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Abstract 
Proteins function mainly through physical interactions, especially with DNA and 
other proteins. Large-scale networks of both types of interactions are now available 
for a number of model organisms, but the experimental generation of these 
networks is still difficult. Therefore, interolog mapping - the transfer of interaction 
information from one organism to another using comparative genomics – is of 
significant value. Here we quantitatively assess the degree to which interologs can be 
reliably transferred between species as a function of sequence similarity of 
interacting proteins. Using interaction information from S. cerevisiae, C. elegans, D. 
melanogaster, and H. pylori, we find that protein-protein interactions can be reliably 
transferred when a pair of proteins has a joint sequence identity greater than 80% 
or a joint E-value smaller than 10-70. (These “joint” values are the geometric mean 
of the identities or E-values for the two pairs of interacting proteins.) We generalize 
our interolog analysis to protein-DNA binding, and find that such interactions are 
conserved at specific thresholds between 30% and 60% sequence identity depending 
on the protein family. Furthermore, we introduce the concept of a "regulog" -- a 
conserved regulatory relationship between proteins across different species. We 
map interologs and regulogs from yeast to a number of genomes for which there are 
limited experimental data (e.g. A. thaliana) and make these available through an on-
line database at http://genecensus.org/interactions/interolog/. Specifically, we are 
able to transfer about 90,000 potential protein-protein interactions to worm. We test 
a number of these in large-scale two-hybrid experiments. We are able to verify 45 
overlaps, which we show to be statistically significant.  
 
 
 
Supplementary materials are attached at the end. 
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Introduction 
 
The ultimate goal of functional genomics is to determine the functions of all gene 
products in newly sequenced genomes. Unfortunately, while there is a deluge of sequence 
data available, only a small fraction has been functionally characterized (Andrade and 
Sander 1997). Nevertheless, for some genomes belonging to experimentally tractable 
model organisms, such as S. cerevisiae, C. elegans, and H. pylori, scientists have 
elucidated the functions of many of their gene products. Given the quantity of sequence 
and structural data available, a major method for assigning functions is to transfer the 
existing annotation of a known gene to the newly sequenced gene product. This is based 
on the concept that sequence and structural similarities between gene products suggest 
functional similarities (Bork et al. 1998; Bork et al. 1994; Fraser et al. 1995; Fraser et al. 
1998; Hegyi and Gerstein 2001; Wilson et al. 2000).  
 
The transfer of structural annotations is well characterized. It has been shown that 
structural similarity [measured as Root Means Square (RMS) of matching Cα backbone 
atoms] between two proteins decreases exponentially with increased sequence divergence 
(measured as percent identity) (Chothia and Lesk 1986; Chothia and Lesk 1987). Thus, 
the reliability of a homology-based structural annotation depends on the level of sequence 
similarity between homologous proteins.  
  
Several groups have recently examined the dependency of functional similarity on 
sequence and structural similarity (Bork et al. 1998; Bork et al. 1994; Marcotte et al. 
1999). The best matching sequences in a database search are often used as basis for initial 
annotations (Fraser et al. 1995; Fraser et al. 1998). However, further work has provided 
potential for more robust annotation transfer, including analyzing patterns of protein 
family occurrence in different phylogenetic groups (Pellegrini et al. 1999) and associating  
key sequence motifs with particular functions (Attwood et al. 1997; Bairoch et al. 1996). 
Other work has also shown that, in general, protein function is conserved for sequence 
identities down to 40% for single-domain proteins that share the same structural fold; 
however, for multi-domain proteins, the pattern of functional conservation is more 
complex: proteins are most likely to share functions if they contain similar domain 
combinations (Brenner 1999; Hegyi and Gerstein 2001; Wilson et al. 2000).  
 
It is difficult to evaluate the relationship between sequence homology and function, 
because no clear measure of functional similarity exists between any two proteins, and 
the definition of ‘function’ itself is often vague (Bork et al. 1998; Lan et al. 2002; Lan et 
al. 2003; Wilson et al. 2000). Previous studies, based on hierarchical classification 
systems, such as ENZYME (Webb 1992), MIPS (Mewes et al. 2000) and GO (Ashburner 
et al. 2000), determine functional similarity by comparing both proteins’ respective levels 
in the hierarchy. This is a rough definition underlying the difficulties inherent in the 
earlier work. However, an important aspect of protein function is the physical interactions 
of proteins with other molecules, in particular, with other proteins or with DNA. No 
previous work has addressed this issue. With recent genome-wide studies on protein-
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protein and protein-DNA interactions (Gavin et al. 2002; Ho et al. 2002; Horak et al. 
2002; Ito et al. 2000; Iyer et al. 2001; Lee et al. 2002; Uetz et al. 2000), it is now possible 
to examine the degree to which protein-protein and protein-DNA interactions are 
transferred between different organisms as a function of the underlying sequence 
similarities of the interacting proteins.   
 
To this end, Walhout et al. (2000) introduced the concept of “interologs”: orthologous 
pairs of interacting proteins in different organisms. In this study, we extend and assess 
this concept in detail. We present a large-scale quantitative assessment on conservation of 
protein-protein and protein-DNA interactions between proteins and organisms. Compared 
to the previous survey, our investigation has greater statistical weight and precision. In 
our calculations, we use almost all available genome-wide interaction datasets from four 
model organisms (14,911 interactions total). Moreover, we generalize the interolog 
concept and propose that there are at least two kinds of interologs: protein-protein 
interologs and protein-DNA interologs. Based on the latter idea, we also introduce a new 
concept, “regulog”. Furthermore, we calibrate the ability of interologs to reliably map 
interactions across different organisms. Combining our interolog and regulog mapping 
with available large-scale interaction data for yeast, we construct genome-wide 
interaction maps and regulatory networks for several organisms. 
 

Methods 
 
Definitions and formalism for protein-protein 

interologs 
 
Homologs and Orthologs 
 
Homologs are proteins with significant sequence similarity. Operationally, this can be 
defined as having a E-value ≤ 10-10 from BLASTP (Altschul et al. 1990). This is a similar 
cutoff to that used previously (Matthews et al. 2001).  
 
