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ABSTRACT 

Genomic data integration – the process of statistically combining diverse sources 

of information from functional genomics experiments to make large-scale predictions – is 

becoming increasingly prevalent. One might expect that this process should become 

progressively more powerful with the integration of more evidence. Here, we explore the 

limits of genomic data integration, assessing the degree to which predictive power 

increases with the addition of more features. We focus on a predictive context that has 

been extensively investigated and benchmarked in the past – the prediction of protein-

protein interactions in yeast. We start by using a simple Naïve Bayes classifier for 

integrating diverse sources of genomic evidence, ranging from co-expression 

relationships to similar phylogenetic profiles. We expand the number of features 

considered for prediction to 16, significantly more than previous studies. Overall, we 

observe a small but measurable improvement in prediction performance over previous 

benchmarks based on four strong features. This allows us to identify new yeast 

interactions with high confidence (available from networks.gersteinlab.org/intint). It also 

allows us to quantitatively assess the inter-relations amongst different genomic features. 

It is known that subtle correlations and dependencies between features can confound the 

strength of interaction predictions. We investigate this issue in detail through calculating 

mutual information. To our surprise, we find no appreciable statistical dependence 

between the many possible pairs of features. We further explore feature dependencies by 

comparing the performance of our simple Naïve Bayes classifier with a boosted version 

of the same classifier, which is fairly resistant to feature dependence. We find that 

boosting does not improve performance, indicating that, at least for prediction purposes, 
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our genomic features are essentially independent.  In summary, by integrating a few (i.e., 

four) good features, we approach the maximal predictive power of current genomic data 

integration; moreover, this limitation does not reflect (potentially removable) inter-

relationships between the features.  

 

 Key words: protein-protein interaction, genomic features, integration, prediction, Naïve 

Bayes, Boosting 
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INTRODUCTION 

A major challenge in post-genomic biology is systematically mapping the 

interactome, the set of all protein-protein interactions within an organism. Since proteins 

carry out their functions by interacting with one another and with other bio-molecules, 

reconstructing the interactome of a cell is the important first step towards understanding 

protein function and cell behavior (Eisenberg et al., 2000; Hartwell et al., 1999). 

Recently, several large-scale protein interaction maps have been experimentally 

determined in the model organism S. cerevisiae (Gavin et al., 2002; Ho et al., 2002; Ito et 

al., 2001; Uetz et al., 2000). These studies have drastically improved our knowledge of 

protein interactions. Unfortunately, the data sets generated from these studies are often 

noisy and incomplete (von Mering et al., 2002). In addition to experimentally determined 

interaction datasets, there exists a large amount of biological information in the 

expanding functional genomic datasets, such as sequence, structure, functional 

annotation, and expression level databases. It is thus desirable to computationally predict 

protein-protein interactions by exploiting the interaction evidence contained in these 

datasets. Such predictions can serve as a valuable complement to the current 

experimental efforts. Several studies have been carried out to search for individual 

features contained in the genomic datasets that are useful for interaction prediction. For 

example, two proteins are likely to interact if they have homologues in another genome 

that are fused into a single protein, or if their mRNA expression patterns are correlated 

(Ideker et al., 2001; Jansen et al., 2002a; Marcotte et al., 1999a; Marcotte et al., 1999b). 

Detailed reviews of these individual methods can be found elsewhere (Valencia and 

Pazos, 2002; Xia et al., 2004). 
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Each genomic feature, by itself, is only a weak predictor of protein interactions.  

However, predictions can be improved by integrating different genomic features 

(Marcotte et al., 1999b). There are two main reasons for this. First, predicting a protein-

protein interaction with confidence depends on how much evidence supports it. When 

multiple, distinct features all support a predicted interaction, our confidence in the 

prediction increases. Second, different features may cover different subsets of the 

interactome, and feature integration can increase the coverage. Feature integration can be 

accomplished via simple rules, such as intersection, union, or majority vote. To achieve 

optimal predictive power, however, different genomic features need to be properly 

integrated into a single probabilistic framework (Gerstein et al., 2002). Many machine 

learning methods can be used for feature integration, such as Bayesian approaches 

(Friedman, 2004; Jansen et al., 2003; Troyanskaya et al., 2001), decision trees (Lin et al., 

2004; Zhang et al., 2004), and support vector machines (Brown et al., 2000). In 

particular, Bayesian approaches can be roughly divided into two broad groups: (1) 

learning to infer the causal structure of cellular networks from quantitative measurements 

(Friedman, 2004); (2) classification based on a set of probabilistic rules. Here we focus 

on the second classification aspect of Bayesian approaches. In addition to protein-protein 

interaction prediction, feature integration is also essential for other prediction problems in 

genomics as well, such as localization prediction (Drawid et al., 2000), function 

prediction (Lee et al., 2004; Troyanskaya et al., 2001), and genetic interaction prediction 

(Wong et al., 2004). 

One might expect genomic data integration to become increasingly powerful with 

the integration of more evidence. Here, we explore the limits of genomic data integration, 
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assessing the degree to which predictive power increases with addition of more features. 

