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Abstract

The ultimate goal of functional genomics is to define the function of all the genes in the genome of an organism.
A large body of information of the biological roles of genes has been accumulated and aggregated in the past
decades of research, both from traditional experiments detailing the role of individual genes and proteins, and
from newer experimental strategies that aim to characterize gene function on a genomic scale.

It is clear that the goal of functional genomics can only be achieved by integrating information and data
sources from the variety of these different experiments. Integration of different data is thus an important chal-
lenge for bioinformatics.

The integration of different data sources often helps to uncover non-obvious relationships between genes, but
there are also two further benefits. First, it is likely that whenever information from multiple independent sources
agrees, it should be more valid and reliable. Secondly, by looking at the union of multiple sources, one can cover
larger parts of the genome. This is obvious for integrating results from multiple single gene or protein experi-
ments, but also necessary for many of the results from genome-wide experiments since they are often confined to
certain (although sizable) subsets of the genome.

In this paper, we explore an example of such a data integration procedure. We focus on the prediction
of membership in protein complexes for individual genes. For this, we recruit six different data sources that
include expression profiles, interaction data and essentiality and localization information. Each of these data
sources individually contains some weakly predictive information with respect to protein complexes, but we show
how this prediction can be improved by combining all of them. Supplementary information is available at
Ibioinfo.mbb.yale.edu/integrate/interactions/I

Abbreviations: 77?

Introduction For example, microarray experiments measure
mRNA expression under various cellular conditions

With the recent flux of genome sequences comes the
challenge for functional genomics to ascribe biologi-
cal information, including structure, localization,
function and regulation, to every gene in the genome.
Numerous experiments to study the genome, tran-
scriptome or proteome of organisms have become
commonplace, and new algorithms are being devel-
oped to help turn the rapidly increasing amount of
whole-genome data into useful biological knowledge.

and are currently one of the most prominent experi-
ment approaches [1-5]. The expression profile of a
gene can shed light on its cellular function, and relate
genes with similar or opposite functional roles. To
measure gene function in terms of mutant phenotype,
genome-wide deletion and transposon disruption
strategies have been developed [6, 7]. Protein chips
can directly assay the properties of proteins [8, 9].
Another major experimental area is the yeast two-hy-
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brid assay which detects genome-wide protein—pro-
tein interactions and allows the construction of net-
works from which protein function and regulation can
be inferred [10, 11]. In addition to these relatively
new developments, there is of course also the large
body of biological knowledge accumulated in the past
decades of research.

However, relying on any one of these methods or
data sources aloneis often not sufficient to unambigu-
ously determine the function of uncharacterized
genes. There are many examples of combining differ-
ent genomic-scale data sources in the literature. The
trivial case is the integration of two data sources. This
is often the minimum amount of integration needed
to interpret a genomic-scale experiment. This point
might be so obvious that most researchers would not
view it under the angle of data integration. For in-
stance, previous efforts to interrelate information
from two genomic datasets include analyzing expres-
sion data by a variety of supervised and unsupervised
methods and comparing to functional categories, tran-
scription-factor binding sites, protein families, pro-
tein—protein interactions, and protein abundance [12—
26].

There have been considerably fewer attempts to
integrate more than two types of whole-genome data.
One example was the combination of expression cor-
relations, phylogenetic profiles and patterns of do-
main fusion to predict protein function [27]. In an-
other study, a Bayesian framework was used to inte-
grate expression, essentiality, and sequence motif data
for the prediction of protein subcellular localizations
[28, 29].

There are several benefits of combining experi-
mental and computational data sources. Often, one
may be able to uncover non-obvious and potentially
significant relationships, such as those between ex-
pression and chromosomal positioning or subcellular
localization [29, 30].

Moreover, the integration of multiple sources ob-
viously increases the range of the genome that can be
characterized. This benefit of increasing coverage is
obvious for integrating many of the experiments for
individual genes or proteins, but is also valid for the
combination of multiple genomic-scale experiments.
Because of experimental limitations, it is in many
cases difficult to conduct experiments that really in-
clude the complete genome. Thus, many genomic-
scale experiments have been performed on sizable but
only limited fractions of the genome.
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When multiple experiments cover the same genes,
then there are other benefits from combining data. Do
the experiments agree, thus confirm each other and
increase the confidence in the results, or did they
yield conflicting information, thus leaving the result
open for further investigation? In general, the combi-
nation of different data sources should help to in-
crease the reliability of the interpretation of experi-
mental results.