Orthologs are proteins in different species that evolved from a common ancestor “by 
speciation” (Tatusov et al. 1997). Orthologous proteins in different organisms usually 
have the same functions. Operationally, the ortholog of a protein is usually defined as its 
best-matching homolog in another organism. Here we define orthologs as:  
 
(i) candidates with a significant BLASTP E-value (≤ 10-10); 
(ii) having ≥ 80% residues in both sequences included in the BLASTP alignment;  
(iii) having one candidate as the best-matching homolog of the other candidate in the 

corresponding organism;  
(iv) (i), (ii), and (iii) must be true reciprocally.  
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It is obvious that this operational definition of ortholog by sequence homology is not 
perfect. Actually, orthologs are not always determined as the best-matching homologs 
(Tatusov et al. 1997). 
 
Interologs  
 
Based on Walhout et al. (2000), if interacting proteins A and B in one organism have 
interacting orthologs A’ and B’ in another species, the pair of interactions A-B and A’-B’ 
are called interologs (see Figure 1A).  
 
Joint sequence similarity 
 
A goal of this work is to measure the transferability of interactions based on sequence 
similarity. In the case of protein-protein interactions, sequence similarities to homologs 
of both interacting partners are important. We therefore use joint sequence similarity (J) 
between protein pairs. There are many potential ways to define joint sequence similarity, 
but our results show that different definitions of J do not matter much. Here, we use two 
major definitions of J: 
 
1. Joint sequence identity (JI) as the geometric mean of individual percent 
identities 
 
Percent identity is routinely used to measure the sequence similarity between proteins. 
Therefore, joint similarity is first defined as the geometric mean of individual percent 
identities: 

   I A BJ I I= ×  
 
Given that protein A is known to bind to protein B, IA represents the individual sequence 
identity of protein A and its homolog. Likewise, IB is the individual sequence identity of 
protein B and its corresponding homolog. We calculate individual sequence identities  
based on the sequence alignment using the Smith-Waterman algorithm in FASTA 
(Pearson and Lipman 1988). 
 
2. Joint E-value (JE) as the geometric mean of individual E-values 
 
Measuring homology by percent identity has certain disadvantages (Wilson et al. 2000). 
For instance, the length of the matching sequences is not considered. Naturally, the 
shorter the sequence is, the higher the chance of randomly finding similar sequences. 
Furthermore, it has become more common to use statistical scoring schemes, especially 
E-values in BLAST, to measure the statistical significance of the homology in order to 
determine the orthologs across organisms (Brenner et al. 1998; Tatusov et al. 1997). 
Therefore, we also calculate the joint similarity as a joint E-value, i.e. the geometric mean 
of the individual E-values: 

   E A BJ E E= ×  
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EA represents the BLASTP E-value of protein A and its homolog. EB is the individual 
BLASTP E-value of protein B and its homolog. 
 
3. Joint similarity as the minimal individual similarity 
 
Calculating the joint similarity using the geometric mean of the individual similarities 
places equal weight on each of the two similarities. However, the joint similarity could 
also be defined as the smaller of the two individual similarities: 

 min  ( ,  )AB A BJ S S=  
 

SA and SB represent the individual similarities, respectively, of protein A and its homolog 
and of protein B and its homolog. In this manner, JAB measures the minimal similarity 
level necessary for the reliable transfer of interaction information between protein pairs. 
Individual similarities can also be determined as percent identities by FASTA or E-values 
by BLASTP. 
 
Source and target organisms 
 
In the source organism, there is a set of known interactions. The target organism is a 
fully-sequenced organism, onto which the known interactions in the source organism are 
mapped (as described below) based on sequence similarities (see Figure 1C).  
 
Interolog mapping 
 
Interolog mapping is a process that maps interactions in the source organism onto the 
target organism to find possible interactions (i.e. interologs) in that organism (see Figure 
1A). To assess the performance of mapping methods, one can use known interacting and 
non-interacting protein pairs (positives and negatives) in the target organism as 
benchmarks.  
 
1. Original interolog mapping method: best-match mapping 
 
Previously, Matthews et al. (2001) proposed a best-match mapping method to transfer 
yeast interactions onto the worm proteome. Simply put, their method selects all best-
matching homologs between two organisms (E-value < 10-10). In worm, all pairs of best-
matching homologs of interacting yeast proteins are considered as potential interologs. 
Using two-hybrid systems, they tested 216 worm protein pairs and 72 yeast protein pairs. 
Their results showed that only 16% to 32% of interologs predicted experimentally 
determined interactions correctly. 
 
2. A new method: reciprocal best-match mapping 
 
A more stringent derivative of this original method would be to use only the reciprocal 
best-matches in mapping interologs between organisms (Li et al. 2004). In this paper, we 
present results from both approaches.  
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Generalized interolog mapping 
 
Both interolog mapping methods, using only the best matches, suffer from low coverage 
of the total interactome and low prediction accuracy. This will be discussed further in the 
next section. To address the problem of low coverage, we introduce a new generalized 
interolog mapping method using all possible homologs of interacting proteins. For any 
given protein in one organism, all of its homologs in another organism are considered as 
a homolog family (or simply family). Two families of two interacting proteins are called 
interacting families, that is, at least a member of one family interacts with a member of 
the other family. All possible protein pairs between the two interacting families are called 
generalized interologs (see Figure 1B). This method has the advantage of sidestepping 
some of the ambiguities in defining orthologs.  
 
Gold standard target datasets 
 
1. Set of gold standard positives P 
 
To assess the performance of interolog mapping, we need a group of known interactions 
as positives in the target organism. This set is called gold standard positives and denoted 
by P. The total number of elements in this set is |P|. 
 
As the most extensive and reliable interaction datasets exist for S. cerevisiae, we use it 
first as the target organism. In S. cerevisiae, the MIPS complex catalogs, which contains 
8,250 unique interacting protein pairs, has previously been used as a standard reference 
for known interactions (Edwards et al. 2002; Jansen et al. 2003; Mewes et al. 2000; von 
Mering et al. 2002). Therefore, we consider the MIPS interactions as gold standard 
positives in the next section. In order to compile a reference dataset with the lowest false 
positive rate, we consider two proteins as interaction partners if and only if they are in the 
same complex of the highest level in the catalog. At the end of the paper, we reverse this 
situation and use S. cerevisiae as the source organism and map its reliable interaction 
information (from the complex catalog) onto other eukaryotes (such as A. thaliana) to 
build an interolog database.  
 
It should also be noted that proteins in the same complex do not necessarily interact with 
each other directly. Here, we use the term “interaction” to signify “complex association”, 
i.e., two protein subunits may belong to the same quaternary complex but not physically 
interact. Therefore, the number of complex associations of a protein may be larger than 
the number of its pair-wise physical associations.  
 