We focus on a predictive context that has been extensively investigated and benchmarked 

in the past: the prediction of protein-protein interactions in yeast. Previously, we 

developed a Naïve Bayesian classification approach to predict protein-protein 

interactions in yeast by integrating four genomic features (functional similarity based on 

MIPS and GO annotations, mRNA expression correlation, and co-essentiality) (Jansen et 

al., 2003). By definition, two proteins interact if they belong to the same complex. The 

parameters in the Naïve Bayes classifier were trained using a collection of protein pairs 

known to be interacting or non-interacting. The advantages of Naïve Bayes classifiers are 

two-fold. First, the models constructed by Naïve Bayes classifiers are readily 

interpretable: they represent conditional probabilities among features and class labels 

(interaction versus non-interaction). Second, Naïve Bayes classifiers are very flexible for 

the highly heterogeneous genomic features. Numerical features and categorical features 

can be easily combined, and missing data can be readily handled.  

In this paper, we expand the list of genomic features to include 16 diverse features 

that are plausible indicators for protein interactions. These 16 features are assembled 

based on both protein pair features and single protein features, and they are derived from 

a wide range of physical, genetic, contextual, and evolutionary properties of yeast genes. 

We believe that such “feature-richness” is an essential property of genomic datasets; 

therefore, we would like to test whether protein interaction predictions can be further 

improved by exploiting the diversity of the features, and if so, by how much. 

Naïve Bayes classifiers assume conditional independence between features (see 

Methods). In the following text, when we say (in)dependent, we mean conditionally 
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(in)dependent. We would expect that there exists a high dependence between a number of 

genomic features and that this would become increasingly likely as we try to integrate 

more features. In this case, Naïve Bayes may no longer be the optimal approach, as the 

dependence among features needs to be taken into account.  

In this paper, we apply boosting to Naïve Bayes classifiers as an automated and 

efficient way for handling dependent features. Boosting (Schapire, 1990) – in particular, 

AdaBoost (Freund and Schapire, 1996) – is a recent development in the field of machine 

learning. The process combines the performances of several weak classifiers to form 

strong predictions, via a weighted majority vote. In our case, the weak classifiers can be 

either individual features or simple Naïve Bayes classifiers. Boosting approximately finds 

the best linear combination of all possible weak classifiers via maximum likelihood on a 

logistic scale (Friedman et al., 2000), thereby solving potential feature redundancy and 

statistical dependence problems. By comparing the performance of a simple Naïve Bayes 

classifier with a boosted Naïve Bayes classifier on our collection of features, we will be 

able to address whether or not the dependence among our collection of features – if any – 

decreases the Naïve Bayes classifier’s predictive power. In other words, does the Naïve 

Bayes approach perform sufficiently well at the current level of feature dependence? This 

comparison will also be done on a set of highly dependent features as a control. 
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 RESULTS AND DISCUSSIONS 

1. A List of Features Useful for Predicting Protein Interactions 

In addition to the four features in (Jansen et al., 2003), we consider 12 more 

features as listed in Figure 1. These features are divided into four categories; each of 

them is assigned a three-character identification code for convenient reference. Also 

included in Figure 1 are two gold-standard datasets (GSTDs, positive and negative sets) 

that will be used to evaluate features in subsequent sections. These GSTDs have various 

degrees of overlap with the 16 features. In Figure 1, we present the four categories of 

features in the descending order according to the degree of overlaps with the GSTDs 

(Figure 2). For each of them, we shall describe its biological meanings and the rationale 

to use it. The reference to the data source is in the parenthesis that follows the feature’s 

name. 

2. Predictive Power of Individual Features 

We use ROC curves (see Methods) to illustrate the predictive power of each 

individual feature.  Figure 2 shows that there is a distinct difference between the features 

to the left and right of the divider in terms of overlapping with the GSTDs (note, Figure 2 

is in log-scale). For this reason, and in the interests of a clear presentation, we plot the 

ROC curves in two panels, with the seven most populous features in one group and the 

remaining features in the other (Figure 3).  

A good feature, i.e., one with high predictive power, simultaneously has a large 

number of true positives and a small number of false positives. In this case, the ROC 

curve climbs rapidly away from the origin (lower left hand corner of the graph). How 

quickly the ROC curve arises away from the origin can be quantified by measuring the 
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area under the curve. The larger the area, the better the feature. Ranking the features by 

the area they cover in the ROC curves (easily seen in Figure 3A), the best feature in the 

first group is MIP, followed by GOF, COE, EXP, ESS, MES, and APA. All of these 

features show strong predictive power (i.e., well above the diagonal). The best feature in 

the second group is INT, followed by PGP, GNN, REG, ROS, and THR, while SYL 

shows very little predictive power. EVL and GNC are not shown here because they each 

have only two overlaps with the positive GSTD, and are thus unsuitable for this test. 

Because of the low coverage of these group-two features, the results in panel B may be 

misleading without a careful interpretation. For example, SYL covers only 887 protein 

pairs in the GSTDs, it is thus unreliable to estimate its overall predictive power based on 

this 0.04% of the GSTDs when its coverage is likely to increase in the future (Figure 2B).  

Another point we need to pay attention to is that we should not take the 

performance of a feature against the GSTDs as indicative of the accuracy or usefulness of 

the feature in its original context. This is because the performance of a feature against the 

GSTDs only measures its usefulness in relation to a specific task – i.e., predicting 

complex membership – which is probably not what the feature was originally designed to 

do. For example, multimeric threading method is designed for predicting physical 

interactions between two proteins. However, because of the way the GSTDs are 

constructed, the majority of protein pairs in the GSTDs are simply in the same molecular 

complex without direct contacts. Therefore, when predicting physical interactions, these 

GSTDs are not a good means of judging the accuracy or usefulness of the multimeric 

threading method.  
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 Quite often, only the TPR for a specific FPR is valued. For example, COE 

outperforms MIP until the FPR reaches 5%, even though MIP covers more area in the 

whole range of FPR. Thus, the features can also be ranked and selected according to the 

acceptable FPR in prediction.  

