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Inverse Problem for Incremental EC-6
Synchrotron Radiation in the OXFORD

Presence of Noise

N.J.Fisch, A.H.Kritz and M. Gerstein
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08544

Plasma synchrotron emission can be used to diagnose important momentum space
features of high energy electrons. One way in which this radiation might be used relies on
the measurement of thie 2-D pattern R(w, ) of radiation emitted at frequency w into angle
6, where 6 measures the angular deviation from purely perpendicular observation of the
magnetic field. (The tokamak is observed in the vertical plane that includes the tangent
to the magnetic field B, so the strength of B may be assumed constant and known.) The
2-D pattern R(w, ) might then be used to infer the two-dimensional electron distribution
function f(py,p.), where py and py refer to the electron momentum, respectively, par-
allel and perpendicular to the magnetic field. This approach, however, suffers because it
requires the deployment of an array of microwave detectors to resolve the 8-dimension.
In practice, possibly only one detector is available, and, while it has been used to place
useful constraints!~¢ on f (py»pL), or to deduce elegantly” a 1-D £, a full inversion is not
possible.

A second way to obtain information might be to employ rf or other power to induce
in the plasma a momentum-space flux I'(p, t), and to measure the incremental radiation
emitted by the perturbed distribution, i.e., the additional radiation produced as a result of
the probing rf power. One can then pose the following problem: to deduce the momentum
space details of the source function, I'(p, t), given this incremental radiation. Details of
this source function give the velocity space details of power absorption, which may be of
immediate interest in rf heating or current drive experiments. Also, the details of the
absorption informs on the electron distribution function itself, since, basically, where (in
velocity space) power is absorbed, there must be electrons.

To isolate the incremental radiation, we are at liberty to modulate or otherwise to
control the time-dependence of the source; so suppose we impose an impulse I’ = S(p)é(1).
The incremental radiation now decays in time as the electrons suffer collisions, obeying
laws we think we know, so that this time decay reveals the details of the original impulse.
For example, incremental radiation associated with fluxes of fast electrons decays slowly;
for nonrelativistic electrons the decay time goes as 1/p®. If there are N time points collected
during the electron slowing-down time, then the 2-D impulse response, R(w, t), produces
N times the constraints on S(p) than does the immediately available spectra R(w,t = 0).
Thus, using only one observation angle, we hope to deduce the 2-D wave-induced flux
S(p) from the 2-D radiation data, R(w,t). Of course, if more detectors were available, the
multiplication in information would be the same, and the additional information might be
used to uncover spatial dependencies.

In Fig. 1 we show the incremental radiation associated with a narrow incremental
distribution of electrons centered around 150 keV and with energy almost entirely in the
parallel direction. Here, we view the extraordinary polarization of the radiation at an
angle § = 0. Beneath the radiation surface R(w,t), we project the frequency at which
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the maximum radiation occurs as a function of time. Traces such as this look different at
different 6 or given different incremental electron distributions. These differences are to
be exploited in trying to deduce from the radiation the initial conditions. Alternatively, it
may also be of interest to try to deduce the viewing angle.

The general problem is to deduce the perturbation S from the radiation data R when
the radiation is observed at some arbitrary angle §. However, an important simplification
occurs when 6 = 0, i.e., when the viewing is purely perpendicular. In this case, all
electrons at the same energy radiate at the same frequency, because the radiation is not
Doppler shifted. Moreover, in the absence of a dc electric field, such as might occur in
a steady state tokamak, superthermal electrons slow down as a function of energy only,
while diffusing very little in energy. Thus, electrons initially at the same energy lose energy
at the same rate, and so both initially and subsequently radiate at the same frequency,
irrespective of scattering in pitch-angle. It is possible then to take a projection of the data
r(t) = R(w(t),t), such that the frequency w(t) tracks in time the incremental radiation
associated with a perturbation initially at one energy. The equation to be solved may be
written as

r(r) = R = 22 3 e (122 (2 )" Lo, o)
IR LAt W +1) e

where, from the data r(7), we seek to deduce the Legendre harmonics Qx(u) of the source
function. In Eq.(1), the normalized momentum u enters as a parameter. The function
Hpi is known, and the variable p is a function of u and normalized time r. Here n is
the predominant cyclotron harmonic at which emission occurs. In the event that several
harmonics dominate, it would be necessary to sum the right hand side of Eq.(1) over n. It
turns out, however, that one harmonic often dominates for incremental radiation, in which
case Eq.(1) may be solved for the Q; rather easily.

