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Abstract

A credit to the microarray technology is its broad application. Two experiments -
the tiling microarray experiment, and the protein microarray experiment are exem-
plars of the microarray's versatility. With the technology's expanding list of uses, the
corresponding bioinformatics must evolve in step. There currently exists a rich lit-
erature developing statistical techniques for analyzing traditional gene-centric DNA
microarrays, so the �rst challenge in analyzing the advanced technologies is to iden-
tify which of the existing statistical protocols are relevant and where and when
revised methods are needed. A second challenge is making these often very technical
ideas accessible to the broader microarray community. It is our aim in this chapter
to present some of the most widely used statistical techniques for normalizing and
scoring traditional microarray data and indicate their potential utility for analyzing
the newer protein and tiling microarray experiments. In so doing, we will assume
little or no prior training in statistics of the reader. Areas covered include back-
ground correction, intensity normalization, spatial normalization and the testing of
statistical signi�cance.
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1 Introduction

Microarray technology (Fodor et al., 1991; Schena et al., 1995) allows for the
parallel quantitative assessment of biochemical reactions. On the order of 106

measurements can be taken simultaneously with current technology (Cheng
et al., 2005). The initial challenge following a microarray experiment is to de-
termine which of these potentially millions of observations are signi�cant and
should be studied in more depth. This challenge has been met by hundreds
of practitioners in both the biomedical and mathematical sciences and liter-
ally hundreds of papers have been published on the topic. In this chapter, we
aim to illustrate some prevailing ideas and techniques found in the microar-
ray analysis literature. In addition to covering statistics used for traditional
microarray experiments, we include those techniques exploited in protein and
tiling microarray analyses as well. These latter experiments share some mech-
anistic aspects with the traditional DNA microarrays, but in several respects,
are quite di�erent. Therefore, some of the bioinformatics research done for
traditional microarrays is relevant, and some of it is not. We will guide our
discussion with this as our theme, and focus on two main areas of study:
microarray normalization, and the assessment of statistical signi�cance.

Prior to delving into the heart of our discussion, we will �rst introduce some
naming conventions in Section 2, followed by statistical preliminaries in Sec-
tion 3. Following these prerequisites, a brief discourse on how microarray data
is obtained will be given in Section 4. The �rst major area of study we review
is microarray normalization or, more concisely, normalization. Normalization
deals with the technical aspects of the microarray technology that can poten-
tially confound and/or bias the experiment's results. It does so by correcting
measured values so as to remove these e�ects. Normalization will be discussed
in Section 5. The second area we will focus on is the assessment of statisti-
cal signi�cance. Statistical signi�cance can mean di�erent things for di�erent
microarray experiments, depending on their respective goals and is the sub-
ject of Section 6. In a majority of traditional DNA microarray experiments,
signi�cance indicates the presence of di�erential mRNA expression between
two or more biological classes for some gene. An experiment might, for ex-
ample, assess mRNA concentrations for thousands of genes as cells progress
through the cell cycle (Cho et al., 1998). In such a scenario, we would like to
know within each stage, those genes that exhibit di�erential expression (higher
or lower concentrations) relative to the other stages. For tiling microarrays,
as we'll see later (Section 4.2), signi�cance more loosely pertains to genomic
regions. In these experiments, we seek chromosomal regions (consisting of
multiple probes) that exhibit higher than expected �uorescent intensities on
the microarray. Protein microarrays have two main classes of use: analogous
to the DNA microarray, antibody microarrays can be used to determine pro-
tein abundances whereas functional protein microarrays can be used to detect
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protein-protein interaction partners in vitro. For each of these experiments,
signi�cance clearly takes on a di�erent meaning.

2 De�nitions

Some common points of confusion within the microarray literature are how
various entities are de�ned. In this section we will explicitly de�ne some of
these entities so as to minimize the potential for confusion. Herein, we will
de�ne the molecules on the microarray at time of its construction probes, and
those molecules that are subsequently introduced to the microarray, the tar-
gets. We use the words spot and feature interchangeably to indicate a collection
of probes that have the same sequence and are concentrated at a known posi-
tion in the microarray design. A collection of targets from a single biological
source is called a sample. A single event consisting of introducing one or more
samples to a microarray is termed a probing. Finally, a set of probings designed
to test certain hypotheses is simply an experiment.

3 Statistical Preliminaries

It is impossible to have a discussion on microarray statistics without any prior
knowledge of statistics in general. This section provides some basic concepts
that will aid our presentation of microarray analysis. Anyone who has taken
an introductory statistics course has seen this material already and can safely
skip this section.

3.1 Summary Statistics

Assume for the moment that a microarray experiment measures the expres-
sion level of just a single gene and that the experiment consists of several
technically replicate probings from which a measurement is observed. To gen-
eralize the measurements for discussion, let each measurement be denoted by
the symbol Xi. Here, the subscript i indicates the ith measurement of the
gene. For example, X4 = 162 would indicate that the measurement coming
from the fourth microarray is 162.

A �rst natural question to ask of the experiment is, �What is the central
tendency of my measurements, or equivalently, how can I best describe my
measurements with a single number?� The most commonly used response to
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this question is to calculate the arithmetic mean, or average of the measure-
ments. To calculate the arithmetic mean, we �rst sum all the measurements
and then divide by the total number of measurements observed. If N is the
number of measurements taken, then the mean X̄, is calculated as:

X̄ =
1

N

N∑

i=1

Xi =
X1 + X2 + . . . + XN

N
. (1)

We often would like to measure the spread of our measurements in addition
to their central tendency. The most commonly used measure of spread is the
variance σ2 :

σ2 =

∑N
i=1

(
Xi − X̄

)2

(N − 1)
. (2)

Note that the numerator consists of N terms, added together. Each term in the
summation corresponds to the ith measurement and is the di�erence between
that measurement (Xi) and the mean of all N measurements, X̄. Also note
that each term is squared. Doing so ensures that the numerator is positive and
that measurements less than the mean contribute positively to the variance
just as much as those measurements greater than the mean. This measure
of spread is roughly the average squared-di�erence from the mean. We say
�roughly� here, because the denominator in Equation 2 is (N − 1) rather than
the N that we might expect from the de�nition of arithmetic mean (Equation
1). Why this is so is beyond our scope, but with large N this detail makes little
di�erence. Related to the variance, is a quantity called the standard deviation.
A standard deviation, symbolized as σ, of a group of measurements is simply
the square root of those measurements' variance.

