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Most molecular graphics programs ignore any uncertainty 
in the atomic coordinates being displayed. Structures are 
displayed in terms of perfect points, spheres, and lines with 
no uncertainty. However, all experimental methods for de- 
fining structures, and many methods for predicting and 
comparing structures, associate uncertainties with each 
atomic coordinate. We have developed graphical represen- 
tations that highlight these uncertainties. These represen- 
tations are encapsulated in a new interactive display pro- 
gram, PROTEAND. PROTEAND represents structural un- 
certainty in three ways: (1) The traditional way: The 
program shows a collection of structures as superposed and 
overlapped stick-figure models. (2) Ellipsoids: At each 
atom position, the program shows an ellipsoid derived from 
a three-dimensional Gaussian model of uncertainty. This 
probabilistic model provides additional information about 
the relationship between atoms that can be displayed as a 
correlation matrix. (3) Rigid-body volumes: Using clouds of 
dots, the program can show the range of rigid-body motion 
of selected substructures, such as individual o~ helices. We 
illustrate the utility of these display modalities by the ap- 
plying PROTEAND to the globin family of proteins, and 
show that certain types of structural variation are best il- 
lustrated with different methods of display. 
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tional flexibility, macromolecular shape, segmental flexi- 
bility, temperature factors 

I N T R O D U C T I O N  

The main sources of  structural information on biological 
macromolecules is experimental techniques such as X-ray 
crystallography and nuclear magnetic resonance (NMR). ~.2 
There is also, however, an increasing ability to define struc- 
ture (or partial structure) with predictive methodologies as 
well (secondary structure, 3'4 structural class, 5 surface vs. 
buried atoms, 6 local conformation, 7 approximate fold, 8 and 
others). Both the experimental and predictive technologies 
are expected to result in an explosive increase in the amount 
of  structural information available to the biomedical com- 
munity in the next decade. The Protein Data Bank estimates 
that the number of  new protein entries by the year 2 000 
will be 30 000/year. 9 This increase stems primarily from 
the ability to solve the structure of  many related proteins 
once a prototypical structure has been solved. It is accen- 
tuated by computational technologies, such as molecular 
dynamics, which produce numerous variations of  single 
structures as their dynamic motions are simulated, m Fi- 
nally, there is an increasing ability to make predictions 
about structure. 

Uncertainty of individual structures 
All methods for defining or predicting molecular structure 
have sources of  noise that make the exact position of  atoms 
uncertain. This uncertainty can arise from a number of  
sources. The experimental techniques used to collect struc- 
tural data are imperfect. The algorithms used to compute 
structure from these data are imprecise. At the same time, 
the molecules under study may form a heterogeneous pop- 
ulation composed of  multiple different conformations or 
conformations that are rapidly interconverting. In any case, 
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the structures that are computed from uncertain data or from 
data drawn from a heterogeneous population will have un- 
certainty associated with their atomic positions. Estimates 
of this uncertainty are usually provided along with the 
atomic coordinates, or can be derived from sets of atomic 
coordinates. 

X-ray crystallography Structures determined using 
X-ray crystallography routinely include information about 
the temperature factor, or B factor, for each atom. The 
crystallographic B factor is a scalar estimate of signal at- 
tenuation derived from electron density maps. 1 Thermal 
motion of atoms causes a decrease in the intensity of X-ray 
crystallographic readings by a factor of e -n / r ,  where B = 
8 7r2~2/3,/x represents the mean displacement of the atom, 
and K depends on crystallographic experimental parame- 
ters. Atoms that reliably assume the same position within 
the unit cell have a low B factor. On the other hand, atoms 
that do not reliably assume the same position within the unit 
cell have a high B factor. It is well recognized that the 
positions determined from X-ray crystallographic studies 
are averages over a population and over a time interval. 
Thus, there are two factors that contribute to a high B fac- 
tor. First, the population of structures within the crystal 
lattice may adopt multiple conformations for a given seg- 
ment. Second, the conformations assumed by a segment 
may vary during the period of data collection (minutes to 
hours). In either case, the electron density signal is attenu- 
ated, and the B factor represents a measure of how localized 
an atom is within a crystal structure. Although the Crystal- 
lographer often has information about anisotropies in the B 
factor (which are treated using a parametric representation 
similar to that described in the next section), the B factor is 
usually reported assuming spherical symmetry. X-ray crys- 
tallographic B factors vary, depending on experimental con- 
ditions, but are generally (and often much) less than 30 ~2, 
which represents a mean displacement of approximately 1.1 
A. It has been shown that, for high-resolution structures, 
most of the B factor is due to thermal motion, and not static 
(lattice) disorder. 11 

structures may have sections with mean displacernent on the 
order of 2.0 to 3.0 A_. The computation of mean displace- 
ment is not trivial, because it requires a superposition of 
structures, and commonly used structural superposition 
methods can be biased toward particular structure or dis- 
torted by a poor choice of atoms used for the superposition. 
The problem of superposition is discussed further with re- 
spect to structural families (below). 