A detailed derivation and an analytic solution of Eq.(1) is given in Ref. 8. Here, we
consider several questions relating to the viability of this technique. One issue is that
of harmonic overlap: To what extent can the radiation by relativistic electrons at the
observed frequencies be considered to be dominated by just a single cyclotron harmonic?
In Fig. 2 we plot the frequency of radiation emitted by electrons as a function of time and
parameterized by the initial energy of the electron. We consider initial electron energies
in the range 250-500 keV. Initially, these electrons emit radiation at different frequencies;
for example, the 500 keV electrons are relativistically the heaviest (v = 2), so they emit
at frequencies corresponding to the half-cyclotron frequencies rather than at the cyclotron
frequencies. Also, initially being the most energetic, they slow down more slowly than
do other electrons, so the frequency with which they emit changes more slowly in time
than the frequency with which slower electrons emit. Eventually, of course, all electrons
slow down to nonrelativistic frequencies, at which point they all radiate at the cyclotron
harmonics. Thus, all the solid curves corresponding to each harmonic converge within an
energy slowing down time of the 500 keV electrons.

The simplifying assumption concerning the dominance of one harmonic may now be
checked for the following illustrative example: suppose e.g., a 10 keV plasma in which tail
electrons in the 250 — 500 keV range are (incrementally) rf heated, as might be contem-
plated in diagnosing a current-drive experiment. Let us further consider the case in which




the diagnosis of the plasma is to be made on the basis of only the third harmonic radiation.
At these energies this radiation initially fills the frequency regime of 1.5 to 2 ., as we can
see from the figure. ‘

Note first that the incremental radiation (3rd harmonic) associated with electrons at
energies around 400 keV will be entirely untangled from the incremental radiation at any
other harmonic associated with any of the excited electrons. This is because 2nd harmonic
radiation even from the less energetic electrons (at 250 keV) is at too low a frequency to
be confusable, while fourth harmonic radiation even from the more energetic electrons (at
500 keV) is at too high a frequency to be confusable. And while those 250 keV electrons
do slow down, and then (2nd harmonic) radiate at a frequency that would have been
confusable with radiation (3rd harmonic) from 400 keV electrons, note that by the time
~ that happens, the electrons initially at 400 keV have now slowed down too, and are thus
radiating at a higher frequency too. So there is no overlap. Moreover, this slowing down
of the 400 keV electrons is still not fast enough to catch up with the fourth harmonic
radiation of the 500 keV electrons, which are also slowing down and radiating at an even
higher frequency. Thus, the conditions for the analytic inversion based on third harmonic
emission are immediately satisfied for a source function in the vicinity of 400 keV. This
vicinity, as can be seen, extends from about 350 keV to 500 keV. (At 500 keV there is some
degradation of the data when the 500 keV electrons have slowed down to the point where
they radiate at 2Q,, where there is some confusability with radiation from 2nd harmonic
radiation from electrons originally at 250 keV, but the fraction of time points which are
affected here appears to be small, about 10%.)

So, in this example, there is no confusion in finding on the basis of third harmonic
radiation the details of the source function, Q(py, pL), in the energy range 350-500 keV.
What about at the lower range 250-350 keV? At first glance this appears more difficult,
at least based on just 3rd harmonic radiation, since 4th harmonic incremental radiation,
particularly from electrons initially at 400-450 keV, is confusable over a significant portion
of the slowing down trajectory. However, since the source function for radiation from 400-
450 keV electrons has already been deduced, the contribution at the 4th harmonic by
these electrons may be calculated and subtracted from the total observed radiation. The
remainder is attributable to 3rd harmonic emission, so the conditions are met also for
performing the analytic inversion in the 250-350 keV range.

In the above example, using the 2nd harmonic emission might have been more direct,
but the 3rd harmonic radiation is often more reliable data. In any event, this example
illustrates how the range of applicability of this inverse procedure may be extended beyond
what appears available at first glance. In actuality, data from the higher harmonics can
be quite useful;. In the limit that the additional data is not overlapping in frequency, it
is roughly equivalent to having twice the number of independent data points. If there is
significant overlap, a more complicated inverse problem must be solved, and there will be
a tradeoff between the amount of additional data and the added confusability.

A second question of importance is the sensitivity of the data inversion to noise. The
data inversion here is technically ill-posed,® so that care must be taken in performing the
inversion. First, let us make a connection to more standard equations of the ill-posed type.

The 1-D projection equation can be understood as follows: Assume a distribution of
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electrons f(u,t) that corresponds to a shell of electrons initially at some momentum us.
The angular distribution relaxes according to an equation of the form

@’_(;T’Q = D(u)é%(l - #2)56;f(#,t), (2)

where the diffusion coefficient D goes e.g., as 1/u® in the nonrelativistic limit. Now, as this
shell distribution relaxes in p, it also slows down in energy, so that it radiates at different
frequencies. The radiation as a function of time may be put into the form

()= [ £ 0T, 0)e, 3)

where the known weighting function I is the radiated power of a single electron, and its
arguments, u = u(t) and w = w(t) track the speed of the electron shell and the frequency
with which they emit radiation. It is an easy matter to solve Eq.(2) given the initial
condition f(u,t = 0) = fo(), by summing over Legendre harmonics

—n(n + 1)x(t)] ’

) = T anPa(iexp | (@

where x(t) = f(: drD(r), and where the a, are the harmonics of the initial condition.
Substituting now for f(u,t) in Eq.(3), we can put r(t) into the form

r(t) = anln(t)exp ["—"(’1;—1)1‘9—)] , (5)

where fn(t) is the nth Legendre harmonic of the radiation function I.