In order to probe the direct physical interactions more closely, we constructed a refined, 
smaller dataset comprising 1,867 interactions between 1,391 proteins. In parallel to our 
“gold standard” nomenclature, we call this the “platinum standard” dataset. Briefly, the 
dataset contains: physical interactions from complex protein structures in the Protein 
Data Bank (Westbrook et al. 2003), verified interactions from small-scale experiments 
(Bader et al. 2003; Mewes et al. 2000; Xenarios et al. 2002), and protein pairs from small 
MIPS catalog complexes (≤4 subunits). The dataset and detailed explanation of its 
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construction is available from our website. The platinum-standard dataset is of equally 
high quality as the gold standard set, but differs as it describes physical pair-wise 
interactions between proteins rather than complex associations. As shown below, the two 
datasets yield very similar results, indicating a good correspondence between physical 
interactions and complex associations. However, because better statistics are obtained 
from a larger dataset, we perform the bulk of the analysis in this paper using the gold 
standard interactions.  
 
 
2. Set of gold standard negatives N 
 
We also need a set of negatives (i.e. non-interacting proteins) in the target organism to 
assess our method. This set is called gold standard negatives and denoted by N.  
 
Previously, Jansen et al. (2003) considered pairs of proteins in different sub-cellular 
compartments as good estimates for non-interacting pairs (Kumar et al. 2002). In total, 
there are 2,708,746 such protein pairs. 
 
However, sometimes not all interolog features could be defined for each of the pairs in 
the gold standard. In this case, we use alternate sets P' and N', subsets of P and N with 
defined features.  
 
Source datasets 
 
To assess the interolog mapping method, we need source organisms with known 
interaction data. In this paper, C. elegans, D. melanogaster, and H. pylori are used as 
source organisms. We then map the interactions in these organisms onto S. cerevisiae 
genome. These are the only three organisms, besides S. cerevisiae, in which large-scale 
interaction datasets are available. 
 
1. C. elegans interaction dataset 
 
For C. elegans, there are 410 interactions from two-hybrid experiments (Boulton et al. 
2002; Davy et al. 2001; Walhout et al. 2000).  
 
2. D. melanogaster interaction dataset 
 
For D. melanogaster, there are 4,786 interaction pairs from two-hybrid experiments (Giot 
et al. 2003).  
 
3. H. pylori interaction dataset 
 
For H. pylori, there are 1,465 interaction pairs from two-hybrid experiments (Rain et al. 
2001). 
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Assessment parameters 
 
As shown in Figure 1C, based on interactions in the source organisms, all generalized 
interologs with joint similarities larger than a certain cutoff (J) are considered possible 
interactions in the target organism. We then assess these predictions (thin red solid lines) 
against gold standard positives (thick black solid lines) and negatives (dashed lines) in 
the target organism. The assessment parameters are as follows: 
 
1. G(J) 
The set of generalized interologs in the target organism at a certain joint similarity level 
(J) is denoted by G(J) . 
 
2. T(J) 
The set of the true positives in G(J) is denoted by T(J), i.e. T(J) = G(J) ∩ P. We define 
the number of true positives at a given J as TP = |T(J)|. 
 
3. F(J) 
The set of the false positives in G(J) is denoted by F(J), i.e. F(J) = G(J) ∩ N. We define 
the number of false positives at a given J as FP = |F(J)|. 
 
4. V(J) 
We denote V(J) as the percentage of verified predictions among generalized interologs at 
a certain joint similarity level J, which is calculated as: 

| ( ) |( )  100%
| ( ) |

JV J
J

= ×
T
G

 

We also call V a level of verification (or loosely an accuracy). Please note that V 
calculated here may be a lower bound estimate because the MIPS complex catalog is not 
complete. 
 
5. L(J) 
We denote L(J) as the likelihood ratio for a generalized interolog, with a certain joint 
similarity (J), to be a true prediction.  L(J) can be calculated by a Bayesian approach. 
This is a straightforward extension of the formalism described previously (Jansen et al. 
2003). If we know the number of positives (Np) among the total number of protein pairs 
(Nt), the probability of finding a interacting pair in the genome, P(pos), can be defined as 
Np/Nt. Therefore, the "prior" odds of finding a positive are: 

 
( ) ( )
( ) 1- ( )prior

P pos P posO
P neg P pos

= =  

 
In contrast, the "posterior" odds are the odds of finding a positive given that, in another 
organism, its generalized interolog with a joint similarity J is a known interaction: 

 
( | )
( | )post

P pos JO
P neg J

=  



 10

 
The likelihood ratio L defined as 

 

( | ) | |( )
( | )

| |

TP
P J posL J FPP J neg

= = P

N

 

 
relates prior and posterior odds according to Bayes' rule: 

 
( )post priorO L J O=  

 
As Oprior is fixed for a given organism, Opost is proportional to L(J), i.e. the higher the 
likelihood ratio, the more likely the prediction is true. In a naive Bayesian network where 
there are no correlations between features, this procedure can be iterated. Specifically, 
Opost can be multiplied again by another L for a different feature. In doing so, one could 
combine many different features within a uniform framework of likelihood ratios. In 
particular, it would allow us to combine our likelihood ratios from interologs with the 
other features in Jansen et al. (2003).  
 
Definitions and formalism for protein-DNA 

interologs and regulogs 
 
Protein-DNA interologs and mapping  
 
If transcription factor (TF) A with binding site SA has, in another species, an ortholog A’ 
with binding site SA’ of identical DNA sequence, A'-SA' is a protein-DNA interolog of A-
SA (see Figure 1D). 
 
We can extend protein-protein interolog mapping to protein-DNA interolog mapping. In 
this process, we transfer the DNA-binding information of a given TF A to its ortholog A' 
as a function of the sequence similarity between A and A'.  
 
 
Regulogs 
 
TFs bind to DNA to regulate the expression of downstream genes. Therefore, there is a 
regulatory relationship between a given TF and its target. Suppose that TF A and its 
target B in one organism have orthologs A’ and B’, respectively, in another organism. 
Furthermore, suppose that in the second organism, A’ is also a TF regulating B’, then, we 
call A'=>B' a regulog of A=>B.  
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Source datasets 
 
For practical calculations, we used TF families as described previously (Luscombe and 
Thornton 2002). Target binding sequences of individual factors were obtained from the 
TRANSFAC database (Wingender et al. 2001). All known protein-DNA interactions are 
considered as positives. We do not have negative datasets for protein-DNA interologs 
and regulogs.  
 