3. Feature Selection and Improvement of Performance  

 Because of the varying quality and predictive powers of genomic features, 

incorporating all features without selection will likely decrease the predictive power by 

introducing noise, rather than improving the results. Therefore, we select only those new 

features with high predictive power based on the performance of individual features. 

Another factor we need to take into account is the coverage of features. It is obvious that 

there is a distinct difference between the features to the left and right of the divider in 

Figure 2: each of the first seven features covers at least a half million (~20%) ORF pairs 

in the GSTDs, while the next most populous feature (REG) covers only 2%. Even though 

some of the features with very low coverage show strong predictive power, whether or 

not that predictive power will remain is in question once the coverage increases in the 

future. Therefore, at the current stage, only the first seven features (i.e., F1-F7) are 

considered in the following calculation. The new features are EXP, MES, and APA.  

The performance of combining new features is presented in Figure 4A by a ROC 

curve. By integrating the three additional features in the range of all FPR values, we 

obtain a better performance in the predictive power (higher TPR at a certain FPR value) 

than by integrating the four original features. However, such improvement is marginal:  

although each of the three new features shows a fairly strong predictive power, the 

increase of TPR at any value of FPR is no more than 3%. 
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Because of the dominant performance of the two functional similarity features 

(MIP and GOF), the improvement accomplished by incorporating new features may not 

seem obvious. We thus exclude these two functional features, showing the improvement 

by incorporating three additional features over the remaining two original features (i.e., 

COE and ESS). Including three additional features shows a significant improvement over 

the original two features (Figure 4B). 

Another benefit of genomic data integration is the improvement in coverage; by 

incorporating more features, two predictors with similar ROC curve performance may 

cover different parts of the system to varying degrees. Note, it is the coverage of not only 

the labeled pairs (GSTDs) but also unlabeled pairs (unseen pairs). So far our assessments 

have been done for labeled pairs only; however, if additional features allow the predictor 

to have a more extensive view of the system despite no significant improvement in ROC 

curve, they probably should be considered as beneficial because, in this case, the 

coverage of unlabeled pairs is improved. Here, we find the coverage is slightly improved 

by integrating more features. For all possible 21,658,071 protein pairs (6,582 ORFs from 

MIPS), the four original features cover 18,527,741 pairs (85.5%), whereas the seven most 

populous features cover 18,880,102 (87.2%).  

4. Correlations and Statistical Dependence between Features 

In this section we investigate whether or not the marginality of improvement is 

confounded by the correlation and dependencies between features.  

We first calculate the Pearson correlation coefficients (CCs) between each pair of 

features. Such correlations between features can often generate useful biological insights. 
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The five highest absolute values are highlighted in bold in Table 1A. None of the feature 

pairs exhibit significant correlation.  

In addition, we calculate mutual information between genomic features as an 

alternative to CCs. Whereas CC only measures linear relationships, mutual information is 

a more general measure of correlation. The results show an agreement with CCs: The five 

pairs containing the most mutual information are exactly the same as those of the CCs. 

These correlations between some of the features, albeit not strong, are expected. For 

example, the correlations between the two functional features (MIP and GOF) are the 

highest among feature pairs. It is also expected that absolute mRNA expression (EXP) 

and absolute protein abundance (APA) are somewhat correlated.  

We next investigate the conditional dependence between features given the 

positive or negative GSTD by calculating mutual information. In other words, we 

calculate the mutual information between pairs of features by taking into account only 

protein pairs that occur in both features and in either set of GSTDs. The small amount of 

mutual information, given either set of GSTDs, indicates that the features we integrated 

by Naïve Bayes classifier are largely conditionally independent (Table 1B). 

5. Simple Naïve Bayes Classifier vs. Boosted Naïve Bayes Classifier on Datasets with 

or without High Dependence.  

Even though the conditional dependence between our features is not strong, it is 

possible that the combined weak dependence can still significantly decrease the 

predictive power of a Naïve Bayes classifier. In this section, we address this question by 

comparing the performance of a simple Naïve Bayes classifier (SNB) with that of a 

boosted Naïve Bayes classifier (BNB). Since a BNB is fairly resistant to feature 
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dependence, a significantly worse performance by a SNB on the same dataset means that 

the feature dependence does affect the predictive power of the SNB.  

We first conduct a control experiment with highly dependent features to verify the 

resistance of BNB to feature dependence. To obtain a highly dependent set of features, 

we used mRNA expression data from micro-array experiments conducted by Cho et al. 

(1998) under eight different conditions. Such expression data are highly dependent with 

regards to high CCs – the minimum CC between each pair of conditions is 0.904, the 

maximum CC is 0.970. Treating these eight sets of expression data as if they were eight 

features, we integrate them with the original four features. When evaluated on this highly 

dependent dataset, the BNB significantly outperforms the SNB. Figure 5 shows the 

robustness of the BNB on this highly dependent dataset. 

We then compare a SNB with a BNB on our dataset, with only weak conditional 

dependence: the original four features plus only one instead of eight sets of expression 

data. If the BNB significantly outperforms the SNB, it indicates that the SNB is affected 

by feature dependence, even though it is not strong. The results show that the SNB 

performs as well as the BNB on this weakly dependent dataset (Figure 5). Clearly, the 

SNB is hardly affected by this weak feature dependence. 

