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Abstract  

Background 

Many protein interactions, especially those involved in signaling, involve short linear 

motifs consisting of 5-10 amino acid residues that interact with modular protein domains 

such as the SH3 binding domains and the kinase catalytic domains. One straightforward 

way of identifying these interactions is by scanning for matches to the motif against all 

the sequences in a target proteome. However, predicting domain targets by motif 

sequence alone without considering other genomic and structural information has been 

shown to be lacking in accuracy.  

Results 

We developed an efficient search algorithm to scan the target proteome for potential 

domain targets and to increase the accuracy of each hit by integrating a variety of pre-

computed features, such as conservation, surface propensity, and disorder. The 

integration is performed using naïve Bayes and a training set of validated experiments.  

Conclusions 

By integrating a variety of biologically relevant features to predict domain targets, we 

demonstrated a notably improved prediction of modular protein domain targets. 

Combined with emerging high-resolution data of domain specificities, we believe that our 

approach can assist in the reconstruction of many signaling pathways. 
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Background  

Important protein-protein interactions (e.g., those involved in signal transduction) are 

often mediated by modular protein domains [1]. These domains often work in a mix-and-

match fashion, thereby acting as the building blocks of signaling pathways [2]. Examples 

include the SH3 and WW domains that bind proline-rich motifs [3], and the 

serine/threonine kinase domain that specifically phosphorylates the hydroxyl group of 

serine and threonine [4]. Throughout we will refer to these collectively as “domains”. 

Since these kinds of domains play an important role in the assembly, regulatory and 

signaling activities of the cell [3,5,6], accurate prediction of their targets is crucial to 

understanding many biological pathways [7,8]. 

As a result, various techniques have been developed to predict domain targets and to 

enhance the prediction. Earlier studies have tried to use consensus sequences from phage 

display experiments to predict the targets of peptide-binding domains [9]. Also, a modern 

peptide library screening approach, which is commonly used to determine 

phosphorylation motifs for kinases, has shown to have high accuracy in determining 

domain specificity [10].  Both approaches have in common that they identify the 

specificity of each domain in a position-specific manner, yielding a Position Specific 

Scoring Matrix (PSSM; also known as Position Weight Matrix, PWM). Furthermore, 

many studies have demonstrated various ways to improve prediction performance using 

genomic information. For instance, comparative genomics and secondary structure 

information have been used to increase the performance of SH3 target prediction [11,12].  

Nevertheless, to date the prediction of biologically relevant targets of these domains has 

yet to be addressed in an automated and integrated fashion. To this end, we present an 
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automated process, which integrates comparative genomic (i.e., sequence conservation) 

and structural genomic (i.e., surface propensity and peptide disorder) data with traditional 

profile scanning method to predict domain targets based on experimental screening result 

(e.g. peptide library screening) or their derived PSSMs. The process is fully automated 

and implemented as an online server. The implementation is open-source and also 

available for download at http://motips.gersteinlab.org. 

Results and Discussion 

An Automated Pipeline Process 

Our approach first converts the input data into a PSSM and then normalizes it. Secondly, 

it scans the target proteome by using the normalized PSSM and generates a hit list of 

potential domain targets. Following the motif scanning, it computes the conservation 

score, solvent accessibility score, and disorder score for each motif hit based on the pre-

computed scores for each protein residue. It then integrates these genomic features with 

the motif matching scores and the number of hits per protein by naïve Bayes to predict 

the optimal targets based upon a validated training set. Lastly, it sorts the motif hits by 

their likelihood of having interaction with the domain and consolidates them into unique 

protein hits. 

Data Conversion and Normalization 

A number of experimental approaches, such as phage display and peptide library 

screening (see Figure 1), have been developed to identify domain binding and 

phosphorylation targets. However, data from different experiments result in different 

formats that always complicate the data analysis process. To keep the process consistent 
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and standardized, these data are converted into PSSM followed by normalization (for 

supported input formats, see System Implementation and Availability). 