The inverse problem that we pose is to deduce the a, from the data r(). This is an ill-
posed inversion, in that the higher harmonics will certainly be sensitive to small amounts
of noise. A comparison of Eq.(5) with Eq.(4) is revealing. Eq.(4) represents the solution
to a heat equation. For the forward posed equation, the data would be the a,, from which
we could deduce the solution f(u,t). One standard backward posed equation would be to
give f(u,t = ty) for some final time ¢;, and then try to deduce the a,, something that
would succeed essentially for only the low n terms. What corresponds to our problem
is a somewhat differently posed problem. Suppose that the data were given instead for
f(u = po,t) for some particular po. The analogy to Eq.(5) would be exact were I.(¥)
independent of time, but the main features are present for I.(t) being merely a milder
function of time than is the exponential function, exp[—(n(n + 1)x(t))/2]. In any event,
the difficulty still remains in deducing the higher harmonics.

To get a feel for the number of harmonics that can be reliably inverted consider that
the data r(t) given at some finite number of time points, say M, is polluted by noise e7(t),
then how many harmonics a, can be reliably inverted? Even without doing anything
particularly sophisticated, we can see how the answer must scale: Any inversion scheme
essentially uses data at long times to get the a, for n small, and the data at short times to




get the data for n large. Consider, for example, the effect of noise on the following recursive
scheme for getting the a,: suppose ag,a;,...a j—1 have been found — then look at the data
at times such that exp[—j(j+1)x(¢)/2] ~ O(1), but that exp[—n(n+1)x(t)/2] € 1,n > j.
We assume that the time dependence of I,,(t) is mild. Then the harmonics higher than j
contribute negligibly (corrections, if desired, could be found perturbatively) at such time
values, while, by presumption, the harmonics lower than j have already been found — so
the jth harmonic is deducible. The recursion proceeds by considering time data in the next
interval, where exp[—(j + 1)( + 2)x(t)/2] ~ O(1).

The procedure proceeds similarly in the presence of noise. Depending on the level
and correlation of the noise, and the accuracy desired in the a,, a number of time points
are now required in each interval. Suppose that ! time points are needed in each interval,
and suppose that the time data is obtained every At. Define x'(t) = 8x/8t. Then we
must have exp[—n(n+1)Atlx’(0)/2] ~ O(1) to have I points with which to deduce the nth
harmonic. This can be satisfied approximately for harmonics such that n? < (IAtx'(0))~1.
Note that for the problem at hand, x'(0) ~ (1 + u)/u?, which is just the initial slowing
down rate. Now if M time points are collected in the decay time of the slowest harmonic,
we have Atx'(0) = 1/M, so that harmonics satisfying the inequality n? < M /1 can be
inverted. Suppose that the data r(t) is described by, say, M = 10* time points. If we
needed 10 points to deduce each harmonic, i.e. [ = 10, then, by the inequality above, we
expect to invert reliably about the first thirty Legendre harmonics. Actually, even several
would be a significant advance over what is obtainable without the time information; five
to ten would pin down many important details of the electron distribution in typical of
heating and current drive experiments.

We performed numerical inversions of Eq.(1) in the presence of numerically simulated
noise. In Fig. 3 we show by means of the dashed line the incremental source function Q(p),
which represents the pitch angle dependence of an initial perturbation of electrons initially
at about 150 keV. In the absence of noise, the data can be inverted essentially exactly —
i.e., 50 as to infer a source function that, in fact, overlays the dashed line. In the presence
of noise, we invert the data to obtain an estimate of Q(u), which is the boxed line, which
we note very nearly overlays the true source function.

The radiation data r(t) that corresponds to the true source function is given in Fig. 4.
In order to simulate noisy data, we added to each true data point a random number with
zero mean and variance of about 20% of the maximum data value. Thus the uncertainty
in each data point is very large except near the maximum radiation. The noisy data is
shown in Fig. 5. This data was inverted to give the estimate of Q(u) shown in Fig. 3. The
number of harmonics used to represent Q(x) is 10 and the number of time points here is
900. Here, the inversion evidently succeeds quite well in the presence of a relatively high
level of uncorrelated noise.

This work was supported by United States Department of Energy under contract

number DE-AC02-76-CHO3073. One of us (AHK) was supported in part by a DOE-
ORAU Professional Development Grant.
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