The results in Figure 5 also suggest that the SNB performs sufficiently well on 

our collection of genomic features, while the BNB may be useful to analyze the potential 

problem of highly dependent features as more features are considered in the future.  
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CONCLUSIONS  

In this study we quantitatively address the question how far genomic data 

integration can be improved by integrating more and more features. We use a SNB for 

integrating diverse sources of genomic evidence, ranging from co-expression 

relationships to similar phylogenetic profiles. By integrating three more strong features, 

marginal improvement on both accuracy and coverage can be achieved.  

The calculations of correlation coefficients, mutual information and boosting all 

suggest that the marginality of the improvement on prediction by incorporating more 

features is unlikely to result from the weak feature dependencies. It is also unlikely to 

result from an excess of parameters, relative to data points (resulting in overfitting), 

because our Naïve Bayes approach involves simple models with only small numbers of 

free parameters that are fitted against a large number of data points. Rather, this suggests 

that by integrating a few good features, we approach the maximal predictive power, or 

limit, of current genomic data integration. Furthermore, this limitation does not reflect 

(potentially removable) inter-relationships between the features. Unless we obtain 

features that are stronger in predictive power than MIP and GOF and simultaneously 

possess a reasonable coverage, it is unlikely that the prediction will be significantly 

improved by integrating a few more features. It is also possible that a higher coverage of 

our examined 16 features may allow better predictive power in the future. 

Our discovery that no strong dependence exists between features is an interesting 

finding in and of itself. Among as many as seven populous features, one might expect 

some dependence high enough to significantly decrease SNB’s predictive power. 

However, our calculation on correlation coefficients and mutual information, as well as 
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our boosting results, suggest otherwise. One possibility is that the observed lack of 

dependence among different features may result from differences in coverage, since all 

these datasets are essentially incomplete.  Specifically, the overlap of proteins or protein-

pairs represented among the different features is likely to increase with extended 

coverage and possibly results in higher feature dependence. In this case, the BNB can be 

used as an alternative solution. 

Finally, SNB is chosen in this study because of its simplicity, as well as the ability 

to compare with an existing benchmark study using the same technique (Jansen et al., 

2003). Furthermore, we employ BNB to specifically address SNB’s well-known 

limitation relating to high feature dependency. 

Other machine-learning techniques could have been potentially used in this study. 

However, most alternative techniques have issues in their own right, such as suffering 

from the missing value problems or being prohibitively time-consuming. Such problems 

prevent them from being applied to this problem as readily as a SNB. In addition, since 

BNB does not improve SNB on our collection of features, it is probably not the case that 

the conclusions made here will be significantly different if other machine-learning 

techniques are employed – though, of course, we cannot definitely say this without a 

comprehensive test.  
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METHODS 

1. Naïve Bayesian Formalism 

Inferring protein-protein interactions from genomic features can be formulated as 

a classification problem, in which we classify a pair of proteins into two classes ( 1C = 

interact, 0C = not interact), given an n -dimensional vector of genomic features 

( )1 2, ,..., nx x x=x 1. 

The Bayesian Decision Rule states that, in order to minimize the average 

probability of a classification error, one must choose the class with the highest posterior 

probability, i.e. assign a feature vector x  to the class kC , such that: 

( )arg max |
i

k i
C

C P C= x , where iC ranges over the set of classes (see for example, (Bishop, 

1995; Duda et al., 2001)). kC  is known as the maximum a posteriori (MAP) estimate. 

Using Bayes theorem the posterior probability can be rewritten, 

as ( )
( )

( | )
( | ) k k

k

p C P C
P C

p
⋅

=
x

x
x

. Notice that the unconditional density ( )p x  in the 

denominator does not depend on the class label; therefore it does not affect the 

classification decision and can be omitted when computing ( )arg max |
i

k i
C

C P C= x . Each 

of the priors, ( )iP C , can be easily estimated by computing the frequency with which 

each class occurs in the data. However, the evaluation of ( )| ip Cx  cannot generally be 

accomplished in the same way, especially if the number of features is high: it would 

                                                 
1 Notation: bold letters denote vectors; ( )P  denote probabilities; ( )p denote probability density functions. 
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require a set of data large enough to contain many instances for each possible 

combination of feature values, in order to obtain reliable estimates. 

The idea behind Naïve Bayes is to make the simplifying assumption that the 

attribute values are conditionally independent, given the target values. The computation 

of each ( )| ip Cx  is thus made efficient by approximating it as a product of conditional 

probabilities 

( )| ip Cx = ( ) ( ) ( ) ( ) ( )∏=≈
j

ijiniiin CxpCxpCxpCxpCxxxp ||...|||,...,, 2121  (1) 

Learning in Naïve Bayes consists of estimating the various ( )iP C  and various 

( )ij Cxp |  using (1), based on their frequencies over the training data. Clearly, the 

approximation in (1) becomes exact only in the event of stochastic independence between 

the various features, given the class. In spite of its simple way of approximating the 

posterior distributions, Naïve Bayes has, in practice, yielded quite good results for several 

types of problems; for example, it is among the best methods for text classification 

(Joachims, 1997; McCallum and Nigam, 1998).  

In case of stochastic independence, the covariance between two features is zero. 

Thus, the covariance between features is a measure of the deviation from the condition of 

stochastic independence, and is indicative of the amount of approximation introduced by 

the Naïve Bayes assumption. For this reason, the next section shall present an analysis of 

the covariance between the various features, given the class. 