Our approach employs two different ways to normalize the input data. The first approach 

is designed for signal data from experiments such as from peptide library screening. It 

normalizes the signal score for each amino acid at each position by the following 

equation 

 

Zca =
Sca

Sci

i

m

∑
× m  (1) 

where Zca is the normalized score for amino acid a at position c, which has a signal score 

Sca, and m is the total number of amino acids. Equation (1) thus computes the weight for 

each amino acid at each position and scales it up by the total number of amino acids. 

However, to consider the known specificity for domains such as the serine/threonine 

kinase domain, which have fixed amino acid targets (e.g., serine and threonine) at a 

certain position in the binding motif, a score of 0 is automatically assigned to every other 

amino acid that is not expected at that position. To indicate the slight probability of 

observing the fixed amino acids at other positions, a pseudo-count of 1 is assigned to 

each of them at these non-specific positions.  

The second way of normalization is designed for peptide data from experiments such as 

from phage display experiment. Our approach employs the pseudo-count method based 

on substitution probabilities to complement the incomplete or imperfect representation of 

a position in the original peptide data [13]. Pseudo-counts are needed since this kind of 

experiments significantly undersample sequence space, thereby severely penalizing rare 
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residues. It calculates the probability pca of amino acid a at position c by equation (2) as 

follows 

 

pca =
nca + bca

Nc + Bc

 (2) 

 Bc =ψ × Rc  (3) 

where nca and bca are the count and pseudo-count for amino acid a at position c, while Nc 

and Bc are the total count and pseudo-count for all amino acids. The total pseudo-count Bc 

is calculated from equation (3) with ψ as an empirically chosen positive number (default 

to 5) and Rc as the unique count for all amino acids at position c. Taking different 

substitution probabilities of different amino acids into consideration, substitution 

matrixes such as the BLOSUM 62 [14,15] and McLachlan [16] matrixes are used to 

calculate pseudo-count bca by equation (4) shown as the following   

 

bca = Bc ×
nci

Nc

×
qia

Qii

m

∑ ;   Qi = qia

i

m

∑  (4) 

where qia is the substitution probability for amino acid a replaced by i, and Qi is the 

substitution probability for a replaced by any amino acid. In addition to the pseudo-count 

method based on substitution probabilities, we also provide alternative pseudo-count 

methods based on flat counting (adding 1 to all values) and entropy (adding a pseudo-

count proportional to the entropy of each position to its corresponding values).   

Motif Scanning and Scoring 

To scan the target proteome for potential domain targets and to score them, our approach 

uses a window-sliding method based on a normalized PSSM similar to the method used 

in Scansite [17,18]. For each protein in the target proteome, it slides a window of size 

equivalent to the length of the motif on the peptide sequence by every single amino acid 
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(see Figure 2). Based on the scoring matrix, the score for each window sequence is 

calculated by equation (5) 

 

E '= −log2

Sca

Sci

i

m

∑

 

 

 
 
 
 

 

 

 
 
 
 

c

l

∑  (5) 

where l is the length of the motif and Sca is the score for amino acid a at position c in the 

window sequence. This equation is also used to calculate an optimal score of the motif 

where Sca is the maximum score at position c in the scoring matrix. Then the final 

normalized score E for the window sequence is calculated by equation (6) 

 

E =
E 'sequence −E 'optimal

E 'optimal

 (6) 

To improve the efficiency of the scanning algorithm, each motif hit is compared 

immediately to a sorted hit list of fixed size (currently 2,000 hits) and will only be 

retained if it has a more significant score than the least significant one in the list.  

Structural Features and Scoring 

Although a profile-matching scan could identify possible domain targets, it does not take 

into account the structural information of the target sequences that are also related to 

protein-protein interactions. For instances, sequences exposed on the surface should be 

more accessible than those that are buried; sequences that are unfolded should be more 

easily bound than those that are folded; and structures that are highly conserved among 

close species could have more biological significance. Taking these factors into account, 

our approach includes three major structural and conservation features in the prediction, 
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which are surface propensity, protein disorder, and sequence conservation, to 

complement the motif scanning score (see Figure 3).  