Molecular dynamics and predictive technologies 
Although molecular dynamics is generally not able to pro- 
duce structures de novo, it is often used to explore the 
conformation and dynamic properties of macromolecules, lO 
These simulations allow a single molecule to adopt multiple 
conformations derived from the starting conformation, 
based on a simulation of the molecular forces on the mol- 
ecule. The results of simulations are sets of thousands or 
millions of structures that differ from each other in subtle 
ways. These structures can often be displayed as an anima- 
tion, but it is often useful to summarize the overall features 
of the animation with static images. These summaries can 
be generated by considering a superposition of multiple 
structures (as for NMR), or by extracting the principal sig- 
nificant motions (by analysis of modes or frequency filter- 
ing. ~s-19 Alternatively, the degree of motion of an atom can 
be summarized parametrically in a manner similar to the B 
factor of crystallography, in order to summarize the mean 
displacement of atoms from their average position. 2° 

Technologies for predicting structure are not yet mature, 
but because they are often based on statistical analysis of 
known structures they are. by definition, subject to sources 
of error such as insufficient sample; sample bias; and noisy, 
pooled data The uncertainty of structures produced by 
these technologies often has an uneven distribution: certain 
regions may be reliably modeled to within 1 or 2 ,~, while 
other regions may be uncertain. Some work has been done 
in an effort to quantify the three-dimensional uncertainty of 
predicted structures. We have reported a probabilistic algo- 
rithm applied to protein structure and RNA structure that 
produces an explicit estimate of structural unCertainty for 
each atom. s2° 

Nuclear magnetic resonance Structures determined by 
NMR must be constructed from multiple distance measure- 
ments. 2 There are, therefore, two sources of uncertainty for 
these structures. First, the interpretation of the NMR data 
involves assigning a distance (usually a distance range or 
distance distribution) for each experimental measurement of 
atomic proximity. Because the data arise from a population 
of molecules (and are time averaged), there may be errors in 
assigning this distance. Second, the method used to recon- 
struct the structure from distances (often called embedding) 
may not find a single optimal structure, but many related 
structures that all satisfy the distance constraints equally 
well. lz For these reasons, NMR structure determinations 
often produce a family of structures. The mean displace- 
ment of atoms in these structures is a function of the number 
of distance constraints that are extracted from the experi- 
ments, and the precision with which the distances can be 
assigned, 13i14 Small molecules can be solved with a mean 
displacement on the order of 0.5 A or less, whereas large 

Uncertainty of structural families 

There is another area in which the representation of uncer- 
tainty within molecular structure becomes critical: the anal- 
ysis of families of related structures. A family of structures 
is usually defined by similarity in both secondary structures 
and their pattern of association. The uncertainty for families 
of structures is compound: there are uncertainties within 
each structure and there are differences between structures 
that define the acceptable variation within the family. One 
challenge, when comparing molecules in the same family, 
is to determine the best way to represent the similarities and 
differences in their structures. The key issue is in how to 
establish the correspondence between equivalent residues 
(or nucleic acid bases) in the primary sequence of the struc- 
tures of interest. This problem has been approached with 
multiple alignment techniques applied at both the se- 

2 1  2 2  ~ 2 3  quence • and structural level: Given an alignment, a set 
of equivalent atoms (i.e., atoms that play the same struc- 
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tural role in each member of the family) can be defined and 
used for superposition. It is not clear, however, that all 
atoms for which there are equivalents in each structure 
should be used for superposition. For example, two equiv- 
alent helices that have a consistent relative geometry may be 
connected by a short coil of constant length. If the coil takes 
on different conformations in each structure within a related 
family, then a superposition that attempts to minimize the 
root mean squared (RMS) deviation of the helices and coil 
will distribute the variation (which may be essentially all 
due to the coil) over all three elements, thus leading to a 
somewhat misleading representation of the variation in the 
structures. In such a case, what we may actually want is the 
structurally invariant " co re"  regions common to all mem- 
bers of the family. 24-28 We have reported an automatic 
procedure for identifying cores of low structural variance, 
starting from sequence alignment. 29 

Once a set of equivalent atoms has been defined, how- 
ever, the problem of representing and displaying multiple 
molecules within a family becomes similar to the problem 
of representing multiple possible conformations of the same 
molecule. In each case, there is a set of atoms, all of which 
occur in an individual structure, and for which the individ- 
ual structures all have different three-dimensional shapes. 
The chief difference between displaying a set of structures 
from an aligned family and from a single structural deter- 
mination is that the magnitude of the uncertainty in position 
is often larger in the case of the aligned family. 

In fact, the distinction between the uncertainty in an in- 
dividual structure and the uncertainty in a family of struc- 
tures is somewhat arbitrary. For example, different confor- 
mations that are sampled during a molecular dynamics cal- 
culation represent the variation in a single structure, but 
they also produce a set of structural coordinates that defines 
a family of conformations. Similarly, sets of structural stud- 
ies on proteins that are related by single point mutations 
have characteristics of a family, but are derived conceptu- 
ally from a single protein structure. Indeed, members of a 
protein family are often derived from a common precursor, 
and so there is a continuum from multiple conformations for 
a single instance to multiple instances within a family. The 
way in which we think about the differences between these 
conformations may change, depending on the questions we 
are asking. 

In this study, we have chosen to illustrate our represen- 
tations of the globins, a family of structures with a mean 
RMS deviation between structures of about 2.0 ,~.3o The 
globin family allows us to accentuate the capabilities of the 
representations, but the methods presented can be equally 
well applied to multiple structures from NMR, molecular 
dynamics, or crystal structures. 

We have focused on three categories of display for mo- 
lecular uncertainty: overlapping molecular stick models, 
parametric Gaussian distributions, and substructure acces- 
sible volumes. Each of these categories accentuates differ- 
ent aspects of structural variation. They all depend on hav- 
ing certain basic information. We assume that for each en- 
semble of structures, the following information is available. 