We often read or hear the phrase, �microarray data are noisy, � or some similar
(potentially less polite) variant. This can be taken to mean several things, but
quite often it is the presence of outliers that is being referred to. An outlier
is a measurement in large disagreement with other measurements of the same
phenomenon. In a microarray experiment, the di�erence could be due to a
biological e�ect, but more likely the outlier is due to some kind of technical
malfunction of the instrument and/or its associated protocol(s). Outliers can
have large e�ects on the above summary statistics. For an example, consider
an experiment where �ve measurements are taken for the same gene. If these
measurements are X1 = 12, X2 = 9, X3 = 11, X4 = 507, and X5 = 12 then

X̄ =
X1 + X2 + X3 + X4 + X5

N
=

12 + 9 + 11 + 507 + 12

5
= 110.2. (3)
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Clearly the quantity 110.2 doesn't represent the central tendency of the data
very well. It is not particularly close to any of the measurements. Luckily, there
are ways around such pitfalls. One technique is the called the trimmed mean.
With this approach, some percentage of the most extreme measurements are
thrown away prior to calculating the mean. An extreme (and quite common)
version of this approach is to calculate the measurements' median as a mea-
sure of their central tendency. The median is de�ned as the middle quantity
occurring in a sorted list of observations. That is, if N is odd and you �rst
sort your measurements X1, X2, . . ., XN in either increasing or decreasing
order, then the median is the quantity XN+1

2
. (If N is even, the middle two

measurements, XN
2

and XN
2

+1, are averaged.) In our noisy example of �ve
measurements where the mean of 110.2 was obtained, the calculated median
is twelve. This value intuitively summarizes the data much better.

An analogous calculation can be performed in place of the variance. Recall
that the variance is essentially an average squared di�erence of measurements
from the mean (Equation 2). This computation can be made more robust to
outliers by �rst substituting the median for the mean, and then computing
the median of absolute di�erences between the measurements and the previ-
ously calculated median. This quantity is sometimes referred to as the median
absolute di�erence (MAD).

3.2 Statistical Signi�cance

The term p-value comes up frequently in texts about microarray experiments
and their analyses. A p-value is simply the probability of some null hypothesis
being true given a set of assumptions and observations. A typical experiment
utilizing DNA microarrays might have thousands of such null hypotheses,
one for each gene being studied. These null hypotheses would typically claim
that the expression level of some gene is not di�erent between two biological
samples. So, we declare that any gene for which we can compute a low p-
value is signi�cant and potentially worthy of further study. To call the gene
signi�cant, a p-value threshold for signi�cance must, of course, be in place.
A common interpretation for this threshold is the study's false positive rate:
the percentage of time replications of the experiment would reject the null
hypothesis when it is actually true.

Now, we don't typically know the actual probability of observing something
under a given null hypothesis. However, if we know that the numbers being
studied follow some known form (e.g. we might know or assume that the gene
expression levels are distributed like a bell-curve, or a normal distribution)
then we can use this knowledge to either simulate or directly calculate how
likely an average di�erence between two such groups of measurements would
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be if there were in fact no di�erence, for example.

A �nal note on signi�cance worth noting is that, generally speaking, the more
observations we are able to make of some phenomenon, the better is our ability
to compute a low p-value . To illustrate this point, consider an experiment
where we ask, �Is gene A expressed at a higher level in tumors than in healthy
tissue?� Let's assume that the answer to this question is, �Yes.� If we have one
measurement of A from a tumor and one measurement of A from a healthy
tissue, and the measurement from the tumor is twice as high as its healthy
counterpart, we have some limited con�dence that the gene is more highly
expressed in tumors. This occurrence could be an anomaly, so we still would
assign some fairly high probability to the null hypothesis of no di�erence being.
If instead, we measure gene A's abundance in twenty tumors and they are all
higher than twenty measurements taken from healthy tissues, we would assign
a much lower probability to the null hypothesis because the chance of twenty
anomalies is very small.

3.3 Multiple Testing

Another issue that frequently comes up in the microarray literature is that
of multiple testing. Multiple testing simply indicates that more than one sta-
tistical test (which generates a p-value) is part of the study. For microarray
experiments there are thousands and potentially millions of statistical tests
being conducted, so clearly we are dealing with multiple testing. But what is
our concern when we engage in multiple testing?

In biology, the threshold for considering a p-value signi�cant is typically p <
0.05 or p < 0.01. These criterion arise from a balance between our willingness
to accept a �ve or even a one percent false positive rate and the number
of replicate measurements we are able to take. Multiple testing becomes a
problem, for example, if we conduct 100 statistical tests and identify that one
of them yields a signi�cant p-value (p = 0.04 < 0.05). It would be tempting
to report this seemingly signi�cant �nding. The problem here is that within a
set of 100 tests, we expect to �nd four of these to yield p = 0.04 simply due to
random chance (100 tests multiplied by the false positive rate 0.04 yields four
tests). This toy example becomes a staggering problem if we are testing, say,
twenty thousand genes. In this case, at a signi�cance threshold of p < 0.05,
we will identify roughly 1000 false positives. This number of false positives is
potentially more than the actual number of di�erentially expressed genes that
we seek to identify.

The most simple method for dealing with multiple comparisons is to require
su�ciently low p-values such that total number of expected false positives is
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small. The Bonferroni correction (Bonferroni, 1935) does this by controlling
the so-called family-wise error rate (FWER). The FWER is de�ned as the
probability of detecting a false positive anywhere among the multiple tests.
So, if we want the probability of detecting a false positive among our tests
to be less than α, we require that any individual test achieve p < α

N
where

N is the number of tests. Such corrections pose a problem for microarrays
where thousands of genes are being tested for signi�cance and the number of
available replicate experiments is small. The problem is more acute for high
density tiling microarrays where the number of test performed can reach into
the millions (Section 4.2) and the number of experimental replications are
often fewer than �ve.

4 Microarray Data

In this section, we will brie�y review how microarray data is obtained.

4.1 Data for Traditional, Gene-centric DNA Microarrays

Each spot on a gene-centric DNA microarray corresponds to DNA sequence
derived from a known or putative gene. That sequence could be the whole
spliced form of a gene (such as a cDNA clone) or a tethered twenty-�ve base
pair oligonucleotide sequence as is the case for the A�ymetrix r© GeneChip r©
brand microarrays. Such a microarray is typically probes a sample that is
derived from a mRNA source.

Subsequent to probing a labelled sample with a microarray, an image rep-
resenting its surface is generated by subjecting the microarray to a digital
scanning device. Depending on the type of labels used, di�erent scanning
technologies are employed. Typically, the samples have been labeled with a
�uorescent dye, or alternatively with radioactive isotopes. For �uorescently
labeled samples, the probed microarray is scanned with a laser scanner. There
is a wide selection of laser scanners available, including but not limited to
ScanArrayTM GX from Perkin-Elmer, GenePix r© 4200 from Molecular De-
vices, and DNA Microarray Scanner from Agilent Technologies. A laser wave-
length near the absorption maximum of the �uorophor dye used (that was
attached to the hybridizing sample) is scanned across the microarray surface
from top-to-bottom and from left-to-right so that all areas of the microarray
are accessed by the laser. The light which is emitted at each location when
laser-excited �uorophors transition to their unexcited state is captured by a
detector and translated into a pixel intensity at that location. Microarrays
which probe multiple labelled samples simultaneously must be scanned with a
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scanner having at least as many unique laser wavelengths as labelled samples.
Current scanning resolutions are as high as one micron2 per pixel.