The degree of surface propensity of a given sequence is measured by its relative solvent 

accessibility, which represents the extent of residue solvent exposure. It is predicted by a 

protein structure prediction program, SABLE, which uses a neural network-based 

regression algorithm [19]. To measure the disorder of the sequence, DISOPRED, a neural 

networks and PSI-BLAST-based approach is used to estimate the probability of the 

region being disordered [20,21]. For measuring the conservation of the sequence 

structure, orthologs of the sequence are identified using INPARANOID [22]. Following 

the ortholog identification, the sequences in the orthologous groups are aligned with 

MUSCLE [23] and a conservation score for each position in the sequence is estimated by 

its entropy using AL2CO [24].  

For each protein in each proteome being studied, the solvent accessibility, disorder and 

conservation scores are pre-computed for each residue. As a result, the scores for the 

motif hits could be calculated in a timely manner. 

Feature Integration and Target Prediction 

In addition to calculating the structural and conservation scores for each motif hit, the 

number of hits per protein is also calculated as a feature for the hit. Our approach then 

applies a Bayesian learning algorithm to integrate all the aforementioned features, 

including the motif scanning score, solvent accessibility score, disorder score, 

conservation score, and number of hits per protein, to predict potential domain targets. 

Because of the simplicity and efficiency of the naïve Bayes model, it is employed to build 

a classifier based on a validated training set under the assumption of independence of the 
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features. In particular, the default models (i.e., the SH3 model based on Sho1 and the S/T 

kinase model based on Prk1) used a number of experimentally determined interaction 

pairs [25,26] as the gold-standard positives to train the algorithm. Moreover, a set of 

paired proteins in which each pair was annotated to always localize to two different 

compartments (for example, nucleus only and cytoplasm only in the Gene Ontology) in 

the cell was selected as the gold-standard negatives. The conditional probability can then 

calculated from the given features based on equation (7) 

 

p(I | F1,...,Fn ) ∝ p(I) p(Fi | I)
i=1

n

∏
 (7) 

where I is the class variable (i.e., interaction or non-interaction), F is the feature such as 

the motif scanning score, and n is the total number of features. To assess the 

independence of the features, pair-wise correlation coefficients were calculated. The 

results showed the pair-wise correlation coefficients have an average of 0.23 for the SH3 

model and 0.18 for the S/T kinase model, indicating the features are to a large extent 

independent. Furthermore, since the independency assumption is not harmful for data 

pre-processed with Principal Component Analysis (PCA) [27], we performed PCA to 

transform the possibly correlated features into uncorrelated features. The first three 

principal components were chosen to build a Naïve Bayes model followed by a stratified 

10-fold cross-validation. The Area Under Curve (AUC; 89.1 for the SH3 model and 

75.9% for the S/T kinase model) of the Receiver Operating Curve (ROC) resulting from 

the PCA transformation was then compared to the AUC (91.8% for the SH3 model and 
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78.6% for the S/T kinase model) without PCA. No significant deviation of performance 

was observed between the predictions without PCA and those with PCA, indicating no 

strong dependency among the original features.

 

Finally, the motif hits from the domain of interest are classified under the selected model 

and sorted by their likelihood of having an interaction with the domain. Hits for the same 

protein are consolidated into one single hit represented by the most likely target. 

Genomic information that is not used in the prediction, such as protein-protein interaction 

data, localization data and phosphorylome data, could also be integrated easily with the 

tab-delimited hit list for further analysis while phosphorylation prediction data from mass 

spectrometry experiments can be used as cross-validation. 

Prediction Performance 

To assess the prediction performance of our approach, we benchmarked with two existing 

methods: 1. the Eukaryotic Linear Motif (ELM) database [28], which predicts functional 

sites in eukaryotic proteins by patterns with context-based rules and logical filters such as 

the structure filter; and 2. the Scansite method [17], which uses a motif profile-scoring 

approach to predict sites within proteins that are likely to be phosphorylated or bind to 

domains. Based on the SH3 interactome data [25], a model for the SH3 domain was 

trained with the Sho1 interactions. Then, we performed our prediction, requiring a 

likelihood value above 0.9, on 10 other different SH3 proteins by using the 

aforementioned model. We compared our results with the predictions from the ELM 

database (data retrieved from the web server using a Python program for 5 different SH3 