Assessment parameters 
 
The parameters involved in assessing the conservation of protein-DNA interologs are 
analogous to those for protein-protein interologs. They are given as follows: 
 
1. G(I) 
The set of predicted protein-DNA interologs with the sequence identities between TFs 
larger than a certain cutoff (I) is denoted by G(I). 
 
2. T(I) 
The set of the transcription factor pairs that share the same DNA binding sites in G(I) is 
denoted by T(I).  
 
3. V(I) 
We denote V(I) as the percentage of verified predictions among the predicted protein-
DNA interologs at a certain sequence identity level, I. This is calculated as: 

( ) |( )  100%
( ) |

| IV I
| I

= ×
T
G

 

 
We calculate V’s both for TFs within each family separately and for all TFs together (see 
Figure 1D). Due to the relatively small amount of TF binding data, we aggregate all of 
our predictions. This procedure is described in the supplementary materials.  
 

Results and Discussion 
 
Assessment of interologs on current interaction 

datasets 
 
Conservation of generalized interologs 
 
1. Relationships between V and J 
 
To measure the conservation of interactions between homologous protein pairs, we 
assessed the chance (V) that two proteins interact with each other as a function of their 
joint sequence identities (JI) with other known interacting pairs. First, we mapped only 
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worm interactions onto the yeast genome. As there are not many data points, we grouped 
all the generalized interologs into three bins based on their joint identities: low, medium 
and high. Figure 2A shows a clear monotonic relationship between V and JI. This 
confirms that the higher the joint identity, the more likely the predicted interolog is true.   
 
To get better statistics, we mapped interactions in S. cerevisiae, C. elegans, D. 
melanogaster, and H. pylori onto the S. cerevisiae genome, assessing them against our 
gold standards described above. (In this case, S. cerevisiae functions as both a source and 
a target organism.) In Figure 2B, the relationship between V and JI is the weighted 
average (based on the total number of true positives in each dataset) of the relationships 
in all four mapping processes. The plot exhibits a sigmoidal relationship with a sharp 
decrease around 80% JI. This indicates that all protein pairs having JI ≥ 80% with a 
known interacting pair will interact with each other; whereas few pairs interact at JI < 
40%. These results confirm that pairs of proteins with sufficient sequence similarity tend 
to share the annotation of protein-protein interactions.  
 
Furthermore, we performed a similar analysis using joint E-values (JE). Figure 2C shows 
the same monotonic relationship, as that in Figure 2A, when we mapped worm 
interactions onto yeast genome. In Figure 2D, the weighted average curve also has a 
sigmoidal characteristic. Overall, more than half of the protein pairs with JE ≤ 10-70 
indeed bind to each other. Therefore, JE of 10-70 could be used as a good threshold to 
reliably transfer the annotation of interactions. 
 
2. Relationships between L and J 
 
The above approach (i.e. assessing the transferability of a property between organisms by 
calculating the fraction sharing the property with certain similarity) has been generally 
used for similar purposes (Hegyi and Gerstein 2001; Wilson et al. 2000). Here, we apply 
a Bayesian network approach to further evaluate the transferability of interactions. 
Likelihood ratios (L) are more directly related to probabilities and are, therefore, more 
quantitative and precise in describing the transferability of the interactions. 
 
As we did for V above, we calculated the relationships between L and JE for two 
mappings: worm-to-yeast and a weighted average of all four organisms to yeast (Figure 
2E and F, respectively). Both figures exhibit positive relationships between L and JE, 
suggesting that the better the joint E-values, the higher the likelihood ratios. This further 
confirms the relationships found in Figure 2A-D and the validity of using joint 
similarities.  
 
Conservatively, the total number of interactions in yeast genome is approximately 30,000 
(Kumar and Snyder 2002). Given that there are approximately 18 million yeast protein 
pairs in total, the prior odds (Oprior) would be roughly 1/600. Therefore, only protein pairs 
with L > 600 would have a greater than 50% chance of interaction. As shown in Figure 
2F, protein pairs with JE ≤10-50 have L >600. The JE threshold (10-70), determined 
previously, easily satisfies this criterion. If we were to use L to perform the mapping 
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methods, cross-validation could be applied in choosing the optimal L cutoff as described 
previously (Jansen et al. 2003).  
 
We examine the correspondence between direct, physical interactions and complex 
associations, by repeating the calculations for Figures 2B, D, and F using the platinum 
standard dataset. The results show similar trends to the gold standard dataset 
(supplementary Figure 1), indicating the high correspondence between the two datasets. 
Due to its smaller size, the statistics for the platinum-standard dataset is not as good as 
the gold standard. Owing to the similarity of results, and better statistics, we therefore use 
the MIPS complex catalog as the main reference dataset in this paper.  
  
 
3. Results of J as the minimal sequence similarity remain the same 
 
As discussed above, we could also use the minimal individual similarity instead of the 
geometric mean to calculate J. We repeated all calculations in Figure 2 using this new 
definition of J. The results show that the new definition has little effect (supplementary 
Figure 2). Therefore, for the remaining discussion J is defined as the geometric mean of 
the individual E-values (i.e. JE). 
 
Comparison of different interolog mapping methods 
 
In order to compare different mapping methods, C. elegans was used as the source 
organism and its interactions were mapped onto S. cerevisiae genome by three different 
mapping methods as discussed above. We compared the predicted interologs produced by 
the different methods above against the gold standard positives and negatives. The results 
are as follows: 
 
1. Best-match mapping method 
 
From 410 interacting pairs in worm, we found 84 corresponding interolog candidates in 
yeast. Only 25 of these pairs overlapped with gold standard positives, corresponding to V 
≈ 30% (i.e. loosely 30% accuracy). This agrees with previous results (Matthews et al. 
2001). 
 
2. Reciprocal best-match mapping method 
 
In total, we determined 33 interolog candidates based on the 410 worm interactions, 
among which 18 pairs (54%) were true positives.  
 
3. Generalized interolog mapping method 
 
Based on the 410 interacting pairs, we found 92 pairs of interacting families in yeast, 91 
of which contain at least one true interaction. In total, we predicted 9,317 interactions 
(i.e. generalized interologs), among which 162 pairs (2%) are true positives. In Figure 3, 
it is evident that the fraction of true positives clearly increases as JE decreases. When 
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only the top 5% pairs with the best JE values are selected, V increases to 31% (35 true 
positives out of 112 predictions), resulting in even better accuracy than that of best-match 
mapping method (30%).  
 