1. The equivalencies between atomic positions: Each atom 
included in the superposition must be associated with an 

equivalent atom in all other structures. In the case of 
multiple conformations for a single molecular structure, 
this is trivial; each atom corresponds with itself in the 
other structures. In the case of multiple structures within 
the same family, the problem of aligning all the struc- 
tures, and of assigning atom equivalencies, may be dif- 
ficult. 

2. A subset of atoms to be used in superposition: Given a 
set of equivalent atoms and structures, it is necessary to 
pick some subset of the atoms to be used to bring the 
structures into the same coordinate system. Frequently, 
all the atoms are used, and this provides an overview of 
individual atomic variations. As argued above, it is 
sometimes useful to define a subset of atoms for super- 
position, and examine the variation of other atoms with 
respect to a superposition of the subset. These ideas are 
illustrated in the application to the globin family dis- 
cussed below (Application to the Globins). 

3. The three-dimensional coordinates of every atom for 
which an equivalency has been established. 

4. For sample substructure accessible volume only: Infor- 
mation, provided by the user, about how to group atoms 
into meaningful structural units such as helices, strands, 
or higher-order structural units. 

Overlapping molecular models 

One of the most common ways to compare related struc- 
tures is to find a superposition of the structures that mini- 
mizes the RMS error between them. This has been the sub- 
ject of careful study, and a number of algorithms have been 
proposed for finding unbiased superpositions of N struc- 
tures. 31-34 Most of these algorithms rely on a basic algo- 
rithm for superimposing two structures, x 1 and x2, so that 
the root mean squared distance (RMSD) between corre- 
sponding atoms is minimized: 

R M S D  = N (1) 

where Xli is the position of the ith atom in structure x 1, x2i 
is position of the ith atom in structure x 2, and R is the 
rotation required to superpose the structures. Efficient, ro- 
bust procedures for calculating this (optimal and unique) 
superposition have been described. 35-39 Some of these 
methods are based on the singular value decomposition of a 
specially created tensor. Grid search methods have also 
been described. The RMSD is a convenient measure of 
structural similarity, but it is not perfect. For example, it is 
difficult to relate the same RMSD measure when applied to 
pairs of structures with different numbers of atoms. In ad- 
dition, the RMSD does not capture local similarities when 
they are in a context of global dissimilarity. Nevertheless, 
for structures that are known to be similar (in both size and 
overall topology) the RMSD is a reasonable measure of 
similarity. 

Extending the formalism of two structure superposition, 
the methods for superposing an ensemble of N structures 
seek to find the rotation matrices for each structure so that 
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they can be transformed to the same coordinate system. 3~ 
These methods minimize the sum of squared distances be- 
tween all equivalent atoms: 

N M 

E(~) = E E (R/x j i -  RkXki) 2 
j<k i= 1 

(2) 

where the first sum is over all pairs, j, k of the N structures 
in the ensemble 12, the second sum is over the M aligned 
positions in each structure, and R~cji represents the rotated 
coordinates of atom i in structure xj. 

If we rotate each structure using the optimal rotation ma- 
trix, Rj, then they can be drawn together in the same coor- 
dinate system (in an overlapping fashion) to give an impres- 
sion of where there are regions of high variation and where 
there are regions of low variation, as shown in Color Plate 
1. This display technique has drawbacks, however, that 
may make it less useful. 

1. As the number of atoms in the structures increases, it 
becomes difficult to reliably establish the correspon- 
dence between equivalent atoms in different structures. 

2. As more structures are superimposed, it becomes more 
and more difficult to examine particular areas of interest 
within the superimposed structures, because the density 
of line segments becomes too great. 

Of course, the choice of which subset of atoms to use 
when calculating the rotation matrices in Eq. (2) can dras- 
tically affect the quality of the resulting overlap image. For 
example, if all atoms are used in defining the optimal ro- 
tations, then the average variation of all the atoms will be 
minimized. However, if a subset of atoms within a "core"  
region (perhaps a centrally located secondary structure or a 
collection of critical secondary structures) is used to define 
the best superposition, a different set of apparent variations 
may result (as shown in Color Plate 1). 

METHODS 

To address some of the problems with simple overlapping 
molecular models, we have developed a parametric repre- 
sentation of structure. 2° This representation is based on 
modeling the distribution of atomic positions as a three- 
dimensional Gaussian probability distribution. If we have a 
set of structures, superimposed using some RMS criteria, 
then we can calculate a mean position and three- 
dimensional variance and covariance for each atomic coor- 
dinate. The mean position can be calculated in a straight- 
forward manner by averaging the coordinates for corre- 
sponding atoms after they have been transformed into a 
common coordinate system. It can be represented as a vec- 
tor, x, for N atoms: 

X = [X 1 Yl zl  x2 Y2 z2 • • • XN YN aN] (3) 

We can also calculate the variances and covariances of 
each of these coordinates and place them in a covariance 
matrix. The diagonal elements of such a matrix contain the 
variances of each coordinate, and the off-diagonal elements 

of the matrix contain the covariances between parameters.* 
The covariance matrix is a 3N × 3N matriX: 

x I (~xlyl ITx~z~ • . (~x~zu 

~2 
Y~ 

C(x) = 

~z~x I 
2 

• . O ' Z M  

(7) 