Alternatively, the Bayesian Decision rule for two classes can be stated thusly: 

• If ( )
( )

1 1

0 0

( | )
1

( | )
p C P C
p C P C

⋅
>

⋅
x
x

 then choose class 1C     (2) 
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• Otherwise, choose class 0C  

If we then introduce the Naïve Bayes approximation, we can rewrite (2) as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 1

|...||
|...||

000211

111211 >
⋅⋅
⋅⋅

CpCxpCxpCxp
CpCxpCxpCxp

n

n ;    ( )
( )1

0
21 ...

CP
CPLLL n >⋅⋅⋅  (3)  

where 1

0

( | )
( | )

i
i

i

p x CL
p x C

≡ and are called Likelihood Ratio for feature i. Notice that for a 

given feature, a likelihood ratio different than 1 indicates that the feature conveys 

information about the class. In other words, there is a correlation between the feature and 

the target. For this reason in the next section we shall look at the likelihood ratios of the 

various features and the correlation between such features and the class labels. 

2. ROC (Receiver Operating Characteristic) Curve 

In a two-class classification problem, with classes 1C  (or positive) and 0C (or 

negative), for each prediction there are four possible outcomes: The true positives (TP) 

and the true negatives (TN) are correct classifications. Wrong classifications can be of 

two types. For a false positive (FP), the outcome is incorrectly predicted as belonging to 

1C , when in fact it belongs to 0C ; for a false negative (FN), the outcome is incorrectly 

predicted as belonging to 0C , when it belongs to 1C .  

Our earlier discussion on Naïve Bayes was motivated by the goal of minimizing 

the average probability of a classification error: it was aimed at reducing the total number 

of wrong predictions, regardless of the type of error which was made. This amounts to 

saying that the we were maximizing the number of 
FNFPTNTP

TNTP
+++

+ . 

In general, however, the two different types of errors will have different costs, just 

as the two different types of correct classification will have different benefits. Taking 
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such costs into account amounts to multiplying the right hand side of (5) by a cost factor. 

In practice, these costs are rarely known with accuracy. Thus, to evaluate a classification 

method, it is useful to look at its ROC curve. 

A ROC curve graphically depicts the performance of a classification method for 

different costs. It consists of a set of points, each computed for a different setting of the 

cost, connected by lines. For each point, the vertical coordinate is a true positive rate 

(TPR) given by the ratio of the number of true positives to the total number of positives 

(i.e., TP/(TP+FN)), while the horizontal coordinate is a false positive rate (FPR) given by 

the ratio of the number of false positives to the total number of negatives (i.e., 

FP/(FP+TN)). Note that the TPR is equivalent to the commonly used term sensitivity, 

while FPR is equivalent to 1 – specificity. Clearly the ROC curve for a good classifier 

will be as close as possible to the upper left corner of the chart: that is where we have the 

highest number of true positives and at the same time the smallest number of false 

positives. 

3. Mutual Information 

Given two random variables, X and Y (in this study, X and Y are either feature 

values or class labels), the Mutual Information I(X; Y) between X and Y measures how 

much information one variable conveys about the other one. It is defined as the relative 

entropy (or Kullback-Leibler distance) between the joint distribution and the product 

distribution of X and Y, that is ∑∑=
x y yPxP

yxPyxPYXI
)()(

),(log),();( , where P(x, y) 

indicates the joint distribution of X and Y and P(x) and P(y) their marginal distributions. It 

is easy to prove that I(X; Y) = H(X) − H(X|Y) = H(Y ) − H(Y |X) = I(Y ;X), where H(X) 

and H(Y) are the entropies of X and Y, and H(X| Y) and H(Y| X) are the conditional 
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entropies of X given Y and Y given X respectively. This states that the information Y 

conveys about X is the reduction in uncertainty about X, due to knowledge of Y (and vice-

versa).  

4. Boosting 

Boosting is a general method that can be used for improving the performance of 

any classifier. The idea behind boosting is to combine the outputs of many different 

“weak” classifiers to produce a powerful “committee”. We have used one of the most 

popular boosting algorithms, AdaBoost (Freund and Schapire, 1999), which we shall 

briefly describe here. For more information on this and other boosting algorithms refer to 

(Friedman et al., 2000). 

AdaBoost consists of sequentially applying a weak classification algorithm to 

modified versions of the data, producing a sequence of weak classifiers. Then, the 

prediction from each classifier is combined through a weighted majority vote. The data is 

modified by applying weights to each of the training observations. At each iteration, a 

weak learner is trained on the weighted set of data and the weights are updated. This 

operation is repeated until the desired performance for the training data is achieved. The 

updating rule for these weights is such that training pairs that had been misclassified in 

the previous step will have their weights increased, while those that were correctly 

classified will have their weights decreased. At each iteration, then, training pairs that are 

more difficult to classify have more influence, and classifiers are forced to focus on pairs 

overlooked by previous classifiers. 