Previously, four large-scale experimental interaction datasets in yeast have been 
combined into a “PIE” (i.e. Probabilistic Interactome Experimental), in which each 
interaction is associated with a particular L (Jansen et al. 2003). To assess the 
performance of our method in relation to known standards, we compared our results 
against the PIE. We show our comparison as a TP/|P’| vs. TP/FP graph, a close analogue 
of the conventional ROC curve. As shown in Figure 4, the coverage and accuracy of 
interolog mapping are roughly comparable to those of the large-scale experiments.  
 
Examples of protein-protein interologs 
 
The Ste5-MAPK complex is a key 6-subunit complex in yeast mating-pheromone 
response pathway (Posas et al. 1998). The interaction partners of worm MAPK 
(F43C1.2a) were determined experimentally (see supplementary table 1). In total, there 
are 26 known partners for F43C1.2a, none of which is involved in this MAPK signal 
transduction pathway. However, using the generalized interolog mapping method, we 
successfully predicted 5 of the 6 subunits in yeast based on only one MAP kinase in 
worm. This illustrates the power and utility of our method (see supplementary materials). 
 
 
Assessment of protein-DNA interologs and 

regulogs 
 
Conservation of protein-DNA interologs 
 
As shown in Figure 5, the relationship between V and I is sigmoidal, with a sharp 
decrease in target site conservation between 30% to 60% sequence identity. This 
indicates that all TFs within a certain range of identities invariably share the same target 
sequence. The specific threshold for the identities is highly family dependent, ranging 
from 30 to 60%. The hormone receptor and LacI repressor families have a higher 
threshold of about 60% whereas the other families diverge at lower thresholds of 30%. 
The C2H2-zinc finger family is an exception and sequence recognition is barely conserved 
even for close homologs (threshold identity 80%). The main reason for this is that the 
binding domains of C2H2-zinc fingers are often very short (~30-90 amino acids in length) 
and, therefore, only a few mutations are required to alter its specificity. 
 
The fact that TF families have different thresholds reflects the regulatory diversity of 
different families. Families with high thresholds contain factors that regulate many 
different processes; while those with low thresholds regulate only a few different 
processes (Luscombe and Thornton 2002). 
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We further assessed the general transferability of protein-DNA binding properties 
between homologous protein sequences, by calculating the relationship between V and I 
for all TFs. As shown in Figure 5, approximately 60% of homologous TFs share the same 
binding sites at 30% sequence identity; at 50% sequence identity, 80% of TFs share the 
same binding sites. Therefore, if two proteins have ≥30% sequence identity, they can be 
predicted to share the same binding sites. The confidence level of the prediction is shown 
as a function of sequence identity in Figure 5.  
 
Protein-DNA interolog (regulog) mapping method 
 
When a protein-DNA interaction is transferred across species, the regulatory relationship 
between the TF and its target is also implicitly transferred. Based on our calculations, at 
least three conditions are necessary for regulogs to be transferred (see Figure 1D): 
 
(i) TF A and its homolog A’ must have ≥30% sequence identity. (Note that formally A 

and A' should be orthologs. However, practically this is defined here by this 
sequence similarity criterion.) 

(ii) Target gene B and its homolog B’ must be orthologs; 
(iii) The DNA sequence upstream of B’ must contain the same binding site as that of B; 
 
Unfortunately, we only have large-scale transcriptional regulatory networks in S. 
cerevisiae for eukaryotes and in E. coli for prokaryotes. Because the transcription 
machinery differs radically between eukaryotes and prokaryotes, the performance of our 
regulog mapping method cannot currently be assessed on a large-scale. However, we 
would like to discuss one specific example of regulogs between S. cerevisiae and D. 
melanogaster to illustrate the process of regulog mapping and its underlying logic.  
 
In S. cerevisiae, Cyc1 is a mitochondrial protein with electron-transport function. The 
Hap2-Hap3 heteromeric TF complex binds to the UAS2 activation sequence (GTTGG) 
upstream of CYC1 and then activates transcription of this gene (Hahn and Guarente 1988; 
Olesen et al. 1987). Using the above-mentioned three conditions, we define potential 
regulogs in D. melanogaster:  
 
(i) CG10447 (a TF) and CG17618 (function unknown) are fly homologs of yeast 

proteins Hap2 and Hap3 with 30% and 40% sequence identities, respectively; 
(ii) CG17903 (CD4) is a fly ortholog of Cyc1. It shows electron-transport activities and 

is located in the mitochondria (Limbach and Wu 1985); 
(iii) the same UAS2 activation sequence (GTTGG) is also found in the promoter regions 

of CG17903 at the appropriate position (~ -200bp); 
 

Based on the above, we predict that CG10447 and CG17618 may also regulate the 
expression of CG17903. This regulatory relationship is the fly regulog of its countpart 
involving the yeast proteins Hap2-Hap3, and CYC1. Elucidating this allows us to predict 
the function of an un-annotated fly protein, CG17618. Furthermore, the interactions 
between the two fly TFs and the UAS2 DNA sequence is the fly protein-DNA interologs 
of those between Hap2, Hap3, and the UAS2 sequence. More interestingly, because Hap2 
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and Hap3 interact with each other, their fly homologs CG10447 and CG17618 may also 
interact. This fly interaction is a potential protein-protein interolog of that between Hap2 
and Hap3. 
 
Database of interologs and regulogs 
 
Finally, having proven the feasibility of the generalized interolog mapping method, we 
applied this method on the MIPS complex dataset in yeast to predict protein-protein 
interactions in several other important eukaryotic organisms, including C. elegans, C. 
albicans, D. melanogaster, and A. thaliana. In each organism, the top 1% of predicted 
generalized interologs with the best JE’s are considered as highly reliable interologs. 
Simple statistics relating to the interolog database are shown in Table 1.  
 
To assess the accuracy of our database, we compared our predicted worm interactions 
against those from independent and on-going large-scale worm two-hybrid experiments. 
A total of 3,730 interaction pairs were generated. Because only one splicing form was 
used for each gene in these experiments, we removed all alternative splicing forms and 
our prediction of yeast-to-worm interologs decreased from 91,224 (in Table 1) to 55,223 
pairs. Among these, 45 pairs were confirmed experimentally. We employ a hyper-
geometric model (see supplementary material) to evaluate the significance of this 
overlap. The calculated P value is smaller than 10-10. The P value is the probability of 
finding a certain overlap between two independent datasets by chance within the whole 
worm interactome. Therefore, the experimental results support and validate our 
predictions.  
 