The result of scanning a single probed sample is a monochromatic digital im-
age (usually stored as a TIFF �le) of the microarray surface. Bright regions in
the image correspond to regions of the microarray with high levels of �uores-
cence and dim regions likewise correspond to regions devoid of �uorescence.
Presumably, the bright regions correspond to spots to which labelled nucleic
acid hybridized. If two di�erent samples were labeled with two di�erent dyes
and were probed with the same microarray, then the result of scanning is two
digital images. There would be one image for each wavelength used.

The microarray images generated by the laser scanner must be further pro-
cessed with image analysis software. First, the microarray's spots have to
be identi�ed within the image. To do this, rules have to be obtained or as-
sumed that can distinguish between pixels that constitute spots and pixels
that belong to background regions. Separating the spots from the background
is called segmentation. Following segmentation, grid alignment must be per-
formed. Grid alignment is the process of identifying which spots correspond
to which annotation. Basic versions of grid alignment software are usually
included with the purchase of a scanner, but there are alternatives such as
TIGR Spot�nder Saeed et al. (2003), which is freely available under an open-
source license, or ScanAlyze (http://rana.lbl.gov/EisenSoftware.htm) which
is free for academic and non-commercial use. For most spotted arrays, the
grid has to be de�ned by the user, either manually or semi-manually, while
for many higher density microarrays, such as the A�ymetrix GeneChip brand
microarrays and NimbleGen System's NimbleChipsTM , the alignment of the
microarray image to the grid is done automatically by software. This automa-
tion is made possible by reserving some spots on the microarray exclusively
for grid alignment. Certain labeled cDNA/cRNA molecules that are comple-
mentary to the grid alignment probes are spiked into the sample(s), ensuring
the grid alignment probes will appear as bright regions in the scanned image,
enabling automatic grid alignment.

After aligning the grid the image analysis software reports back a certain
number of key statistics for each of the identi�ed spots. These statistics may
include the mean and median pixel intensities within each spot, the standard
deviation of those pixels, and sometimes also other information such as mean
intensity ratios in the case of a two-channel experiment. The area of each spot
(number of pixels) is also frequently reported. Importantly, if the software
considers a particular spot aberrant, for instance irregular in its shape, or if
its measured intensity is lower than the surrounding background intensity, the
spot may be �agged as irregular. Such �agged spots are often excluded from
further statistical analyses.
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The end result is a tab-delimited plain text �le containing all the raw data
for each microarray feature within a single row. The tab-delimited text-based
format is easily amenable to further analysis by importing it into a microarray
analysis software package such as ExpressYourself (Luscombe et al., 2003) or
MIDAS (Saeed et al., 2003), or of course, into your own microarray analy-
sis pipeline. For simple calculations, a spreadsheet program (e.g., Gnumeric,
OpenO�ce or Microsoft r© Excel r©), could also be used.

For spotted DNA microarrays, it is common that each gene under study is
represented by a single spot. An important di�erence exists for the A�ymetrix
GeneChip brand microarrays. For this technology, each gene is represented by
a probe set, typically consisting of 10-20 features on the microarray. Within the
probe set, each feature contains probes of di�erent sequence. So, to assess the
di�erential expression of a single gene, multiple spots from each microarray
need to be considered.

4.2 Data for Tiling Microarrays

The two most widely utilized high-density oligonucleotide platforms are those
produced by A�ymetrix, using masks to synthesize the oligonucleotides on the
microarray (Lipshutz et al., 1999) and those manufactured by NimbleGen Sys-
tems which use a system of mirrors controlled by digital light processor (DLP)
for synthesis (Nuwaysir et al., 2002). A�ymetrix microarrays currently utilize
25bp oligonucleotide probes for each spot. For every spot corresponding to
some 25bp stretch of genomic DNA (perfect-match), there is a corresponding
spot (mismatch) where the middle nucleotide of the probe has been substituted
with its reverse complement. This perfect-match / mismatch setup is also the
standard for the A�ymetrix GeneChip system as well. The purpose of the
mismatch probe in both traditional and tiling applications is to measure the
non-speci�c binding of the probes within a spot (there is some debate about
the usefulness of mismatch probes, however (Irizarry et al., 2003)). Currently,
A�ymetrix microarrays are capable of including on the order of 106 spots.

Maskless microarrays manufactured by NimbleGen Systems are synthesized
such that each microarray can be completely customized with unique probe
sequences. These microarrays allow for oligonucleotide lengths of up to 70-80
nucleotides (in fact isothermal arrays exist where each feature corresponds to
a oligonucleotide probe of a di�erent length). Current maskless microarray
designs have approximately 390,000 spots per microarray. One important dif-
ference between these two high spot density platforms is that the A�ymetrix
brand microarrays can only be hybridized with a single target nucleic acid
population, while the maskless arrays allow the hybridization of two samples
simultaneously using di�erent labels, typically Cy5 (red) and Cy3 (green).
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This is potentially bene�cial when looking for di�erential expression between
samples or for ChIP-chip (Iyer et al., 2001; Horak and Snyder, 2002), where
chromatin immunoprecipitated DNA is labeled di�erently from some reference
DNA.

Tiling microarrays (Kapranov et al., 2002; Cawley et al., 2004; Bertone et al.,
2004; Cheng et al., 2005) use the high density capabilities to tile the non-
repetitive sequence of a genome. The word tile indicates that probes are se-
lected for inclusion on the microarray at some roughly uniform interval over a
potentially large genomic space. In the context of mRNA transcript mapping
this high resolution enables the unbiased detection of individual exons of a
spliced transcript. This experiment is not practical on a whole-genome scale
in a mammalian species with lower resolution PCR amplicon microarrays due
to cost (Bertone et al., 2005).

Tiling microarrays are an evolving medium and data format standards have
not yet materialized. However, several summary statistics about each spot are
typically included in a tab-delimited text �le. These statistics usually include
the mean and or median pixel intensity of each spot, the number of pixels
within each spot, and a standard deviation of the spots' pixel intensities.
It is worth including a cautionary note about tiling microarray data here.
Tiling microarrays generate very large datasets. As such, they are di�cult
or impossible to import into desktop spreadsheets such as Microsoft Excel.
Therefore, more robust tools are often needed.

There is one more major di�erence between traditional DNA microarrays and
tiling microarrays to consider. The signal intensity measured at a spot con-
taining short oligonucleotide probes is arguably too unpredictable to score
each probe separately. The variability is due to a number of factors includ-
ing cross-hybridization, and di�erential binding a�nity due to probe sequence
and other sequence-based artifacts. In addition, higher standards of statistical
signi�cance are typically required for tiling arrays because of the much larger
number of spots being queried and therefore require more evidence than that
given by a single spot. Thus the methodologies that have been adopted for the
analysis of tiling microarrays is to incorporate the intensities of a number of
spots that lie within a contiguous genomic region. This methodology is often
referred to as a genomic sliding window approach.