Given a dataset of N  training pairs ( ),i iyx , 1...i N= , where ix  is an input vector 

of features and { }1,1iy ∈ −  is the target value representing classes 0C  and 1C  
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respectively, let us denote the weight associated with training pair i  at time t  as ( )tD i , 

and the weak classification algorithm used at time t  as th . The AdaBoost algorithm to 

iterate T  times is as follows: 

• Initialize the observation weights for each pair ( )1
1D i
N

=  

• For 1...t T=  do: 

1. Train th  using the training pairs weighted by tD  

2. Compute tE , the global error of th as: ( )
( ): t i i

t t
i h y

E D i
≠

= ∑
x

 

3. Set 11 ln
2

t
t

t

E
E

α
 −

=  
 

 

4. ( ) ( ) ( )

1

t t t iy h
t

t
t

D i e
D i

Z

α−

+

⋅
=

x

 where tZ  is a normalization factor such that 

( )1 1t
i

D i+ =∑  

• The output of the final classifier is: ( ) ( )
1

T

t t
t

H sign hα
=

 =  
 
∑x x  

5. Training and Testing Datasets 

The details of construction of the training and testing datasets are described in 

Figure 1.  
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FIGURE CAPTIONS 

Figure 1. Useful genomic features in prediction of protein interactions. 

Figure 2. Overlaps between features and GSTDs. The blank and shaded columns 

represent the size of overlaps between the 16 features and the GSTD+ and GSTD-, 

respectively. The total numbers of protein pairs in the GSTD+ (8,250) and GSTD- 

(2,708,622) are marked by two horizontal lines. Each of the seven features to the left of 

the dashed divider has at least 20% coverage of the GSTDs (positive and negative 

combined). Note that the plot is in log-scale; therefore, the APA column actually 

represents 23 times more protein pairs than REG column. 

Figure 3.  Predictive power of individual features illustrated by ROC curves. We plot 

ROC curves for individual features in two panels: the seven most populous features in 

panel A, and the remaining nine features in panel B. The acronyms signify the following: 

TPR – True positive rate; FPR – False positive rate; TP – True positives; FP – False 

positives; P – Total number of positives; N – Total number of negatives (see Methods).  

Figure 4. Integration of three additional features versus: (A). Four original features. 

Integration of three additional features (EXP, MES, APA) shows an improvement over 

the original four features at all range of FPRs. (B). Two original features. By excluding 

the two strongest features (MIP, GOF), it becomes more obvious that integrating three 

additional features outperforms the original two features. The insets are a closer look at 

the small FPR region by taking a log-scale of the X-axis. TPR, FPR, TP, FP, P, N are the 

same as in Figure 3. 

Figure 5. A SNB versus a BNB over sets of genomic features with or without high 

dependence. TPR, FPR, TP, FP, P, N are the same as in Figure 3. 
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Table 1A. Absolute Values of Pearson Correlation Coefficients and Mutual 
information between Genomic Features 

CCs 
 
MI×100 

COE MIP GOF ESS EXP MES APA GSTDs 

COE  0.08 0.08 0.05 0.04 0.00 0.03 0.11

MIP 0.45  0.37 0.08 0.04 0.05 0.02 0.21

GOF 0.69 10.97 0.13 0.05 0.04 0.04 0.18

ESS 0.63 1.58 2.05 0.01 0.13 0.00 0.05

EXP 0.17 0.26 0.30 0.05 0.03 0.37 0.03

MES 0.03 0.51 0.58 7.31 0.12 0.01 0.03

APA 0.12 0.06 0.19 0.04 8.81 0.06  0.02

GSTDs 0.71 2.01 3.30 0.21 0.09 0.08 0.02 

 
 

Table 1B. Conditional Mutual Information* between Genomic Features 
 

POS×100 
NEG×100 

COE MIP GOF ESS EXP MES APA 

COE  22.64 29.88 7.11 15.29 12.09 14.70

MIP 0.17 59.01 16.26 6.31 9.40 6.26

GOF 0.34 8.24 28.16 5.73 11.18 5.81

ESS 0.78 0.90 0.78 2.09 20.67 2.81

EXP 0.14 0.38 0.58 0.05 8.86 12.75

MES 0.07 0.55 0.73 6.74 0.20  9.65

APA 0.10 0.05 0.22 0.05 10.62 0.09 

 
CCs – Pearson Correlation coefficients;  MI – Mutual information;  
GSTDs – gold-standard datasets; POS – GSTD+; NEG – negative GSTD-. 
 
*For a given feature pair, conditional mutual information for the GSTD+ (GSTD-) is 
computed by considering only protein pairs in the GSTD+ (GSTD-).   
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Figure 1. Useful Genomic Features in Prediction of Protein Interactions. 
 Features Description Biological Meaning and Rationale for Using this Feature 

Source Cho et al, (1998); 
Ho et al,  (2002) 

#O/#P 6,128 / 18,773,128 

COE 
 

F-1. mRNA Co-
expression Ovlp+/- 7,614 / 2,675,273 

These data can be used for the prediction of protein-protein interaction, because proteins in the same complex are 
often co-expressed (Ge et al., 2001; Jansen et al., 2002b; Kemmeren et al., 2002). This feature is obtained in both the 
Rosetta and cell cycle datasets by computing the Pearson correlations for each protein pair.  

Source Mewes et al, (2002) 
#O/#P 3,511 / 6,161,805 

MIP  
 

F-2. MIPS Functional 
Similarity 

Ovlp+/- 8,051 / 1,313,579 

Interacting proteins often function in the same biological process (Letovsky and Kasif, 2003; Schwikowski et al., 2000; 
Vazquez et al., 2003). This means two proteins that interact are more likely to belong to the same biological process than to 
different processes. We collected information from two catalogs of functional information about proteins: the MIPS 
functional catalog (Mewes et al., 2002), which is separate from the MIPS complexes catalog (Mewes et al., 2002), and the 
data on biological processes from Gene Ontology (GO) (Ashburner et al., 2000).  