ligands available on the server) and from the Scansite scanning (which requires a score 
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not more than 3 fold of the optimal score). Our results (see Figure 4) show that on 

average our prediction has a 49% increase in accuracy in predicting the validated targets 

of the SH3 proteins when compared to the ELM prediction. When compared to the 

profile-scoring method of Scansite, our prediction is almost twice as accurate (90% 

higher). In addition to predicting SH3 targets, our approach was employed to predict Prk1 

phosphorylation sites [26]. A stratified 10-fold cross-validation has shown a performance 

increase (see Figure 4; 79% AUC in a ROC curve) when compared to the profile-scoring 

method (72% AUC).  

System Implementation and Availability 

The motif analyzing process mentioned above is implemented as an online server, which 

allows researchers to upload their experimental data representing the motifs of the 

domains and to predict the targets. Our pipeline supports various input data formats. For 

specific analysis software, it currently supports the Gene Pix Result format 

(http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gpr) 

that is usually used for peptide library screening data, and the BRAIN project’s peptide 

format (http://www.baderlab.com/Software/BRAIN/PeptideFile) that is usually used for 

phage display experiments. For general purposes, it supports the FASTA format (i.e., a 

set of peptides with the same length that represent the possible interacting sites) and the 

Nx20 format (i.e., a tab-delimited format that represents the positional scores of a motif 

profile with the first row labeled with the amino acid residues and the subsequent rows as 

the different positions). The pipeline currently has a compilation of 20 proteomes 

consisting of 14 yeast proteomes (S. cerevisiae, C. albicans, D. hansenii, C. glabrata, K. 

lactis, N. crassa, S. bayanus, S. castelli, S. kluyveri, S. kudriavzevii, S. mikatae, S. 
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paradoxus, S. pombe, Y. lipolytica), 2 worm proteomes (C. briggsae, C. elegans), and 4 

mammalian proteomes (C. familiaris, P. troglodytes, M. musculus, H. sapiens).  

The feature scores were pre-computed and the default prediction models, which could be 

replaced by a user-defined training set (a tab-delimited file with the gene on the first 

column and a logical value on the second indicating the interaction), were also built. 

Moreover, the analyzing process is implemented as an asynchronous multi-threading 

pipeline process so the prediction results can be delivered to the users via email offline, in 

addition to being displayed online. Furthermore, the entire system is built using the Java 

programming language under a Model View Controller architecture in which the analysis 

process is implemented as a standalone open-sourced program. Therefore, the process 

could be customized by researchers and executed in command line on multiple platforms. 

The Naïve Bayes classification is performed using Weka, the open-source Java data 

mining software [29]. 

The standalone pipeline and database are available for download at the MOTIPS server at 

http://motips.gersteinlab.org. 

Conclusions 

By integrating a variety of biologically relevant features and using a Bayesian learning 

algorithm to predict domain targets, our approach has improved the domain binding and 

phosphorylation target predictions notably compared to using only profile-matching scan. 

We believe our approach is versatile enough to predict targets of domains of different 

kinds, and its implementation as an online public server could facilitate researchers in 

predicting domain targets more accurately. 
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Figures 

Figure 1  - Experiments for Motif Identification.  

a) The phage display experiment identifies potential target peptides of short sequences, 

and b) the peptide library screening measures the binding specificity at position level. 

The resulting experimental data of such experiments can be converted into a Position 

Specific Scoring Matrix (PSSM). 

 

Figure 2  - Motif Scanning and Scoring.  

Identify potential target sites of the domain by sliding a Position Specific Scoring Matrix 

(PSSM) across the peptides in the proteome and comparing the motif matching scores 

for each window. 

 

Figure 3  - A Peptide-Binding Domain Example.  

A peptide-binding domain, such as the SH3 domain, recognizes the binding site on a 

peptide which exhibits certain structural and conservation features including surface 

propensity, protein disorder, and sequence conservation. 

 

Figure 4  - Targets Prediction Performance.  

a) The benchmark of SH3 target prediction based on the validated targets for 10 

different SH3 proteins, and b) the Receiver Operating Curve (ROC) comparing the 

prediction performance for the Prk1 kinase targets. 
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