More interestingly, the experimentally-determined interaction pairs can be further divided 
into different groups involved in different pathways, e.g. 26S proteasome (Davy et al. 
2001), DNA-damage repair (DDR) (Boulton et al. 2002), and vulval development 
(Walhout et al. 2000). The overlaps between these groups and our predictions vary 
considerably, as shown in Figure 6. For groups known to be well conserved in 
eukaryotes, such as proteasome and DDR (Davy et al. 2001; Larsen and Finley 1997), the 
overlaps are much better than those that are not. The non-significant P value for the group 
“others” is also attributable to the fact that the baits in this group are specially selected to 
ensure they have no yeast homologs. Thus, Figure 6 further confirms the biological 
relevance of our database. 
 
We also applied our regulog mapping method to yeast transcriptional regulation datasets 
(Horak et al. 2002; Lee et al. 2002; Wingender et al. 2001). The results suggest potential 
regulatory networks in other eukaryotic organisms. Due to variable TF-binding sites and 
insufficient information on binding sequences, we transferred the yeast regulatory 
networks using only the first two conditions, i.e. sequence homology for both TFs and 
targets. In general, distant organisms share smaller sets of TFs and targets. Using D. 
melanogaster as an example, our regulog method determined 33 TFs, 621 targets, and 
2,936 regulatory connections (see Table 1). If the requirement of having the same binding 
sites is included, we were only able to determine 29 connections between 13 TFs and 5 
target genes. 
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The results of the interolog and regulog mapping are recorded in an interolog/regulog 
database at http://genecensus.org/interactions/interolog/ (see Figure 7). To find possible 
physical or regulatory interaction partners of one’s favorite protein, the user simply 
inputs the names of the organism and the protein. For the protein-protein interolog 
database, all predicted interaction partners will be shown and ranked by JE. Our database 
also links each protein to an external web resource such as SGD (Christie et al. 2004), 
WormBase (Harris et al. 2004) and FlyBase (The FlyBase Consortium 2002). For the 
regulog database, all predicted TFs and their targets are ranked by sequence homologies 
between query TFs and their yeast homologs. The layout of the webpage is similar to that 
of the interolog database.  
 
Conclusion 
 
In this study, we comprehensively assessed the transferability of protein-protein and 
protein-DNA interactions by analyzing the relationships between sequence similarity and 
interaction conservation. A total of 14,911 interactions in four organisms are included in 
our investigation. In general, the conservation of both interaction types shows a sigmoidal 
relationship with sequence similarity. For these four organisms, protein-protein 
interactions are well conserved between protein pairs with at least 80% JI or 10-70 JE. For 
protein-DNA interactions, the specific threshold of sequence identity is highly family-
dependent. In general, 60% of TFs with 30% or more sequence identity share the same 
target sites.  
 
Previously, Walhout et al. (2002) proposed an “interolog” concept to transfer protein-
protein interactions across species. Here, we develop this concept into a concrete 
interaction prediction approach, the generalized interolog mapping method. This is 
readily expandable to any newly completed genomes. Using generalized interolog 
mapping method, we construct several genome-wide protein-protein interaction maps. 
 
We further introduce a new “regulog” concept to map regulatory relationships between 
TFs and their targets across organisms. We apply the regulog mapping to produce 
genome-wide regulatory networks for several eukaryotic organisms. The results of the 
newly produced interaction maps and regulatory networks are stored in an 
interolog/regulog database. 
 
Future directions 
 
There are a number of directions to extend this work. With respect to the conservation of 
protein-protein interactions, there are many more sequenced genomes without known 
genome-wide interaction networks. We will apply our method to these genomes to gain 
insight into their protein-protein interactions, and eventually to shed light on their 
functions. However, our analysis is still hampered by not having sufficient interaction 
data for other organisms. Once such large-scale interaction datasets are available, we can 
repeat our calculations taking into consideration the new information, which will give 
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results with better statistical precision. For the regulog mapping method, we are unable to 
evaluate its performance at this time. When genome-wide regulatory networks are created 
in other organisms, we will evaluate the feasibility and accuracy of the regulog mapping 
method in a similar fashion to that of the protein-protein interolog mapping method.  
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Figure Captions: 
 
Figure 1. Schematic illustration of protein-protein interologs and the mapping methods. 
(A) Original interolog mapping. Theoretically, A-A’ and B-B’ should be orthologs 
between the two organisms. Operationally, only best-matching homologs are required. 
(B) Generalized interolog mapping. Proteins A1’, A2’, A3’, and A4’ in the target organism 
are all homologs of protein A in the source organism. These proteins form A’ family. 
Likewise, protein B’s homologs (B1’, B2’, B3’) form B’ family in the target organism. If 
we know that protein A interacts with B, we can predict that A’ family and B’ family are 
interacting families. All possible pairs between these two families are considered as the 
generalized interologs (shown as black dashed lines with arrows). (C) Comparison with 
the gold standards. After the interactions in the source organism are mapped onto the 
target organism, the predictions (i.e. generalized interologs) are compared with the gold 
standard positives and negatives. True positives are the predictions that overlap with the 
gold standard positives. False positives are those that overlap with the gold standard 
negatives. (D) Schematic illustration of protein-DNA interologs and regulogs. In the 
source organism, TF A binds to its binding site (SA) and regulates the downstream gene 
B. To perform the regulog mapping, TF A’ in the target organism needs to be the 
ortholog of A. Proteins B and B’ should also be orthologs. The DNA sequence upstream 
of gene B’ needs to contain the same motif (SA’) as SA. However, practically TF A and 
A’ only need to share ≥30% identity. The interaction between TF A’ and SA’ is the 
protein-DNA interolog of that between A and SA. The regulatory relationships between 
A=>B and A’=>B’ are regulogs. 
 