Taken together, the mean vector, x, and the covariance 
matrix, C(x), represent an uncertain model for the location 
of each atom. C(x) also contains information about the re- 
lationship between coordinates in its off-diagonal elements. 
In general, two coordinates may have a complicated func- 
tional relationship. The covariance is a linearization of this 
relationship that essentially specifies whether the values of 
the two parameters increase or decrease together. Although 
a primitive summary of potentially complicated dependen- 
cies, the covariance is often sufficient (especially using it- 
erative techniques to reduce estimation error) for capturing 

4 0  important parameter relationships in a structural model. In 
fact, a correlation matrix can be calculated by dividing the 
elements of the covariance matrix by the product of the 
standard deviations from the corresponding diagonal posi- 
tions (Figure 1). For the purposes of display in three di- 
mensions, We focus on the variance and covariance of the 
coordinate of individual atoms. If we imagine the covari- 
ance matrix as a matrix of 3 × 3 matrices, 

C(xlx0 

C(x) = 

\ C ( X N X l )  

C(XIX2) 

C(XzX2) 

• . C ( X 1 X N )  ~ 

• • C(XNXN) 

(8) 

where each submatrix within C(x) contains the covariances 
(or variances, along the diagonal) between the individual 
coordinates of the two atoms, x; and xj, 

{ crxg) ~x~) Crx~z~l 

C(XiXj) = ~(ry~j 13ry#,j (Tyjzj] (9) 

\ Crz~c~ Crz,),j ~z , zJ  

*The variance, covariance, and correlation are defined, respectively, using 
standard statistical definitions: 

Crx N -  1 (4) 

o~. (5) N -  1 \~-] \ ~ !  

o = - -  (6) o[~o'y 
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Figure 1. The correlation matrix for the eight globin family 
members studied. Using the standard alignment described 
in Ref  . 30, we extracted the 115 a-carbon atoms common to 
the aligned globins. The correlation coefficients between 
the coordinates of  all atoms were calculated using standard 
definitions. To produce a single scalar summary of the cor- 
relations between any two points, each 3 × 3 tensor of 
correlations between two points" was diagonalized, and the 
sum of the absolute value of  the diagonal elements was 
plotted (thus, perfect correlation or anticorrelation along 
the principal axes would have a value of 3.0, whereas in- 
dependent atoms would have a correlation value of 0.0). 
The resulting 115 x 115 matrix is a measure of the corre- 
lations between the 115 atoms, and is displayed here. Low 
values of correlation are black, and high values are white; 
shades of gray designate interval values. 

the diagonal 3 × 3 matrices are the variance and covariance 
matrices between the Cartesian coordinates for each atom. 
Each of these matrices is symmetric and positive definite. 
The diagonals give the variance of each coordinate along 
the global x, y, and z coordinates, while the off diagonals 
give the covariance between the coordinates. Each of these 
matrices contains information about the three-dimensional 
distribution of positions for each atom; specifically, they 
provide the second moment (the variance) of the distribu- 
tion. If we want to display this information then we need to 
assume some form for the distribution, define a confidence 
level or contour at which the distribution should be dis- 
played, and define the orientation of the distribution in 
space. 

1. Assume a distribution, given first two moments: In the- 
ory, there are an infinite number of spatial distributions 
with the same mean and variance. For computational 
convenience, it is useful to assume a normal distribution 
with the given mean and variance. In addition, the nor- 
mal distribution is the least biased estimate of an un- 
known distribution given only its first two moments. 41 
In this case, of course, the full distribution is actually 

known (it is a discrete distribution of points from each 
structure), but we are seeking a simplification and rep- 
resentation that is useful when there are hundreds of 
structures. 

2. Define a confidence level: Given the assumption of a 
normal distribution, it is reasonable to draw a contour 
for each atom that encloses some expected percentage of 
all positions. Just as a one-dimensional normal distribu- 
tion truncated at two standard deviations (SD) contains 
96% of the data points contained within this distribution, 
so a three-dimensional normal (represented by the 3 × 3 
variance/covariance tensor) defines an el!ipsoidal con- 
tour at 2 SD that contains 96% of the locations contained 
within this distribution. (A 1-SD contour would contain 
72% of expected points.) 

3. Define orientation: If we imagine an ellipsoid centered at 
the origin and with major and minor axes aligned with 
Cartesian axes, then we can describe that ellipsoid with 
a tensor that has the length of each semiaxis in the di- 
agonal elements, and with zero off-diagonal elements. 
The oft-diagonal elements are zero because an aligned 
ellipsoid has no correlations between coordinates: each 
coordinate can be selected from a normal distribution 
with appropriate variance independent of the other co- 
ordinates. Now, we can rotate this tensor by an arbitrary 
three-dimensional rotation matrix and then the off- 
diagonal elements will be nonzero, because the rotation 
introduces correlations between coordinates in the global 
coordinate system. To display our covariance matrices, 
we reverse this process. In particular, the submatrices on 
the diagonal of the large covariance matrix may be de- 
composed, using a Jacobi decomposition, 42 to 

C = RDR r 

where D is a diagonal tensor whose diagonal elements 
are the variances of a three-dimensional distribution that 
is oriented along the global coordinates. R contains the 
eigenvectors of C, which define a rotation matrix that 
transforms points in the coordinate system of D into the 
coordinate system of C. The variance of a distribution is 
the square of its standard deviation, thus if we take the 
square root of the elements of D and multiply by two (if 
we want a 2-SD contour), then we have the axes of an 
ellipsoid, oriented along the coordinate axes. We can 
apply rotation matrix, R, to this ellipsoid to produce the 
correct orientation, and then translate to the mean posi- 
tion (taken from vector x), in order to display the three- 
dimensional distribution most consistent with the sample 
of points, as shown in Color Plate 2. This method of 
representing variation in atomic position provides some 
benefits over the overlap methods. 