Source Ashburner et al, (2000) 
#O/#P 2,399 / 2,878,800 GOF 

 
F-3. GO Functional 
Similarity 

Ovlp+/- 7,520 / 647,060 

The rational is the same as F-2. The MIPS and GO functional similarity scores are calculated as follows: First, two proteins 
of interest are assigned to a set of functional classes that two proteins share, given one of the functional classification 
systems. Then, the ~18 million protein pairs in yeast that share the exact same functional classes as the protein pairs in 
question are counted (yielding a count between 1 and ~18 million). In general, a small count entails higher similarity and 
specificity for the functional description of the two proteins.  

Source Mewes et al., (2002) 
#O/#P 4,040 / 8,130,528 1.1
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F-4. Co-essentiality Ovlp+/- 2,150/573,724 

Yeast proteins can be experimentally characterized as either essential or non-essential (Mewes et al., 2002). If two proteins 
exist in a complex, they are likely to both be either essential or non-essential, but not a mixture thereof. This is because a 
deletion mutant of either one protein should produce the same phenotype: both would impair the function of the same 
complex.  

Source Greenbaum et al, (2002) 
#O/#P 6,214 / 19,303,791 EXP  

F-5. Absolute mRNA 
Expression  

Ovlp+/- 7,786 / 2,696,002 

We will discuss this feature together with F-7. APA – Absolute Protein Abundance (see below).  

Source Yu et al., (2004a) 
#O/#P 5,963 / 17,775,703 MES 

 
F-6. Marginal 
Essentiality 

Ovlp+/- 7,738 / 2,588,199 

Marginal essentiality is a quantitative measure of the importance of a non-essential gene to a cell (Yu et al., 2004a); it is based on the 
“marginal benefit” hypothesis that many non-essential genes make significant but small contributions to the fitness of the cell, even though 
the effects might not be large enough for detection by conventional methods (Thatcher et al., 1998). Yu et al. (2004a) found that this 
quantity relates to many of the topological characteristics of protein interaction networks. In particular, proteins with a greater degree of 
MES tend to be network hubs (i.e. they have many interactions) and tend to have a shorter characteristic path length than others. Based on 
this observation, we hypothesize that two proteins are more likely to interact with a higher combined marginal essentiality.*  

Source Greenbaum et al, (2002) 
#O/#P 3,867 / 7,474,911 APA 

 
F-7. Absolute Protein 
Abundance 

Ovlp+/- 5,192 / 1,514,555 

mRNA expression level/protein abundance level can be used to predict protein interactions because two proteins that interact 
should be present in stoichiometrically similar amounts. Protein abundance (number of proteins per cell) can be determined by gel 
electrophoresis and several mass spectrometric approaches with varying accuracy. However, as tools for analyzing mRNA 
expression level become more mainstream, mRNA expression level has often been used as a surrogate for protein abundance, and 
substantial agreement between these two kinds of datasets have been found (Greenbaum et al., 2003). In this study, we will use the 
scaled merged protein abundance and absolute expression level sets that we have developed for yeast.  

Source Yu et al., (2003) 
#O/#P 3,268 / 449,091 REG 

 
F-8. Co-regulation Ovlp+/- 3,948 / 59,767 

Gene regulatory proteins regulate the transcription of specific sets of target genes to respond to changes in condition. Many 
co-regulated target genes function together through protein interactions. Thus, co-regulation between genes – determined, 
for instance, through chip-chip experiments (Horak and Snyder, 2002; Lee et al., 2002; Martone et al., 2003) – can help 
predict protein interactions.  

Source  Pellegrini et al, (1999) 
#O/#P 1,722 / 152,506 PGP 

 
F-9 Phylogenetic Profiles  Ovlp+/- 914/26,095 

Pairs of non-homologous proteins that are present or absent together in different organisms are likely to have co-evolved 
(Pellegrini et al., 1999). Co-evolution has been observed between interacting proteins, such as chemokine and its receptors 
(Goh et al., 2000). Pellegrini et al. (1999) have examined the co-occurrence or absence of genes across multiple genomes, 
thereby inferring functional relatedness.  

Source Bowers et al., (2004) 
#O/#P 1,333 / 8,797 1.2
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F-10 Gene Neighborhood Ovlp+/- 312 / 1,161 

It has been suggested that genes located near each other on the chromosome are more likely to interact (Tamames et al., 
1997). Such chromosomal proximity between functionally related genes may be conserved across different organisms. By 
comparing multiple genomes, these neighboring pairs of genes can be identified and used to establish functional linkages.  
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Source Marcotte et al, (1999) 
#O/#P 1,112 / 8,197 ROS 

 
F-11. Rosetta Stone  Ovlp+/- 113 / 1,303 

Proteins that are involved in the same pathway or molecular complex in one organism are sometimes fused into a single 
polypeptide chain in another organism to facilitate reaction efficiency (Berger et al., 1996). This gene-fusion event can be 
useful in detecting interacting proteins (Marcotte et al., 1999a). This method also called Domain Fusion Method.  

Source Tong et al., (2004) 
#O/#P 1,468 / 4,917 SYL 

 
F-12. Synthetic 
Lethality 

Ovlp+/- 95 / 792 

This information is associated with the observation that jointly knocking out two genes, individually not essential, is lethal 
to a cell (Tong et al., 2001). Synthetic lethal relationships may occur for a pair of genes involved in a single biochemical 
pathway or complex, or for genes within two distinct pathways. In the latter case, one process functionally compensates for 
or buffers the defects in the other. Synthetic genetic array analysis, an approach that allows systematic construction of 
double mutants, enables large-scale mapping of genetic interactions.  