4.3 Data for Protein Microarrays

There are two types of protein microarrays as de�ned by their goals (Zhu and
Snyder, 2003). One type are the protein detection microarrays, or antibody
microarrays (Lueking et al., 1999) which use antibodies for its probes and are
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used to detect and quantify proteins in solution. This design is very similar to
its DNA based counterparts which quantify mRNA concentrations. The other
major class of protein microarrays are the functional protein microarrays (Zhu
et al., 2001) which aim to identify protein binding or modi�cation capabilities.
In such a design, each spot consists of some known protein or protein domain.
The target that is introduced will typically consist of a single macromolecule.
This target may be labelled so as to detect molecular interaction partners, or
as is the case for kinase activity assays, may be probed in the presence of hot
ATP to detect phosphorylation events.

An aspect of protein microarrays of note is that the spots therein will usually
not contain equal amounts of protein from spot to spot. This discord can cause
di�erences in measured intensity between spots that are not due to molecular
activity, but rather an aspect of the microarray construction.

Regarding software and generated data, protein microarrays utilize the same
scanners and scanning software as their DNA-based counterparts and therefore
the raw data �les they produce are technically very similar. This is an advan-
tage as some existing computational protocols and interfaces developed for
DNA microarrays may be easily integrated with protein microarray analysis.

5 Microarray Normalization

Once data has been obtained, a usual next step is to perform microarray
normalization.

5.1 Motivation

Technical aspects of the microarray experiment can cause systematic biases
and artifacts to be present in their data. In a two sample DNA microarray
experiment, the probed biological samples may contain di�erent concentra-
tions of RNA, leading to an overall bias in favor of greater measurements
in one channel. In addition, the �uorescent dye molecules Cy3 and Cy5 are
known to have slightly di�erent properties, leading to a similar problem. Com-
plicating these troubles is that they may be more or less present depending
on the intensity of the spot being measured and/or its physical location on
the microarray. In the following section, we will illustrate an example of how
such biases can e�ect biological conclusions made from microarray data when
proper data normalizations are not carried out. We include this example as a
cautionary tale and as a motivation for microarray normalization, in general.
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5.1.1 An Example - Spatial Artifacts

Most spotted microarrays are built by depositing solutions of cDNA clones at
known locations on a microarray surface. This deposition process is controlled
robotically with little human intervention and is therefore completely regular
and predictable. Furthermore, the printing process is such that spots close to
each other on the microarray surface are printed closely in time as well. Given
that a microarray hybridization can be uneven across the microarray's surface,
this leads one to speculate that neighboring spots on the microarray surface
might be coordinately e�ected. An example situation would be if labelled
sample were more abundant in one region of the microarray than in others.
Spots in that region would have systematically higher observed intensities than
those spotted elsewhere.

Indeed, it does appear that such a spatial e�ect exists. For printed cDNA mi-
croarrays, the e�ect was �rst reported by examining the relationships between
observed spot intensities and the spots' locations in a microarray's design
(Qian et al., 2003; Kluger et al., 2003). Similarities were examined between
gene expression pro�les (across a large number of probings) for genes that are
printed on the microarrays at varying distances. It was found that genes that
are close in the microarray design (on average) have higher similarities between
their expression pro�les than those that are further away. That is, it might
appear that genes that are close on the microarray surface seem more likely to
be co-expressed. Note that without knowledge of the microarray design, the
genes would be identi�ed as exhibiting coordinated mRNA expression.

It turns out that for the microarray design used in the above study, genes
were printed in an order related to their chromosomal arrangement for orga-
nizational convenience. This printing strategy yielded a microarray such that
genes located twenty-two open reading frames (ORFs) away in genomic space
are printed as immediate neighbors on the constructed microarrays more of-
ten that would occur if they were printed in a random order. Interestingly, by
examining the relationships between gene expression and chromosomal local-
ization, a striking similar frequency was found: genes that are approximately
22 ORFs away one the same chromosome are more likely to be co-expressed,
while genes that are about 11 ORFs away are less likely to be co-expressed
(Qian et al., 2003). Furthermore, it was determined that genes on microarrays
with a di�erent layout have a di�erent frequency. This last piece of evidence
suggests the existence of an artefactual e�ect related to microarray architec-
ture. One of the aims of microarray normalization is to reduce the e�ect of
such artefactual components of observed data.
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5.2 Introduction to Normalization

Most microarray studies examine the relationship between two biological sam-
ples by comparing their relative mRNA expression levels. The idea behind such
two-channel experiments is straightforward: labelled (typically red with Cy5
and green with Cy3) nucleic acids in the samples are probed simultaneously
with a microarray slide, and relative abundances are derived from compara-
tive �uorescence of the nucleic acid molecules hybridized at each microarray
feature. For a given spot i, the relative concentration between the two sam-
ples is commonly represented as the log ratio, λi, of the measured �uorescence
intensities between the two dyes. We summarize the log ratio as

λi = log
(

Ri

Gi

)
(4)

where Ri and Gi denote the observed intensities (mean or median of spot
pixels' intensities) for probe i when scanned with the red and green lasers,
respectively. Note that a log ratio of zero indicates that Ri and Gi are equal.
Further, a set of observed log ratios (with measurement error) should center
about zero for probes representing genes of equal expression in the two sam-
ples. Measurements deviate from this situation proportionately to their degree
of up- or down-regulation relative to the two samples.

The log ratio measured between a gene in two samples is in itself a normal-
ization technique. Microarray manufacture is not error-free. Any given spot
may be printed poorly on one microarray and printed perfectly on the next.
If these two microarrays were used to measure the concentration of the gene
corresponding to that spot, the poorly printed spot would likely lead to an
arti�cially low measurement for one sample relative to the sample hybridized
to the higher quality spot. If instead, both samples were hybridized to both
microarrays, then the hybridization of one sample to the poor spot is directly
comparable to the hybridization of the other sample to the poor spot and like-
wise for the higher-quality spot. This self-normalization is particularly useful
when the two samples hybridized to the microarray are paired in other respects
beyond the fact that they were measured with the same instrument. A good
example of paired samples is an mRNA sample taken from a tumor biopsy
before treatment and an mRNA sample taken after treatment. Regarding log
ratios, it should be noted that the A�ymetrix GeneChip system only allows
the hybridization of a single sample to a microarray. Therefore, log ratios are
not meaningful as a spot quality normalization. It is believed, however, that
A�ymetrix microarray construction is much more uniform in terms of qual-
ity control than its spotted microarray counterpart so such self-consistency
concerns are relatively minor. Log ratios can still be relevant for A�ymetrix
microarrays in the case of paired samples like in the cancer experiment men-
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tioned above. Most tiling and protein microarrays yield just a single intensity
measurement as well, so the log ratio is not always a natural measurement for
these experiments either.

Though the log ratio provides an intuitive measure of relative gene expression,
it must often be corrected for inconsistencies resulting from the experiment
(see Section 5.1). Such corrections are collectively termed normalization. Nor-
malization adjusts the measured intensities for each sample and for each spot
as corrective measures. The aim is to compensate for artefactual e�ects by
applying transformations so that equally expressed genes have log ratios ap-
proaching zero. (For single-channel experiments, no such baseline generally
exists.) Measurements for all spots on the microarray are scaled relative to
this baseline. In practice, implementing good normalization has proved chal-
lenging; researchers have developed many competing methods, which can lead
to divergent results (Ho�mann et al., 2002). The following sections describe
some of the more widely implemented strategies.