1. All the structural variation is represented as an ellipsoid 
that can be easily labeled or turned on/off for quick 
identification. 

2. The complexity of the display does not change even as 
the number of structures is increased. Every atom has a 
single ellipsoid, and the 0nly variation with sample size 
is the accuracy of the mean and variances. 

However, the method is still subject to the same sensi- 
tivity to and dependence on the choice of atoms for defining 
the optimal alignment (see Color Plate 2). 
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It should be noted here that the crystallographic B factor, 
as given in Eq. (1), is related in a simple way to this prob- 
abilistic representation of atomic position. The squared 
mean displacement is, by definition, the variance of the 
distance from the mean position. Instead of representing the 
variance as a three-dimensional tensor, the isotropic B fac- 
tor assumes a spherically symmetric distribution. Thus, us- 
ing the notation developed above, the B factor can be in- 
serted into a 3 × 3 tensor as follows: 

3B ( 00 / 
3B 0 

C = 0 8rr--- ~ 

3B 
0 0 

The ellipsoids then degenerate into spheres, which can be 
drawn to provide an indication of which sections of the 
structure have the most thermal motion (see Color Plate 3). 

Sampled substructure accessible volumes 

The final method we have implemented for examining the 
uncertainty of a macromolecule is meant primarily for struc- 
tures for which relatively well-defined subunits can be iden- 
tified, but for which the relative position of the subunits is 
variable. For example, we may have a set of proposed struc- 
tures for a macromolecular complex that has a number of 
helical elements that occur in different positions. The inter- 
nal structure of each helix can be modeled in a local coor- 
dinate system. Once a global coordinate system is estab- 
lished (perhaps around a single helical element), then the 
position of the local coordinate systems of each other helix 
can be described as a translation and a rotation from the 
origin of the global coordinate system. For compactness, 
we store the position of the local coordinate system as three 
Cartesian coordinates, and the orientation of the object as 
three Euler angles. 43 

To illustrate the spatial variation in the position of these 
subunits, we can systematically disperse dots within the 
volume of the structural element in the local coordinate 
system, and then transform all of the dots to the actual 
position in the global coordinate system and render them. 
As all the possible locations for each structural element are 
drawn in this fashion, a cloud of these dots is formed, which 
gives the viewer a feel for the overall spatial extent of 
possible locations for the structural element. These clouds 
can be color coded in order to label positions for different 
structural elements. This is illustrated in Color Plate 4. This 
representation is particularly useful for defining sets of rel- 
ative positions between substructures. By fixing one object 
in the global coordinate system and drawing the accessible 
volume for the other objects, we can describe the range of 
positions they occupy with respect to the fixed object. 

APPLICATION TO THE GLOBINS 
We have written a software package, PROTEAND, that is 
designed to facilitate the use of the representations de- 

scribed in the previous section. PROTEAND is written in 
C, uses the GL graphics library from Silicon Graphics, Inc. 
(as well as the X and MOTIF window systems), and is 
available by anonymous ftp on camis.stanford.edu, /pub/ 
altman/proteand.tar. PROTEAND is a display program 
only, and does not perform the analyses required for these 
modes of display (programs to do these analyses are avail- 
able on request from authors). It does, however, use a set of 
general file formats that are flexible and easy to use once 
these analyses are complete. The program can draw struc- 
tures using standard stick figures, generalized ellipsoids, or 
combinations of spheres and cylinders (as shown in Color 
Plates 1-5). Among other features, the program allows for 
real-time rotation of all images (using wireframe ghosts). It 
gives user control of all object colors, drawing styles, back- 
ground colors, object reflectivity, light source position, 
depth-cueing parameters, and other display parameters. It 
can also save commonly used combinations of these param- 
eters (including orientation and zoom level) in order to fa- 
cilitate instant reloading of favorite views. To underscore 
the different strengths and weaknesses of these display mo- 
dalities, we illustrate them with the same example: the core 
regions of the globin molecules. From the Protein Data 
Bank, 44 we chose eight structures from the globin famil~ 

29 30 4~ .  that have been the subject of previous investigations ' • : 
IECD, 1MBA, 1MBD, 2HBG, 2LH4, 2LHB, and the A 
and B chains of 3HHB. (All structures are of the deoxy 
form except for IMBA and 2LHB.) We used the canonical 
numbering scheme used by Lesk and Chothia in aligning 
these structures manually. 3° The eight structures each have 
eight helices (A through H), seven of which are included in 
the alignment of Lesk and Chothia, and which are Shown in 
Color Plate 5. All analyses were done at the a-carbon level, 
because the identity of  many residues changes over these 
eight structures. The following analyses were performed. 

1. Overlapping structures: Using all 115 atoms in the align- 
ment of Lesk and Chothia, we calculated an unbiased 
average structure, using a method described in Ref. 29, 
and yielding results identical to those produced using the 
method of Diamond. 3~ We then fit all eight structures to 
this average, and this superposition is displayed in Color 
Plate 1A. To illustrate the sensitivity of these methods to 
choice of criteria for alignment, we also fit all 8 struc- 
tures to the average of a subset of 28 atoms (of the initial 
115) that define helices A and B, whose relative posi- 
tions are invariant over the 8 helices as described in Ref. 
29, and to a subset of 13 et carbons that belong to a helix 
in close contact with the heme moiety (helix F), which 
has relatively high variance in posinon compared to the 
other 7 helices. These are displayed as overlapping line 
drawings in Color Plates 1B and C. 