Figure 2. Conservation of protein-protein interactions between homologous protein pairs. 
(A), (B) Relationships between V and JI. (C), (D) Relationships between V and JE. (E), 
(F) Relationships between L and JE. (A), (C), and (E) were calculated based on the results 
from worm-yeast mapping. (B), (D), and (F) are the weighted average obtained when the 
interactions in all four organisms (i.e. S. cerevisiae, C. elegans, D. melanogaster, and H. 
pylori) were mapped onto yeast. In panel (A), Low: JI ≤ 10%; Medium: 20% ≤ JI ≤ 30%; 
High: JI ≥ 40%. In (C) and (D), Low: 10-40 ≤ JE ≤ 10-10; Medium: 10-100 ≤ JE ≤ 10-50; 
High: JE ≤ 10-110. Error bars represent 95% CI calculated by a re-sampling algorithm (see 
supplementary material).  
 
Figure 3. Distribution of the number of generalized interologs as a function of joint E-
value (JE). The dashed line represents the number of all predictions above a given JE, i.e. 
G(J).  The solid line represents the number of true positives above a given JE, i.e. TP.  
 
Figure 4. Comparison of generalized interolog mapping with PIE. In this figure, the plot 
(TP/ |P’| vs. TP/FP) is analogous to a ROC plot (TP/P vs. FP/N). Based on this curve, the 
performance of our method is comparable to that of the large-scale experimental datasets. 
 
Figure 5. Conservation of protein-DNA interactions between homologous TFs. The 
conservation is measured as the relationships between V and I. The legend appears as an 
inset on the graph. The red bold curve was calculated for all TFs in the source datasets 
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(see supplementary materials). Error bars represent 95% CI calculated by the re-sampling 
algorithm. 
 
Figure 6. Percentage of the overlaps between the predictions and different groups. All, all 
experimentally-determined interaction pairs. Proteasome, interaction pairs involved in 
26S proteasome. DDR, interaction pairs involved in DNA-damage repair. Vulval-dev, 
interaction pairs involved in vulval development. Others, interaction pairs involved in 
germline, meiosis, metazoan, mitotic machinery, dauer formation, chromosome III, 
chromatin remodeling, pharynx, and immunity. The P values measuring the statistical 
significance of the overlaps between different groups and the predictions are given on top 
of each bar, which are calculated using the hyper-geometric models (see supplementary 
material). 
 
Figure 7. Screenshot of the interolog/regulog database. 
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Table 1. Statistics of the interolog/regulog database. 
 

Organisms Total protein-protein 
interactions 

JE cut-off for 
highly reliable 

interologs 
Total TFs Total targets Total 

connections*

S. cerevisiae 8250 N/A 148 3380 6765 
C. albicans 20470 10-105 66 1085 2349 
C. elegans 91224 10-75 36 601 1625 

D. melanogaster 101920 10-90 33 621 2936 
A. thaliana 201754 10-90 19 165 328 

 
*A connection is a TF-target pair. 
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Supplementary materials 
Platinum standard positives 
We manually collected these interactions from three independent sources: 

1. Physical interactions recorded in BIND, DIP and MIPS databases (6650, 15113 
and 5834 interactions, respectively). Because high-throughput methods are known 
to be error-prone, all high-throughput interactions are excluded. Furthermore, 
previous studies have shown that interactions recorded in more than one datasets 
tend to be more reliable. Therefore, an interaction is considered as a gold standard 
positive only if it appears in at least two of the three databases. According to these 
two conditions, 1513 interactions in the three databases are considered as true 
interactions. 

2. Small complexes in the MIPS complex catalog. We consider protein pairs within 
the same small complexes (≤ 4 subunits) as interaction partners, which results in 
308 interactions.  

3. Derived interactions in the PDB. 485 PDB entries provided structural information 
on yeast proteins and complexes. We calculated the contact surface area between 
any two subunit of each complex. Pairs of proteins (subunits) with sufficient 
contact surface areas (≥ 50 Å2) are considered as interaction partners. We are able 
to identify 99 interactions. 

 
In total, we generate a smaller set of platinum standard positives consisting of 1867 
interactions among 1391 proteins. 
 

Supplementary Figure 1 caption 
Conservation of protein-protein interactions between homologous protein pairs using 
platinum standard positives. (A) Relationships between V and JI. (B) Relationships 
between V and JE. (C) Relationships between L and JE. The results are the weighted 
average obtained when the interactions in all four organisms (i.e. S. cerevisiae, C. 
elegans, D. melanogaster, and H. pylori) were mapped onto yeast. 

Supplementary Figure 2 caption 
Conservation of protein-protein interactions between homologous protein pairs using 
minimal similarity as the joint similarity (J). (A), (B) Relationships between V and JI. 
(C), (D) Relationships between V and JE. (E), (F) Relationships between L and JE. (A), 
(C), and (E) were calculated based on the results from worm-yeast mapping. (B), (D), and 
(F) are the weighted average obtained when the interactions in all four organisms (i.e. S. 
cerevisiae, C. elegans, D. melanogaster, and H. pylori) were mapped onto yeast. In panel 
(A), Low: JI ≤ 10%; Medium: 20% ≤ JI ≤ 30%; High: JI ≥ 40%. In (C) and (D), Low: 10-

30 ≤ JE ≤ 10-10; Medium: 10-60 ≤ JE ≤ 10-40; High: JE ≤ 10-70.  
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Re-sampling algorithm for the calculation of the 
95% CI 

For each bin in the figures, 90% of the population is randomly chosen, in which the 
number of true positives is determined. This re-sampling step is repeated 100 times. 
Then, the 95% CI is calculated for the average percentage of true positives. 

Detailed description of the protein-protein 
interolog example 

The yeast mating-pheromone response is one of the best-characterized signal transduction 
pathways in eukaryotes. In brief, the receptors for the α and a mating factors (ste2 and 
ste3, respectively) are G-protein coupled receptors, which, when activated, will transduce 
signals through Ste20 and Ste5 to the mating-pheromone MAPK cascade. Ste5, a scaffold 
protein, forms the core of a signaling complex containing Ste11 (MAPKKK), Ste7 
(MAPKK), and Fus3/Kss1 (MAPKs). Activated Fus3/Kss1 MAPKs then activate the 
transcription factor Ste12 to induce the expression of specific genes. Furthermore, 
activated Fus3 (but not Kss1) will arrest the cell cycle at the G1/S transition by activating 
the inhibitor of Cdc28-Cln kinase, Far1. Therefore, Ste5-MAPK complex is a key 
complex in this signal transduction pathway (Current Opinion in Microbiology 1: 175-
182).  
The interaction partners of worm MAPK (F43C1.2a) were determined by experiments 
(see supplementary table 1). So far, there are in total 26 partners for F43C1.2a in the 
database, none of which is involved in this MAPK cascade signal transduction pathway. 
In these partners, K11E8.1C is a calcium/calmodulin dependent protein kinase, whose 
best-matching homolog in yeast is CMK2 (E-value = 2x10-52), also a calcium/calmodulin 
dependent protein kinase. They have nothing to do with the MAPK cascade pathway. 
However, K11E8.1C has two distant homologs in yeast, which are Ste7 (E-value = 10-11) 
and Ste11 (E-value = 2x10-18). F43C1.2a also has a non-best-matching homolog in yeast, 
Kss1 (E-value = 3x10-93). Therefore, given only one MAP kinase in worm, we are able to 
successfully predict 5 subunits of the 6-subunit complex in yeast, which is an excellent 
example demonstrating the power of our method. 
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Supplementary Table 1. Interaction partners of F43C1.2a 
and their best-matching homologs in yeast.  
 