5.3 Background Correction

For many types of microarrays, a measurement of each spot's local background
is recorded in addition to the spot's foreground intensity. This measurement
is, in common practice, the mean or median of all pixels residing in the spots'
surrounding regions (Section 4). It is believed that any measured intensity
from this background region is also measured in the spot's foreground pixels'
intensities as well. This background �uorescence is attributable, in general, to
glass �uorescence and unincorporated label molecules. The background inten-
sities have no biological interpretation so we would ideally like to remove their
contribution from spot intensities before proceeding. The easiest way to make
this correction is to subtract the mean (median) of all local background pixels
measured in the red channel (denoted ρi) from each spot's red intensity, do
likewise for the green channel (γi), and then compute the background adjusted
log ratio as

λ̂i = log

(
Ri − ρi

Gi − γi

)
. (5)

Equation 5 assumes that ρi < Ri and that γi < Gi . Any spot not in agreement
with these assumptions should be �agged as a bad spot and subsequently
ignored since it does not make sense for a background region to have a higher
intensity that the spot.

We need not rely upon just the background values provided with each spot in
a microarray results �le. The values of ρi and γi could actually be computed
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as the mean or median of all spot background measurements in a localized
region before applying Equation 5. An example of this would be to utilize
a spot's eight nearest neighboring spots' backgrounds to calculate its local
background intensity. Such an approach is advisable so as to avoid aberrantly
high local background values due to scratches or other artifacts present in a
microarray scan. This is of particular importance when dealing with protein
microarrays as these devices can yield spots that smear to bigger sizes due to
phosphorylation activity, for example. These smears will often be measured as
part of a spot's background, causing it to be erroneously high.

Unfortunately, tiling microarrays will usually seek to maximize feature density
in an e�ort to reduce cost and as such, features are packed immediately next
to one another and background calculations may not be possible. In these
cases, we can only hope that background intensities are minimal, or at least,
constant throughout the microarray.

5.4 Normalization via Total Intensity

Following background subtraction, we would like to normalize samples' in-
tensities so that their intensity distributions have desirable properties. One
commonly desired property within two-sample probings is to have a distri-
bution of log ratios representing non-di�erentially expressed genes to center
about zero. This is usually reasonable as in most experiments we do not expect
a centering around any other value.

In a di�erential expression experiment, microarrays should hybridize similar
numbers of labelled molecules from each sample, so the total hybridization
signals summed over all probes should be the same for both channels. Using
these assumptions, we can calculate a scaling factor Ctotal, that can be used to
correct any observed deviance from this assumption. If M is the total number
of features on the microarray, then we have

Ctotal = log

(∑M
i=1 Ri∑M
i=1 Gi

)
. (6)

We can then compute the normalized log ratios as

λ̂i = λi − Ctotal. (7)

The result is a distribution of log ratios that are centered somewhere near
zero. This method performs well in most standard microarray experiments
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with su�ciently large numbers of spots (>20,000) since in these scenarios,
outlier signals make negligible contributions to the total intensities.

A similar approach to Equation 6 can be used to normalize intensities from one
single channel microarray to others. In this application, every intensity in one
channel is divided by the summed intensity (e.g. ∑M

i=1 Ri) of spots from the
same microarray. Then, these normalized intensities can be used to compare
and contrast di�erent samples hybridized to di�erent microarrays. This latter
calculation may be useful in experiments where just a single probing is carried
out on each microarray. This is always the case for A�ymetrix GeneChip
technology and is almost always the situation for protein microarrays and for
tiling microarrays.

5.5 Normalization via Gene Set

The previous method performs fairly well in standard microarray experiments
where the number of genes studied is large and overall gene expression di�er-
ences between the two samples are not excessive. However, the approach must
be applied cautiously as it may mislead researchers into believing that similar
numbers of genes are always up- and down-regulated. This clearly is not true
in some circumstances.

In the following method, sometimes called the gene set method, some set of
genes are assumed not to be di�erentially expressed between the samples being
studied. This set of genes is typically made up of housekeeping genes. The
procedure is analogous to that in Equation 7; the only di�erence being the
numbers that are summed are those from the gene set, not all spots. We
call this value Cgeneset. Captured in this statistic is the overall deviation that
you would expect given no di�erential expression. Ideally, Cgeneset is equal to
zero but e�ects such as unequal RNA concentrations and di�erences between
the �uorescent dyes can cause Cgeneset to be non-zero. Once Cgeneset has been
calculated, all log ratios (not just those in the gene set) are normalized by
Cgenesetusing the relationship

λ̂i = λi − Cgeneset (8)

where λ̂i denotes the normalized log ratio for probe i. Using control spots in
this way has an added bene�t for sets of microarrays where the spots present on
each microarray are not the same. In such a scenario, a common set of control
spots can be used to normalize the microarrays' intensity distributions so that
they are similar from microarray to microarray. This is a typical situation for
tiling microarrays which require several microarrays having di�erent designs
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to probe for large fractions of a genome's sequence.

5.6 Normalization via Spiked Controls

A way to guide normalization further is to spike known quantities of exter-
nal controls into the biological samples prior to �uorescence labelling. Nor-
malization is then based on balancing the signal intensities for those probes
corresponding to the control RNA molecules as in Equation 8.

There are two advantages of this technique. First, the spike-ins are completely
controlled - we are sure that they should show no di�erential expression be-
tween two or more samples. Second, di�erent scale factors can be calculated
for genes having di�erent expression levels if several di�erent spike-in concen-
trations are used. A disadvantage, though, is that control probes must be built
into the array at the onset. Further, the scaling factor is calculated using a
comparatively small number of probes that may be sparsely distributed on the
array depending on the design and the correction techniques for spatial mi-
croarray biases (discussed in Section 5.9) currently cannot be incorporated eas-
ily. A �nal point of concern is that spiked controls may interact with untended
spots on the microarray in addition to the control spots. For traditional DNA
microarrays and for tiling microarrays this is manifest as cross-hybridization.
For protein microarrays, spiked proteins may interfere with desired protein-
binding interactions.

5.7 Normalization via Quantiles

Another popular alternative for intensity normalization is the so-called quan-
tile normalization (Bolstad et al., 2003). In this approach, the �rst step is
to construct a synthetic microarray such that each spot's �measurement,� Si,
is the mean or median of its measurements across all P probings in the ex-
periment. Mathematically, if we use the mean in constructing this synthetic
microarray and Xi,j is the measurement from the j th probing for spot i, then
we have

Si =

∑P
j=1 Xi,j

P
.

The Sis are then sorted in increasing order. So too are the intensities within
each probing. The �nal step in this normalization is to replace each observed
intensity by that intensity Si which occupies the same position within its
sorted list. So, if X1043,2 = 87 is the third largest observation within probing
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number two, it is replaced by the third largest value of Si. A major advantage
of this approach is that it requires no extra probes or spike-ins and yet still
can correct for biases that may be present more or less at di�erent intensity
levels. This advantage makes this method broadly applicable to any microarray
experiment with little concern over experimental nuances.