2. Parametric probabilistic representation: Using the struc: 
tures that were fitted for the overlap display, we calcu- 
lated means and variances as described in Methods. We 
used a 2-SD cutOff for the ellipsoids. Color Plate 2 
shows the ellipsoids of uncertainty for the globins, cor- 
responding to the same superposition strategies de- 
scribed for the overlapping structures (i.e., all atoms, 
helices A and B, and helix F alone). 

3. PROTEAND is able to display PDB files directly, using 
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the B factor to scale the volume of each atom. We se- 
lected and displayed each a carbon of 2HHB (subunit A) 
with a ball equal in size to its mean displacement. Atoms 
with B factors above 25 .~2 were colored red (see Color 
Plate 3). 

4. Figure 1 shows a graphical representation of the corre- 
lation matrix [as defined in Eqs. (7) and (8)] for the 8 
globin structures (using all 115 atoms in the standard 
alignment3°). Using an ad hoc measure to summarize the 
overall correlation between the coordinates of all pairs of 
atoms (as described in the caption to Figure 1), we 
checked the three-dimensional positions of the pairs of 
atoms that had the highest correlation that were not part 
of the same helix. These are shown in Table 1. 

5. Substructure accessible volume: Each of the globin folds 
included in the ensemble has eight helical elements (A- 
H). For each helix position within each protein (again, 
using the same alignment as in Color Plates 1A and 2A), 
we transformed into the common coordinate system a set 
of dots scattered within the cylinder defined by the back- 
bone atoms. This defines a cloud of possible locations 
for each helix in the globin family, and is shown in 
Color Plate 4. 

Table 1. Highest correlations between atoms that are not 
part of  the same helix a 

Position Position Distance 
1 2 Correlation (rio 

E20 E-F1 2.79 3.72 
B5 E4 2.71 11.61 
A10 F4 2.71 24.78 
B15 A17 2.70 23.51 
B6 FA 2.70 8.66 
B14 El9 2.67 24.05 
B5 E5 2.66 9.37 
F9 F-G1 2.65 3.60 
B8 El8 2.65 19.90 
C6 H14 2.65 25.72 
C3 H13 2.65 21.79 
BI4 El5 2.65 18.61 
C4 H13 2.65 19.36 
A11 F4 2.64 23.69 
A9 E4 2.64 25.13 
B14 E8 2.63 12.02 
B 14 E20 2.62 27.12 
BI2 El9  2.62 21.64 
F-G4 G1 2.61 3.72 
C6 H12 2.61 23.07 
B14 E6 2.61 15.50 
B15 El9 2.60 26.03 
C6 HI3 2.60 24.01 
B10 E4 2.60 7.53 

'~l'he first column gives the position of the a carbon in the standard num- 
bering scheme. 3° The second column provides the same information for a 
second atom. The third column repots the sum of the magnitudes of the 
diagonalized correlation matrix, and the final column shows the average 
distance of these atoms from one another in the eight structures. High 
coordinate correlation within this group of 115 aligned a carbons does not 

imply physical proximity. 

D I S C U S S I O N  

The importance of good structural models in biology cannot 
be overestimated. At the molecular level, models are used 
for drug design or functional analysis. It is critically impor- 
tant that application programs have access to both the cer- 
tainty with which the structure is known, as well as the 
important correlations and covariances between individual 
structural parameters. A static molecular structure may be 
less useful for the process of drug design than a structure in 
which the regions of structural uncertainty are clearly de- 
fined. Sometimes it is possible to determine the cause for 
structural uncertainty: NMR measurements can sometimes 
indicate which regions are mobile and thus provide an ex- 
planation for lack of strong signals. Frequently, however, 
the exact source of uncertainty is not clear. 

PROTEAND is designed to complement the existing 
body of 3graphics software used to display macromole- 
cules. 46-5 The program complements interactive graphics 
programs, such as Insight, 49 which have many features to 
display and analyze structures, but which have no features 
to represent the uncertainty in an ensemble of structures. It 
may be particularly appropriate for analyzing the results of 
an NMR structure determination. Analyzing uncertainty in 
crystallographic structures is a somewhat different situa- 
tion. The crystallographic model-building programs 

46 47 48 FRODO and O ' represent the uncertainty in a single 
structure in terms of contours of electron density. This is 
obviously the best representation for the uncertainty in the 
real data when building models. However, for the noncrys- 
tallographer, electron density is difficult to display and hard 
to interpret. PROTEAND can summarize a large amount of 
electron density information using its ellipsoid atom repre- 
sentation. The ellipsoidal representation is similar to that 
implemented in the ORTEP program TM for anisotropic B 
factors, but takes advantage of modem hardware rendering 
capabilities. PROTEAND makes use of the dot-cloud and 
helix-cylinder representations popularized in earlier pro: 
grams. Like the dot-surface programs of Connolly, 53 
PROTEAND uses semitransparent clouds of dots to repre- 
sent features of the protein structures while still allowing 
the atomic skeleton to be visible. However, unlike the Con- 
nolly programs and GRASP (Nicholl et al.52), PROTEAND 
uses dots to represent backbone atoms rather than sur- 
faces. In the substructure accessible volume representation, 
PROTEAND uses the cylinders popularized by Lesk and 
Hardmann 5° to represent helices. 

