(14). For example, a chain of
genes with decreasing transcrip-
tion factor binding affinity might
represent a just-in-time transcrip-
tion program: The first gene with
strongest affinity gets activated
first, and so on, in a linear cascade.

Dynamic Modularity
These glimpses of dynamic signa-
tures embedded in structural mod-
ules have led researchers toward
the realization that network dy-
namics must be studied more sys-
tematically. The dynamics of
molecular interactions can be
studied at the genome scale by in-
tegrating time series of high-
throughput data sets or data sets generated un-
der various conditions. Even in the data-rich
environment of functional genomics, however,
the problem of relating network structure to
dynamics remains very challenging. The prob-
lem is largely underdetermined because there
are always more network parameters than data
points available to constrain them. According-
ly, the necessary first step in such methods is
to group molecules into modules and study the
dynamic interactions between modules (15).
Great care in designing the experiments helps
to maximize the amount of information pro-
vided by these methods. Modular response
analysis (MRA) is a classic framework for de-
signing experiments to determine molecular

network dynamics (15). On the basis of prior
knowledge, a biological system is partitioned
into functional modules such that each module
can send and receive just one input from each
other module. A series of experiments perturb
each module separately and the framework of
MRA is applied to the experimental results,
thus enabling the strength of interaction be-
tween all the modules to be quantified, gener-
ating a dynamic modular network.

Although modularization reduces the size
of the network and makes it less underdeter-
mined, it presupposes that molecular networks
can, in fact, be treated as separable modules
(16, 17). An alternative view is that molecular
interactions in the cell cannot be broken down

into structural modules and that there
is a large amount of crosstalk between
molecules with unrelated functions.
These two possibilities might reflect
different evolutionary conditions.
Nonmodular networks are more likely
to evolve in stable environments,
whereas modular networks are likely
to evolve in organisms challenged by
multiple environments (18, 19). The
concepts of retroactivity and kinetic
insulation provide a framework for un-
derstanding dynamic modularity.

Retroactivity
The concept of retroactivity emerged
in the field of electric engineering.
When electronic modules are connect-
ed in series, the dynamical properties
of a downstream element may retroac-
tively affect the functioning of an up-
stream element—for example, by
draining electrons too fast. An electri-
cal module with low retroactivity can
be mixed and matched with others to
build more complex circuits in a mod-
ular way. Like electrical circuit ele-
ments, dynamic biological modules
with low retroactivity may be mixed
and matched in various combinations
without altering the internal dynamics
of each module. It is possible that
molecular networks evolved to exhibit
low retroactivity and improve their dy-
namic modularity. New methods to an-
alyze retroactivity in molecular net-
works are emerging: A theoretical
framework for such analysis has been
proposed (20), and an algorithm was
developed to partition molecular net-
works such that retroactivity between
modules is minimized (21). Certainly,
functional modules designed for syn-
thetic biology must exhibit low

retroactivity, but whether natural molecular
networks have evolved the same characteristic
is an open question.

Although MRA can aid in the generation
of dynamic modular networks, the amount of
retroactivity between modules cannot be de-
termined with MRA, because it does not pro-
vide a mechanism to determine whether feed-
back from one module to another alters the in-
ternal dynamics of the receiving module. The
only way to determine retroactivity between
modules is to generate more detailed data
about the dynamical parameters of the nodes
inside the modules. As more such dynamical
data become available, it will be possible to
answer the question of whether nature evolves

P E R S P E C T I V E

Fig. 1. Hubs, bottlenecks, cliques, and network motifs are features
of the topological structure of molecular networks that have been
well studied and can sometimes be used to infer function. (A) Hubs
are nodes in the network with more interaction partners than aver-
age; they tend to be essential. (B) Bottlenecks are nodes that lie on
the shortest path between many pairs of nodes in the network; they
often lie at the interface between modules and also tend to be es-
sential. (C) Cliques in protein interaction networks are indicative of
protein complexes that function together. (D) The feed-forward loop
(FFL) and single-input module (SIM) are network motifs with output
behavior that varies little when dynamical parameters are changed,
whereas (E) the bifan motif can generate widely different dynamics
from different dynamical parameter combinations (12, 13).
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dynamical modules that are dynamically iso-
lated by minimizing retroactivity. If the an-
swer is no, that some functional modules are
not dynamically isolated from each other,
then kinetic insulation provides a way to re-
duce crosstalk by separating the time scales of
dynamic signals that pass through the module
from different inputs (22).

Kinetic Insulation
Both theoretical and experimental analyses in-
dicate that a single molecular network can
generate distinct outputs in response to input
signals with different dynamical profiles. This
phenomenon has been termed “kinetic insula-
tion” (22), emphasizing the importance of dy-
namics to signaling specificity. For example, a
progenitor cell in a tissue differentiation cas-
cade can turn on different batteries of genes in
response to input signals with different dy-
namic signatures. A classic example is the
case in which a mitogen-activated protein ki-
nase (MAPK) cascade responds transiently to
epidermal growth factor (EGF) but exhibits a
sustained response to neural growth factor
(NGF) (23). The PC12 cancer cell line is de-
rived from adrenal gland tissue and can be
thought of as an imperfect model of adrenal
gland progenitor cells, which have the ability
to differentiate into either sympathetic neu-
rons or adrenal chromaffin cells that synthe-
size adrenaline. NGF generates sustained acti-
vation of MAPK in PC12 cells, leading to a
specific gene expression program that causes
the cells to differentiate into neuronal cells. In
contrast, EGF activates the same MAPK only
transiently, triggering a gene expression pro-
gram that causes the cells to proliferate, pre-
sumably allowing them to differentiate into
adrenaline-producing cells in response to a
later cue. This tissue-specification program is
only possible because of the expression in the
progenitor cell of different batteries of genes
in response to different input signals. The
MAPK cascade uses kinetic insulation to pro-
cess different dynamic signals through the
same set of molecules to generate different re-
sponses (23). The nuclear factor κB (NF-κB)
regulatory network that is important in the
mammalian inflammation response also ex-
hibits kinetic insulation, producing transient
or sustained activation of the NF-κB tran-
scription factor in response to tumor necrosis
factor α (TNF-α) or lipopolysaccharide (LPS)
input signals, respectively (24).