5.8 Correcting Signal Intensity Bias

Numerous reports have indicated that log ratios resulting from a two sample
probing can have a systematic dependency on signal intensity because of dif-
ferences in the �uorescent properties of the red and green dyes (Yang et al.,
2002a,b; Quackenbush, 2002).

Lowess regression (Cleveland, 1981) analysis allows its users to �t a non-
linear curve to a ratio v. intensity distribution. We call the logged product of
the measured Ri and Gi intensities φi and plot each λi as a function of its
respective φi. The basic idea of lowess is then to �rst �nd a curve that passes
through the �middle� of this ratio versus intensity distribution. The output of
lowess is a value Li paired with each φi. Once Li is calculated, it can be used
to correct for intensity biases. The corrected log ratio is

λ̂i = λi − Li. (9)

The question remains as to how Li is calculated. This is somewhat beyond the
scope of this document, but we will sketch the calculation here. For every φi,
a neighborhood of φs are found. The size of this neighborhood is a variable
that can be adjusted but is typically set to be 10% of all spots. Once the
neighborhood of spots is found, a line is plotted through the λs corresponding
to the φs in the window. This line is used as a function to compute Li from
φi. The method can be generalized. In fact, a commonly used variant of this
method called loess (no �w�) performs the same functionality but replaces the
locally �tted line with a locally �tted quadratic curve.

This technique has no analog for single-channel experiments as in most tiling
and protein microarray experiments. The technique can be forced if one mi-
croarray is considered a baseline and then all other microarrays are normalized
relative to the baseline. This is potentially problematic for tiling microarrays
where each microarray may contain di�erent probes and therefore have di�er-
ent expected intensity distributions.
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5.9 Correcting Array Location Bias

It has become increasingly clear that there are often substantial spatial biases
caused by uneven hybridization conditions across a microarray slide. Uncor-
rected, this can have an e�ect on results. An example of this is the apparent
co-expression of groups of genes, which is actually caused by the proximity of
their corresponding spots on the microarray surface (see Section 5.1).

For spotted microarrays, the e�ect is frequently corrected using sub-grid nor-
malization in which local subsets of spots are grouped by their depositing
print-tip. These groups are then normalized separately using, for example, the
method outlined in Section 5.7. This approach should be used with caution as
we have observed that most spatial variations do not follow the boundaries of
print-tip groups (sometimes referred to as blocks).

As an alternative, a variation of the lowess analysis introduced above can be
used to correct spatial biases. In this alternative, a surface is �t to the log
ratios as a function of their spatial coordinates as opposed to �tting a curve
to log ratios as a function of total intensity. The corrected intensity is obtained
analogously. This procedure can be applied to single channel intensities as well.

It should be noted here that during the design of a microarray, no regions
should be overpopulated with spots that might display coordinated expres-
sion level changes. In this unfortunate scenario, the corrective methods will
eliminate biologically meaningful variations in the measurements. This limita-
tion can be overcome easily by randomizing spot locations during microarray
manufacture.

This procedure may prove di�cult for microarrays where a small fraction
of spots show measurable signal because there are too few intensities to �t
the surface to. Tiling microarrays will usually fall into this category as much
genomic sequence is inactive at any given time. Functional protein microarrays
may fall into this category as well since a given protein is likely to have just a
handful of binding partners.

5.10 Normalization by Spot Concentration

Concentrations of probes within each spot will e�ect measured intensities.
For most traditional and tiling microarrays this is not an issue. However, for
protein microarrays, it is di�cult to control the amount of protein present
at each spot and therefore, it is advisable to divide any measurement by the
spot's concentration. The concentration measurements can be obtained by
hybridizing a protein microarray with a labelled universal protein marker.
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5.11 Normalization Summary

Here, in this section, we have brie�y described the most common techniques for
normalizing microarray data. Many of these methods have been implemented
in published software tools that facilitate microarray normalization; examples
include ExpressYourself (http://bioinfo.mbb.yale.edu/expressyourself/) (Lus-
combe et al., 2003) and SNOMAD (pevsnerlab.kennedykrieger.org/snomadinput.html
) (Colantuoni et al., 2002).

Future improvements in microarray technology may eliminate the need to
correct for intensity and spatial bias, or even for normalization all together.
However, current technologies still produce substantial artifacts, even if they
are not evident from visual inspection of a scanned image.

6 Scoring for Signi�cance

Following microarray normalization, the intensities are in a more suitable form
for statistical testing. In this section, we will begin by exploring some of the
more common approaches for testing the signi�cance of di�erences between
measured intensities generated from two biological conditions. The discussion
will then be generalized to the multiple condition case and to tiling and protein
microarrays.

6.1 Fold-Change

Assume for simplicity that we are interested in assessing di�erential expression
for just a single gene between two biological conditions. Call these conditions
A and B. Further, assume that we have multiple measurements for the gene
within each condition. Let M > 0 be the number of measurements obtained
for condition A and N > 0 be the number of measurements for condition B.
Note that M need not be equal to N but ideally they would be equal. To
designate the ith measurement from condition A, we will use the notation Ai.
We adopt the same convention for measurements of B.

Perhaps the simplest technique for comparing A and B is to compute an
average fold-change between the two. Call this fold-change statistic Sfold and
de�ne it as

Sfold = max
{∑M

i=1 Ai∑N
i=1 Bi

,

∑N
i=1 Bi∑M
i=1 Ai

}
. (10)
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In addition to calculating Sfold, we also choose cuto� values to deem the
statistic potentially interesting. A good way to choose this cuto� is to have
control features present on the microarray that are not expected to display
di�erential expression. With enough unique controls, the 95th percentile of
their Sfold statistics could be a useful cuto�. By the quantity 95th percentile,
we mean that 95% of all Sfold values are below this quantity. Such a cuto�
would suggest that values above this threshold would occur just 5% of the time
for genes not showing di�erential expression. More commonly, such controls
do not exist and an arbitrary cuto� is selected. Often, this cuto� is set at two.

6.2 t-test

The fold-change method utilizes just a single summary statistic (the sum) for
each condition. No information about how widely the measurements vary is
considered. In addition, there must be negative control spots in the microarray
design to assess how likely an observed fold change would be if the gene was
not di�erentially expressed. Application of the t-test addresses both of these
issues.

The �rst step in carrying out a t-test is to calculate the mean of measure-
ments from A and the mean of measurements from B. We will symbolize these
quantities Ā and B̄, respectively. We will also need to calculate the conditions'
variances, σ2

A and σ2
B. The next value calculated is the standard error, SE

SE =

√√√√σ2
A(M − 1) + σ2

B(N − 1)

(M + N − 2)
× M + N

MN
. (11)

The details of what this quantity represents are beyond our scope. For our
purposes, it is worthwhile to note, however, that as σA and/or σB get larger,
so does the standard error. SE is large when the data is highly variable.