Sensi t iv i ty  to s u p e r p o s i t i o n  cr i ter ia  

Color Plates 1, 2, and 4 accentuate the importance of se- 
lecting reasonable overlap criteria. All helices in the globin 
fold are not equal. There are a number of lines of evidence 
that show that helices A and B, and the end of G near them, 
have relatively fixed spatial relationships with each other, 
while others are much more variable from globin to globin. 
NMR evidence shows that helices D and F are most mobile 
in solution and the last to fold. 54 In addition, experimental 
folding analyses suggest that helix F assumes an unusual 
and potentially less stable geometry relative to the rest 

55 of the molecule. Subbiah et al. have shown that helices A, 
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B, C, G, and H can be aligned with low residual errors with 
helices from the helix-turn-helix repressor family, suggest- 
ing that these constitute a core fold that has been reused 
during evolution. 26 We have reported a core finding proce- 
dure that identifies these same helices as less structurally 
variable than the others. 29 It may, therefore, be preferable 
to use segments with low structural variability for superim- 
posing the globins. To illustrate the effects of choosing 
different subsets of common segments for superposition, we 
performed a superposition of all the structures, based on an 
optimal superposition of helix F and helices A and B, in 
addition to using all segments. Helices A and B are the least 
variable helices across the globin family. Helix F is the 
most variable helix with respect to the core helices. Color 
Plates 1C and 2C show clearly that, when helix F is used to 
define the optimal superposition, the uncertainty for the 
globin helices is extremely large. From the perspective of 
helix F, there is a large amount of variation in the positions 
of all other helices within the globin fold. It may be that the 
subtle variations of helix F in concert with the heme group 
account for the different functional characteristics of the 
globins. 

Directional variation clear from 
probabilistic representation 

It is clear in Color Plate 2B that the uncertainty ellipsoids 
for helix E are oriented in the same direction as the axis of 
the helix. Closer examination reveals that the orientation of 
the helix axis does not vary greatly over the eight structures, 
but there is a significant difference in the register or phase 
o f  the helix, as some helices (especially the one from 
2HGB, which is yellow in Color Plate 1) are shifted upward 
(or downward) along the long axis in comparison with oth- 
ers. Although it may be equally easy to infer this pattern 
from the overlapping stick-figure representation, the prob- 
abilistic image has an underlying mathematical representa- 
tion of this variation that makes it easily accessible to au- 
tomated recognition and analysis: the covariance matrix for 
each atom, when translated to the local coordinate system of 
the helix, will show a consistently larger variation in the 
direction of the helical long axis. This is in contrast to the 
situation for helix B, in which the ellipsoids are not oriented 
along this axis but reflect a more uniformly distributed un- 
certainty. 

The volumes of the ellipsoids drawn in Color Plate 2 are 
quantitative measures of the uncertainty in position for the 
substituent atoms. The average volumes of the ellipsoids 
can be used as an indication of the amount of uncertainty in 
the position of each helix. We have found that, when all 
atoms are used for the superposition, helix F has the largest 
average uncertainty followed (in descending order) by he- 
lices E, G, C, H, A, and B. Therefore, helix B seems to be 
the most structurally conserved in terms of its position rel- 
ative to other helices. 29 

Interpretation of correlation matrix 

The correlation matrix highlights atoms whose motions are 
the most correlated. With a small sample size (only eight 
structures included in this calculation), we must interpret 
these cautiously. Nevertheless, high values of correlation 

may indicate significant dependencies. We found that atoms 
in the same helix tended to have high summed correlation 
coefficients (often above 2.9), which reflects the fact that 
these helices tend to move as units. Table 1 lists pairs of 
atoms that are highly correlated but not in the same helices. 
It is somewhat surprising that these correlations do not im- 
ply physical prox!mity: amino acids 10 and 67 are separated 
by more than 25 A on average in the eight globin structures, 
but have an average correlation coefficient in each of the 
three principal directions above 0.9. The intriguing possi- 
bility that these correlations are important for functional 
reasons is a subject of current investigation.'~ 

Fulcrum variation is clear from substructure 
accessible volume 

Unlike the parametric probabilistic view, the substructure 
sampled volumes do not shed light on the individual vari- 
ations of atomic position. Instead, they are useful for view- 
ing the variations in position of entire substructures (helices 
in this case). For example, examination of Color Plate 4 
shows that the positions of helix E and A are distributed as 
if they were rotating around a fulcrum (going through the 
helix, perpendicular to the long axis). In contrast, helix B 
seems to have a volume of uncertainty more compatible 
with lateral translations of the helical long axis and not 
rotation around a fulcrum. Differences in substructure ori- 
entation are difficult to extract from overlap images and 
individual uncertainty ellipsoids. However, the mode of 
display in which entire substructures are drawn to produce 
a cloud of possible locations makes such differences quite 
evident. 