Determining Dynamical Parameters
of Cellular Networks
Dynamical models of molecular networks rely
on knowledge of biochemical parameters,

such as enzymatic rate constants, binding
affinities, and protein concentrations, deter-
mined over many decades of biochemical and
molecular biological experiments. The as-
sumption that a set of well-studied molecules
can be treated as an isolated system is equiva-
lent to the contention that they represent a
functional module and that the module dy-
namics will not be strongly affected by
crosstalk with other molecules that have not
been studied in the same functional context.
There are a growing number of dynamical
models of well-characterized molecular net-
works (25), which may reveal biological in-
sight, keeping in mind the caveat that the as-
sumption of modularity and lack of crosstalk
may not hold in the face of future data.

The behavior of a dynamical model might
be insensitive to changes in individual param-
eters but remain sensitive to changes in com-
binations of those parameters. For example,
the ratio of activity of a kinase and phos-
phatase acting on the same target might be
constrained while allowing the abundance and
rates of the two enzymes to vary in concert
over a wide range (26). Sensitivity analysis is
a mathematical tool for identifying “stiff ” dy-
namical parameters, which are combinations
of biochemical parameters that when changed
strongly affect the dynamical behavior of the
model. Interestingly, most dynamical models
in systems biology are “sloppy,” meaning that
only a few combinations of parameters are
stiff and the other parameters can vary over an

extremely wide range without al-
tering output behavior (25). A dy-
namical model of the MAPK cas-
cade that controls PC12 cell dif-
ferentiation exhibits this charac-
teristic (23). The stiffest dynami-
cal parameter in the model is
composed of biochemical param-
eters affecting the interaction be-
tween the Ras and Raf proteins,
meaning that altering that interac-
tion slightly has a strong effect on
dynamical behavior (Fig. 2).

Currently, most systems biolo-
gy models are parameterized by
reference to the extensive bio-
chemical literature that has devel-
oped over many decades from
studies of one or a few gene
products in any given experi-
ment. Knowing many parameter
values accurately provides enor-
mous predictive power, as recent-
ly demonstrated by a model of
cytokinesis in yeast that relied on
characterization of the biochemi-
cal parameters of interactions be-
tween actin, myosin, and associ-
ated proteins (27). It might seem
natural to extend this practice to
the genome scale by developing
high-throughput methods to mea-
sure individual biochemical pa-
rameters one at a time. However,
the sloppy character of dynamical
network models suggests that not
all parameters, even if accurately
measured, will provide the same
amount of constraint on the mod-
el. In this case, using sensitivity
analysis on the model and fitting
all of the parameters at once to
global time series data may iden-

P E R S P E C T I V E

Fig. 2. Dynamical constraints on a signaling pathway in-
volved in tissue differentiation in rat correlate with al-
lelic variation at the population level in the same path-
way in fruit flies, revealing a link between dynamics and
evolution. The “stiffest” combination of parameters was
associated with the Ras and Raf proteins at the top of
the pathway, and in fruit flies Ras and Raf exhibit the
least allelic variation of all of the components of the
pathway, consistent with the concept that stiff parameter
combinations are constrained during evolution. The
dashed arrow indicates that some accessory compo-
nents of the two cascades are excluded here for clarity
of presentation. RTK, receptor tyrosine kinase.
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tify which combinations of parameters are
most important to measure.

Robustness and Evolvability
The uneven stiffness of dynamical parame-
ters has interesting implications for the ro-
bustness and evolvability of molecular net-
works. The set of nonstiff dynamical param-
eters represents a “neutral space” where net-
work phenotype is robust to parameter
changes generated by molecular evolution-
ary processes (28). Changes in stiff dynami-
cal parameters should be more strongly con-
strained by selection.

Reconstructing evolutionarily related fami-
lies of molecular networks might reveal which
combinations of parameters are sensitive and
which are insensitive based on the extent of
variation at the population level. An interest-
ing example is again the network representing
the response of rat adrenal gland progenitor
cells to neural and epithelial growth factors.
Analysis of a model of EGF versus NGF acti-
vation of the Ras-MAPK pathway (Ras-Raf-
MEK-ERK) showed that the stiffest dynami-
cal parameter was associated with Ras and
Raf, the upstream elements of the pathway
(23). A population genetic study of a homolo-
gous MAPK cascade in Drosophila showed
that the fly Ras and Raf homologs exhibited
the least polymorphism across the worldwide
population of fruit flies, whereas other compo-
nents of the pathway were more polymorphic,
that is, less constrained (29). Thus, a model of
a MAPK cascade from rat made predictions
about which proteins were dynamically con-
strained, and these predictions were confirmed
at the population level in the homologous
pathway in fruit flies (Fig. 2).

The proliferation of data about variability
in human populations will be a useful re-
source for further studies of this type (30).
Most studies of human population variability
focus on variations that affect phenotype, usu-
ally associations with disease, but even data
about genotypic variability without pheno-
typic effect are useful, because they reveal
which genes in a network are robust to varia-
tion in parameters (31, 32).
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