The next calculation we must make is the t-statistic. This value is simply the
di�erence between the two cell types' means, divided by the standard error
calculated in Equation 11:

St =
Ā− B̄

SE
. (12)

We notice that as the di�erence between Ā and B̄ becomes large, so too does
the absolute value of St. In addition, as the uncertainty of these means grow
(manifest as the variances, σ2

A and σ2
B), the statistic gets smaller. Another way

to view this statistic is that it expresses the di�erences between two means in
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units of (roughly) standard deviations. This is an advantage over the simpler
Sfold statistic where variances are not considered. Another nice property about
the t-statistic is that it is very well studied by statisticians. In fact, we know
how likely a given value of St is given M, N, and the null hypothesis that
there is no real di�erence between the two means. Therefore, we can assign a
p-value for any value of St without the requirement of negative control spots.

The t-statistic's corresponding p-values should be interpreted carefully, how-
ever. The knowledge we have about these probabilities assumes that the ob-
servations from each cell type are normally distributed (bell curve shaped).
Unfortunately, replicate measurements coming from a microarray experiment
do not always behave this way (Thomas et al., 2001) and this should be con-
sidered when utilizing the t-test.

Another potentially troublesome aspect of the t-test is that two quantities
can lead to large values of St. The �rst is the value we're chie�y interested in,
the di�erence between two conditions. The second quantity that can lead to
large St is a small SE term. A problem with most microarray experiments is
that there are few replicates available from which to calculate the standard
error. This leads to the situation where SE can be quite small just by chance,
resulting in high St values regardless of di�erences between the two groups of
measurements. This is a situation we may not want to deem signi�cant and
worthy of further study. A useful guard against this situation is to require low
p-values computed with the t-test and some fold-change criterion to consider
genes for further study (Rinn et al., 2004).

6.3 Signi�cance Analysis of Microarrays (SAM)

The statistic used in SAM (Tusher et al., 2001) is a slight variant of the one
given in Equation 12. The only di�erence is the so-called 'fudge factor' f :

Ssam =
Ā− B̄

SE + f
. (13)

The purpose of f is to disallow in�ated test statistics solely due to standard
errors close to zero. E�ectively, it sets a lower bound on the denominator
of Equation 13. This factor gives an advantage over the t-statistic but it is
arguably not SAM's greatest contribution.

In SAM, the concept of permutation testing was introduced as a means to
calculate a false discovery rate. To perform this technique, we �rst �x a p-
value threshold T . Next, we identify those genes that have p-values less than
T . These are our positives. Then, for each gene, the class associations are
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randomized. That is, we randomly assign measurements for that gene to one
of the two classes being compared. Using Equation 13, Ssam is computed for
each of these randomized genes. Once the Ssam statistics are computed along
with their associated p-values, the number of these p-values less than T are
counted. The randomization procedure is repeated a number (100 or 1000) of
times and the count is made for each repetition. The median of these counts
divided by the total number of genes in the study is then the reported FDR.
The intuition of this is that the randomized genes represent genes that do not
experience di�erential expression and therefore any time one of their p-values
falls below T , this event can be considered a false discovery.

The notion of a false discovery rate is an important one for microarray exper-
iments having thousands of genes that need to be tested. It helps interpret an
experiment's results in light of the multiple testing problem.

6.4 Cyber T

In Equation 13 we introduced the fudge factor f. The purpose of adding this
factor was to guard against selecting genes which have a low mean di�erence
and unusually low variances. Another way to protect against such situations is
to apply another variation of the t-test called Cyber T (Baldi and Long, 2001).
In this test, standard error is replaced by an expression that is function of both
the gene's standard error and the standard error computed over all genes. The
assumption here is that most genes should have similar standard errors and
by utilizing this assumption we can lessen the degree to which unexpectedly
low or high gene speci�c standard errors e�ect the t-statistic. This method has
been demonstrated to be quite powerful for detecting di�erences between two
samples in experiments using A�ymetrix GeneChip brand microarrays (Choe
et al., 2005).

6.5 Wilcoxon Rank Sum Test

An alternative method for computing signi�cance levels when t-test assump-
tions don't hold is the Wilcoxon Rank Sum test. This test, like many other
so-called nonparametric tests transforms measurements to their magnitude
ranks and calculates probabilities based on rank-based statistics. This test
was introduced in the microarray literature in (Troyanskaya et al., 2002). (As
an aside, it should be noted that when the t-test's assumptions hold, that test
should be used as it is more likely to detect a di�erence if it exists.)

The basic idea of the Wilcoxon rank sum test is to count the number of times
a measurement from one group is greater than a measurement from a second
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group. The properties of how this value behave under the null hypothesis of no
di�erence between the groups' medians are well known so we can directly cal-
culate a p-value from this number. The actual computations of the procedure
are not straight forward and lay beyond our scope.

6.6 Wilcoxon Signed-Rank Test

The previously described Wilcoxon rank sum test is generally applicable for
comparing two sets of numbers. When the two sets of numbers are paired
in some way (such as gene expression levels before and after a treatment) a
more powerful nonparametric test is available. This test is called the Wilcoxon
signed-rank test. To begin, the di�erence Di for the ith spot is calculated for
each pair in a set of N measurements:

Di = Xi − Yi (14)

where Xi and Yi are the paired measurements. Next, each Di is assigned a
rank value Ri of its absolute value

Ri = Rank of |D| (15)

Next, we sum the ranks of those Dis that are positive

R+ =
∑

Ri with Di > 0 (16)

and do the same summation for ranks that have negative Dis

R− =
∑

Ri with Di < 0. (17)

Now if we sum all ranks regardless of whether Di is negative or positive, we
will obtain the quantity 1 + 2 + . . . + N = N(N+1)

2
. If there is no di�erence

between the paired values being compared, then both R+ and R− should be
roughly half of this previous quantity: N(N+1)

4
. Therefore, if we take one of the

R values as in

S = min (R+, R−) , (18)

we known that under the null hypothesis of zero di�erence between the two
groups, S is expected to be N(N+1)

4
. We then determine how far away S is from
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this expected value. Again, the statistic is well-studied, and given S and the
number of measurements N , we can compute a corresponding p-value.

The Wilcoxon signed-rank test has utility in experimental designs having
perfect-match and mismatch probes. In fact, this a commonly used statistic
for A�ymetrix tiling microarray analysis.

6.7 Analysis of Variance

In previous sections we saw how to test for the di�erential spot intensities mea-
sured between two conditions. Frequently, however, a study consists of three
or more conditions and the researcher would still like to deduce which genes
di�er in expression levels between the conditions under study. The standard
statistical tool for solving such problems is the analysis of variance (ANOVA).

To begin, we need a null hypothesis. For ANOVA, our null hypothesis will be
that for all conditions, the gene under study has the same expression level.
It may seem strange that a model for assessing equality of means is called
the analysis of variance. However, the basic idea of ANOVA is to compare
the variance of within-condition means to the variance calculated within each
condition. (The variance of within-condition means will hereafter be called the
between condition variance, and the variance within the samples as the within
condition variance).