Relative "motion" o f  different substructures 

By choosing different subsets of atoms to use for superpo- 
sition, we essentially redefine the global coordinate system. 
In the case in which we use the F helix alone, we obtain 
images that show how the other helices vary from the per- 
spective of helix F. Similarly, when we use the A and B 
helices we see the minimal ellipsoids for atoms within these 
helices, and the relative movements of other helices. Of 
course, this is a family of different structures, and therefore 
there is no real motion between individual structures, but 
rather a set of changes in packing and orientation over the 
family of members. However, these images leave the im- 
pression that there is a range of relative positions into which 
these eight~ structures (and their substructures) fall. Mem- 
bership in the globin family, then, might be measured by 

tTo study the correlation matrix more carefully, one must evaluate the 
sensitivity of the correlation values to the choice of atoms used for super- 
position. In addition, when summarizing the correlation between two 
atomic positions, a variety Of measures can be used, As described in the 
caption to Figure 1, we hav e summed the absolute values of the diagonal- 
ized correlation matrix between two points. This measure has the advan- 
tage of taking on the value of 3.0 when the atoms are moving in any 
combination of perfect correlation and anticorrelation along the coordinate 
axes, and taking on the value of 0.0 when the atoms are perfectly uncor- 
related. This measure, however, is not invariant to rotation of  the ensem- 
ble. Other methods for summarizing correlation (such as the determinant Or 
the trace of the correlation matrix) emphasize different aspects of correla- 
tion. 
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the degree to which a new structure falls within the bounds 
defined by previously identified family members. 

Crystallographic uncertainty versus 
family variation 

It is clear that the structural imprecision of individual crystal 
structures (as shown in Color Plate 3) is not the same as 
structural variation of equivalent atoms across a family of 
structures (as shown, e.g., in Color Plate 2). The crystal- 
lographic B factor is determined in part by whether an atom 
is on the surface, and by the nature of the intermolecular 
contacts with the crystal lattice. In the three structures 
shown in Color Plate 3, the only regions that have consis- 
tently high B factors are the regions between helices C and 
E, as well as the end of helix A. On the other hand, helix F 
is the most variable segment across different members of 
the globin family (as seen in Color Plates 1, 2, and 4). 
These observations underscore the importance of distin- 
guishing the precision with which the atomic positions are 
determined and the concordance of these positions in related 
structures. 

Representing uncertainty in large complexes 

A final advantage of using substructure representations, 
such as cylinders for helices, is that they can be used to 
represent the structures (and structural uncertainty) of larger 
complexes, because they simplify the image. In the case of 
the globins, by focusing on the positions of eight cylinders, 
we can better understand the relationship between the cyl- 
inders and the primary directions in which their positions 
are uncertain. We have also used PROTEAND to display 
images from structure calculations involving 10 RNA heli- 
ces and 5 proteins. By using simplified representations, we 
are able to present these large macromolecular ensembles in 
a manner that is easier to interpret. 56 

CONCLUSIONS 

The anticipated explosion in the availability of structures 
produced by both experimental and predictive technologies 
makes the issue of representing and manipulating these 
structures in a uniform manner critically important. As 
these structures are made available, we cannot predict the 
array of uses to which they will be put. The technologies 
used to define structure are not perfect, and they will pro- 
duce structures in which the reliability of subsegments var- 
ies greatly. It is therefore important to have technologies for 
representing and manipulating these structures at the proper 
level of precision. It is unreasonable to expect all investi- 
gators to be intimately familiar with the sources of uncer- 
tainty from each of the technologies used to define struc- 
ture, and yet it is important that they be stored in a common 
location with a common representation. Therefore, repre- 
sentations of structure should capture notions of variability 
and covariation explicitly, preferably in a technique- 
independent manner. Then, no matter what the source of the 
uncertainty, segments of structure can be labeled as uncer- 
tain for the users. The users, at the same time, can come to 
expect a uniformity of representation that makes a detailed 

understanding of the experimental conditions unnecessary 
for at least a subset of tasks. 

We have developed PROTEAND in part to focus atten- 
tion on the lessons that can be learned by considering struc- 
tural variation and structural uncertainty, both within indi- 
vidual structures and across families of structures. Our re- 
sults with hemoglobin illustrate the kinds of insight these 
representations can provide. First, we are able to see areas 
of high and low overall uncertainty. Helix F is the most 
variable (largest ellipsoids), while helices A and B are the 
least variable (smallest ellipsoids). The effects of including 
these helices in superposition criteria can also be gauged by 
seeing the effect on the ellipsoidal volumes. Second, the 
shape of the ellipsoids enables us to appreciate the principal 
directions of uncertainty in atomic position. Most of the 
uncertainty for helix E is concentrated along the long axis, 
with relatively low uncertainty in orthogonal directions. 
Third, secondary structure and domain motions can be vi- 
sualized clearly by using substructure abstractions in which 
clouds of dots give an overall impression of the variability 
of these substructures. The particular range of relationships 
between substructures can also be represented by fixing the 
coordinate system around structures of interest and exam- 
ining the variation in positions of other elements. These 
conclusions about variation within the globin fold and their 
possible biological significance are more difficult to draw 
from the overlap displays that are typically created. The 
newer methods described here complement the overlap 
methods, and should become standard parts of molecular 
display packages. 

The long-term goal of this work is to develop a method- 
ology for both representing and manipulating biological 
structural information, especially with respect to the uncer- 
tainty within individual structures, and the variation across 
related biological structures. This article emphasizes the 
graphical end points of some of the representations we have 
developed. However, the mathematical representations un- 
derlying these display modalities are useful for primary 
computation as well, and have been used to solve protein 
structures using NMR data, 57 and to model RNA struc- 
ture. 8,56 In addition, we have used representations based on 
analysis of positional variation for defining key core ele- 
ments in a family of structures. 29 
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