Source Bowers et al, (2004) 
#O/#P 4,492 / 2,968 
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F-13. Gene Cluster 
(or Operon Method) 

Ovlp+/- 2 / 407 

A cluster of genes transcribed as a single mRNA molecule is called an operon, commonly found in bacteria. Operons 
contain two or more closely spaced genes located on the same DNA strand. The encoded proteins of a common operon 
often function together (Alberts, 2002). The GNC method utilizes physical gene proximity to reconstruct plausible operon 
structures and predict functional relatedness between pairs of genes (Bowers et al., 2004). In other words, a pair of genes is 
“linked” by GNC if the intergenic nucleotide distance between them is less than a specified threshold.**  

Source Lu et al., (2003) 
#O/#P 1,241 / 7,300 THR 

 
F-14. Threading 
Scores 

Ovlp+/- 103 / 1,155 

Threading has been widely used in the predictions of protein tertiary structures (Baker and Sali, 2001; Skolnick and 
Kolinski, 2002). Lu et al. (2002) extended the traditional threading to predict protein quaternary structures (i.e., protein 
complexes) by incorporating the interfacial energy between two protein chains. Although this multimeric threading 
algorithm uses structural information, it does not require the structures of the query proteins be solved experimentally, 
making it more widely applicable than a docking approach. This algorithm has predicted yeast interactome with an above-
average accuracy among high-throughput methods.  

Source Goh et al., (2000) 
#O/#P 1,304 / 1,303 
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F-15. Co-evolution 
Scores 

Ovlp+/- 2 / 299 

Co-evolutionary analysis on protein families has also been useful to identify protein interaction partners. Protein-protein 
interfaces can adapt to mutations as they co-evolve. Based on this hypothesis, Goh et al. (2000) quantified the co-evolution 
between soluble protein families that were known to interact. They were able to identify binding partners for proteins with 
previously unknown interaction partners (Goh and Cohen, 2002). Pazos and Valencia (2002) extended this idea by 
applying it to large sets of proteins and protein domains, thereby identifying pairs of interacting proteins.  

Source Yu et al., (2004b) 
#O/#P 787 / 21,290 
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F-16. Interologs in 
Another Organism 

Ovlp+/- 3,741 / 3,996 

Interolog mapping is the transfer of interaction annotation from one organism to another using comparative genomics. Yu 
et al. (2004b) quantitatively assess the degree to which interologs can be reliably transferred between species as a function 
of the sequence similarity between the corresponding interacting proteins. Using interaction information generated by yeast 
two-hybrid experiments, they find that protein–protein interactions can be transferred when a pair of proteins has a joint 
sequence identity >80% or a joint E-value <10−70. (These “joint” quantities are the geometric means of the identities or E-
values for the two pairs of interacting proteins.)  

 

 Data Sets Description Construction of Training/Testing Datasets from GSTDs 
Source Jansen et al., (2003) GSTD+ 

Gold Standard 
Positive Set  

#O/#P 871 / 8,250 

Source Jansen et al., (2003) 

1.5
 G

ST
Ds

 

GSTD- 
Gold Standard 
Negative Set  

#O/#P 2,903 / 2,708,622 

We continue to use the two GSTDs (positive and negative sets) constructed in our original study (Jansen et al., 2003). The 
GSTD+ is extracted from the MIPS complexes catalog, which consists of a filtered set of 8,250 protein pairs within the 
same complex. The GSTD- of ~2.7 million protein pairs is compiled by pairing proteins from different subcellular 
compartments. In order for a (boosted) Naïve Bayes classifier to integrate multiple features and evaluate their integrated 
predictive power, we construct training and testing sets from a subset of the GSTDs, in which every protein pair has at least 
one feature value. We then randomly select a quarter of these protein pairs from this subset as a testing set, and the 
remaining three quarters as a training set. To evaluate the predictive power of a single feature, we apply a Naïve Bayes 
classifier to the single feature. The training and testing sets are constructed using the same procedure as described above, 
except that the subset of the GSTDs is now the intersection of this single feature and the GSTDs. 

#O /  #P — Number of ORFs / Number of ORF Pairs; Ovlp+/-  — Number of Overlaps with GSTD+/GSTD-. 
*It is also reasonable to hypothesize that proteins in one protein complex have a similar level of marginal essentiality, because a deletion mutant of any one protein should normally produce the same 
phenotype: both impair the function of the same complex. However, we observe a stronger predictive power by assuming the former hypothesis (results not shown). **This GNC method can be 
distinguished from the GNN method (F-10): the former relies only on a single genome to establish functional linkages and the latter compares multiple genomes to identify genes of close 
chromosomal proximity (Strong et al., 2003). 
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Figure 2. Overlaps between Features and Gold-Standard Datasets
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Figure 3A. ROC Curves of Features F-1 to F-7
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Figure 3B. ROC Curves of Features F-8 to F-16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR = FP/N = 1 - Specificity

TP
R

 =
 T

P/
P 

= 
Se

ns
iti

vi
ty

 .

INT
PGP
GNN
REG
ROS
THR
SYL
Diagonal

 



 28

Figure 4A. Integration of Three Addtional Features vs. Original Four Features
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Figure 4B. Integration of Three Additional Features vs. Original Two Features
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Figure 5. SNB vs. BNB on Features with or without High Dependence
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