Consider measurements Xi,j for a single gene where subscript i indicates that
the measurement is from the ith biological condition being studied and j de-
notes the j th measurement from this condition. If we symbolize the average
intensity within condition i as X̄i, and the average of all measurements as X̄,
we can compute the between condition variance as

σ2
between =

∑K
i=1 Ni(X̄i − X̄)2

K − 1
(19)

where K is the number of conditions being studied, N is the total number of
measurements and Ni is the number of measurements taken for condition i.
Note that if there are no di�erences among the conditions, then the variance
of their means is small. Likewise, if there are di�erences the terms (X̄i −
X̄)2 become larger. We would like to compare this number to the amount of
variation we expect if there are no di�erences. We can estimate this level of
variation by calculating the within condition variance:

σ2
within =

∑
i,j(Xi,j − X̄i)

2

N −K
. (20)
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We can then compare these two variances (Equations 19 and 20) via a ratio:

Sanova =
σ2

between

σ2
within

. (21)

Like previous statistics, we know how this statistic behaves under the null
hypothesis of no di�erential expression and we use this information to calculate
its corresponding p-value.

The above discussion on ANOVA is intended to provide a basic feel of the
technique and is useful in the case where just one factor (such as biological
condition) is expected to e�ect the measured intensities. Clearly, it can easily
be the case that several factors e�ect microarray measurements. As an ex-
ample, let's assume that our microarray measurements are expected to vary
due to two independent factors in a cancer study. Firstly, we might expect
to see di�erences based on which of several tissue types the measured mRNA
came from. Example tissues might include �healthy tissue,� �localized cancer,�
and �metastatic cancer.� Second, we could also expect that expression mea-
surements are e�ected by the race of the individual from which the tissue
was obtained. The goal of the study is to identify whether or not some gene's
expression level changes among the healthy, localized, and metastatic samples.

Given the stated goal of the study, it is tempting to simply apply Equations
19, 20 and 21 to elucidate an answer. The problem with doing so is that σ2

within

is large when there are unaccounted for sources of variation. This translates
into lower values of Sanova and higher p-values.

Why would this higher σ2
within be the case? Recall that the two factors are

independent. Therefore, when we bin our data by a single factor (e.g. tissue),
each bin contains a number of measurements from each class of the other
factor (race). Now, if there are di�erences among the classes of the second
factor, this will lead to some spread within each tissue bin. This spread leads
to higher values of σ2

within. To give us the best chance of detecting a di�erence
among the factor we care about, we need to do some additional work.

Firstly, accounting for two sources of variation requires a little more notation.
Previously, we used Xi,j to indicate the jth measurement of the ith condition.
Now, since we have an additional source of variation we wish to model, we must
extend this to the term Xi,j,k which symbolizes the kth measurement of those
belonging to both the ith class of one factor and the jth class of the second.
For example, X3,1,7 could symbolize the seventh measurement taken of those of
the third tissue type (e.g. metastatic tissue) and the �rst race (e.g. African). In
addition, we previously used the variable K to indicate the number of classes
we were testing between. Now in addition to K, we also need a variable that
denotes the number of classes of the other factor we are studying. Let this
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variable be B. In our example we might have K = 3 (�healthy,� �localized,�
and �metastatic�) and B = 4 (�African,� �Asian,� �Caucasian,� and �Latino�).

In studying the di�erences between the di�erent stages of cancer we calculate
σ2

between as before using Equation 19, where we use tissue labels as the di�erent
classes. The main di�erence in our analysis lies in how σ2

within is calculated.
If we let X̄i,j be the mean of all measurements where factor one (e.g. tissue
type) is i and factor two (e.g. race) is j, then σ2

within is calculated as

σ2
within =

∑i,j,k(Xi,j,k − X̄i,j)
2

N −BK
. (22)

We can then use Equation 21 as before and use knowledge of its distribution
under the null hypothesis to obtain a corresponding p-value. Intuitively, all we
have done in moving from one factor to two is to adjust the within condition
variance so that it does not include potential variation from known sources
such as age, race or gender. Accounting for these sources of variation give us an
enhanced ability to detect di�erences between some conditions of interest. This
increase in sensitivity comes at a cost, however. To accurately calculate σ2

within,
there must be a number of measurements available for each combination of
the factors we wish to model. As the number of factors in our model increases,
so too does the number of replicate experiments needed to estimate σ2

within.

Given that ANOVA can account for di�erent sources of variability, it is also
capable of merging microarray normalization with di�erential expression de-
tection. To do this, sources of variation within the model are not only those
of biological interest (such as cancerous vs. healthy tissue), but also those of
technical concern (such as microarray used, dye used for labeling, etc.) (Kerr
et al., 2000). The application of ANOVA to microarray data in this context is
reviewed nicely in Kerr (2003).

6.8 Extensions to Tiling Microarrays

The tests described above can be applied to tiling microarrays as well. Recall
that in a tiling microarray, we are looking for regions of consecutive probes
(in genomic space) that exhibit intensities higher than some background level.
To assess this, a windowing approach is often taken where we don't simply
assess a single feature by itself, but rather we assess that feature along with a
window of neighboring features. To apply the t-statistic, for example, we may
test each window's intensities to a random sampling of intensities from any
genomic region, to intensities from within putative promoters (which are not
expected to be transcribed) or to a control set of features. For A�ymetrix tiling
microarrays which contain a mismatch probe for every perfect-match probe
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on the microarray, the mismatch probes can serve as this control set to which
the comparison can be made. The extension of this approach to fold-change,
SAM, etc. is straightforward.

Following scoring each window in this manner, the resulting statistics are
thresholded by some criteria (set by negative and positive control probes
or theoretical considerations). The result is a set of putatively 'on' and 'o�'
probes. Spots that meet the threshold criterion and that are within a short
distance of each other in genomic space are combined (the spacing between
probes above threshold must be less than maxgap bp apart) to form larger
continuous regions. These combined fragments are then �ltered to remove
short fragments (require a length longer than minrun bp) that are likely to
be spurious results.

6.9 Extensions to Protein Microarrays

For antibody microarrays that assess concentrations of proteins in solution,
the methods described in this section can be directly applied to testing abun-
dance di�erences between two or more biological conditions. For functional
protein microarrays, however, the question is usually one of event detection.
In these cases, control experiments must be designed so that they represent the
proteins' activities in some baseline state. Once a suitable control is identi�ed,
then the methods described here are suitable as well.

7 Summary

The microarray platform is emerging as a standard tool in biological and
biomedical research. This is partly because its ever-expanding utility as ev-
idenced by both the tiling and protein microarray applications. As is true
for any standard tool, it is important that the microarray technology be well
understood by its practitioners. For microarrays, part of this technological
understanding is resident in the understanding of microarray statistics. Here,
in this chapter, widely used methods for microarray normalization and signi�-
cance testing are presented with the aim of providing this understanding in at
least a broad sense. We have indicated where and when gene-based microarray
statistics can be useful for tiling and protein microarrays in our discussion.
The information conveyed was intended to provide at least a motivation and
intuition for what happens to microarray data after it leaves the bench.
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