Interaction 

partners 
with 

F43C1.2a 

Gene 
Name Description 

Best-
Matching 

Homolog in 
Yeast 

Gene Name E-value Description 

C06A8.5 PCS*  Not found    

C06C3.1 mel-11 ankyrin-like repeats, 
electron transport YDR264C AKR1 1.00E-16 ankyrin-like repeats, endocytosis 

C49A9.6 PCS  Not found    

C49C3.7 PCS  YKR095W MLP1 6.00E-11 involved in translocation of macromolecules 
between the nucleoplasm and the NPC 

F08C6.7 unc-98 Zinc Finger Not found    

F10E9.3 PCS  Not found    

F14F3.2 PCS ankyrin motif Not found    

F29G9.2 PCS  Not found    

F32D1.1 PCS AAA ATPase YPL074W YTA6 4.00E-74 AAA ATPase 

F38B2.1 ifa-1 intermediate filament 
protein YDR356W SPC110 2.00E-15 structural constituent of cytoskeleton, 

F42A10.2 PCS  Not found    

F42C5.10 PCS  Not found    

F42H10.7 PCS  Not found    

F47B10.2 PCS  Not found    

F54D5.5 PCS  Not found    

K04G2.10 PCS  Not found    

K04G7.1 PCS  Not found    

K11E8.1c unc-43 
calcium/calmodulin-

dependent protein 
kinase 

YOL016C CMK2 2.00E-52 calcium/calmodulin-dependent protein kinase

M6.1 ifc-2 intermediate filament 
proteim A Not found    

T05C12.6 mig-5 
presynaptic density 
protein (PSD-95) 

repeat-like domain 
Not found    

T08D10.1 PCS CCAAT-binding 
transcription factor YGL237C HAP2 4.00E-11 CCAAT-binding factor complex 

T22A3.3 PCS  Not found    

T23H4.2 nhr-69 

Ligand-binding 
domain of nuclear 
hormone receptors, 
Zinc finger, C4 type 

(two domains) 

Not found    

T27F2.2 PCS  Not found    

W10D9.3 PCS  Not found    

W10G6.3 ifa-2 Intermediate filament 
protein YDL058W USO1 3.00E-14 ER to Golgi transport 

 
 
* PCS: Predicted Coding Sequence 
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Calculation of the V’s for protein-DNA interologs 
 
First we calculate the V for each TF family. In the protein-protein interolog mapping, we 
map all the interactions in the source organism onto the target organism. However, due to 
the relatively small amount of TF binding data, we consider each TF individually in this 
calculation, that is, all TF pairs within the family are considered as a potential protein-
DNA interolog, regardless whether they are in the same genome or not. Suppose that 
there are N TFs in the family, the number of pairs is N(N-1)/2. For each pair, the 
sequence identity (I) between the TFs is measured by FASTA. If they bind to the same 
DNA sequence, the pair is considered as a true positive. After all the TF pairs are 
measured, T(I) and G(I) for a certain identity cutoff (I) have been determined. Then, the 
percentage of verified predictions, V(I),  is calculated as: 

( ) |( )  100%
( ) |

| IV I
| I

= ×
T
G

 

 
We also calculated the relationship between V and I for all TFs in the source dataset 
including all different TF families. The curve (the red bold curve in Figure 5) was 
generated by averaging all the curves for different families. 
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Hyper-geometric model 
Suppose that the total sample space is N. In the first round, a sample of size S1 is 
randomly selected without replacement from N. Then, the entire initial sample (S1) is 
subsequently returned to the sample space. In the second round, another sample of size S2 
is randomly selected without replacement from N. The size of the overlap (denoted as i) 
between the two samples (S1 and S2) is a hyper-geometric random variable. The 
probability of observing an overlap of a given size X or greater is calculated by the 
formula: 

( )( )
( )

1 1

2

2

1

0
( ) 1

X

i

S N S
i S i

N
S

P i X
−

=

−
−≥ = −∑  

To calculate the statistical significance of the overlap between the experimentally-
determined interactions and our predictions, we first need to determine the total sample 
space (N). As we discussed in the text, splicing forms of the same gene are removed, 
which cut the number of genes in worm genome to 19485, 3697 of which have at least 
one yeast homolog. Only 2816 baits, 785 of which have at least one yeast homolog, have 
been used in the two-hybrid experiments. Therefore, a pair of interacting proteins will not 
be identified by the experiments, if neither of them are baits. Likewise, a pair of 
interacting proteins will not be identified by the family interaction mapping method, if 
neither of them have at least one yeast homolog. Therefore, the sample space (N) is 
2.6x106; S1 = 1982; S2 = 26875; X = 45. The numbers for specific groups are given in 
supplementary table 2. 
 
In a more simple minded way, one could conceivably think in terms of the 3730 
experimentally-determined interactions and our 55223 predictions being sampled from 
the potential 2x108 pairs in the worm genome. Thus, the sample space (N) is 2x108; S1 = 
3730; S2 = 55223; X = 45. The calculated P value is 9.2x10-7, which is slightly better than 
the one that we calculated above (P < 10-5). 
 

Supplementary table 2. Parameters for hyper-geometric 
models 

 
Group N S1 S2 X 

All 2.59E+06 1982 26875 45 
Proteasome 1.14E+05 123 1644 20 

DDR 1.54E+05 107 455 6 
Vulval-dev 4.06E+04 98 1092 4 

Others 2.33E+06 1645 22309 16 
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