Of course, these last two goals of increasing cov-
erage and reliability tend to be in conflict with one
another. The reliability of information confirmed by
independent sources usually increases, but in general
the more sources are required to agree, the fewer the
number of instances where this is the case. This is
because the intersection between two datasets is al-
ways equal or less in size than the two data sources
individually. Thus, one often has to find the right
trade-off between coverage and reliability.

In this paper, we look at one particular example of
data integration to discuss the issues mentioned
above. Specifically, we focus on the prediction
whether two yeast proteins are members of the same
protein complex or not. We propose combining ex-
pression and interaction datasets and essentiality and
subcellular localization data to this end. In order to
judge whether the prediction is successful, we use the
MIPS complexes catalog as the standard for known
protein complexes [31]. Our study is preliminary but
intended to show possible ways of combining new
genome-wide datasets to ultimately determine all pro-
tein complexes. Similar ways of combining genome-
wide datasets for predicting other kinds of biological
information, such as biological functions or pathways
could be possible as well.

What we are trying to do here is not so much
characterizing or functionally defining individual
genes, but rather pairs of genes or proteins that inter-
act with one another in a complex.

There are a few reasons why we concentrate on
protein complexes. Yeast-two hybrid data, one of the
data types we use, can potentially be used to predict
protein complexes. In addition, protein complexes
also have a variety of nice properties that can be ex-
ploited for our data analysis. We start with the as-
sumptions that:

1. The function of any protein complex depends on
the function of its subunits; thus a complex is dys-
functional if one of its subunits is dysfunctional or
missing; and



2. There are a variety of protein properties that
should be shared by all subunits of a complex (for
instance, if the complex has a particular biochemi-
cal function, then this most likely also provides a
functional definition for its subunits).

Although these assumptions are rarely strictly met in
reality, they provide some practical help for our task.
Assumption #1 has implications for the prediction of
protein complexes with expression data, as we will
show below. Assumption #2 allows us to make use of
essentiality and localization data for complex predic-
tion.

In a previous publication, we have shown that the
subunits of permanent protein complexes have a sig-
nificant tendency to be coordinated in terms of their
mRNA expression levels [21]. This can be explained
by assumption #1). If the function of the complex
were dependent on the presence of all its subunits, it
would be energetically costly for the cell to express
them in an uncoordinated and haphazard fashion.

Methods
Data sources

Many of the data sources we list in the following
paragraphs might be only weakly predictive with re-
spect to protein complexes and they may lead to many
false positives and negatives if taken individually.
However, we show later that combining the individ-
ual datasets can still lead to a relatively reliable pre-
diction of protein complexes. Furthermore, it will be-
come evident which data sources contribute most or
least to the prediction.

Expression data
Two expression datasets were used: a cell-cycle ex-
periment [32] and the Rosetta yeast compendium
[33]. The two datasets represent different experimen-
tal methodologies and provide a reasonable sampling
of the possible cellular states of yeast. The cell-cycle
data contain expression profiles obtained from syn-
chronized cells over the course of two cell cycles,
whereas the Rosetta data contains genome-wide ex-
pression ratios for 300 stationary cell states, which
are derived from 280 gene deletions and the 20 drug
interaction experiments.

For the Rosetta data, we focused on those protein
pairs whose correlation exceeds a certain threshold
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(0.52). This selects about 300 000 protein pairs from
among the 18 000 000 theoretically possible.

For the time course data of the yeast cell cycle, we
not only looked at regular correlations but also at
correlations for time-shifted and inverted expression
profiles. In this case, the threshold criterion was a
match score of 13 [23].

These selection criteria are arbitrary in some sense,
and other criteria (such as excluding genes that do not
change at least two-fold in expression) are possible.
However, our simple purpose here was to create
datasets of protein pairs of manageable size that are
likely related to protein complexes.

Predictive information of expression data

In this section, we would like to survey the ability of
expression data to predict membership in protein
complexes, and particularly address the following two
questions:

1. To what extent can we predict that a protein be-
longs to a complex based on its expression corre-
lations? Conversely, to what extent can we predict
the expression correlation of a pair of proteins,
given they are in a complex?

2. To what extent are pairs of proteins with highly
correlated expression levels accounted for by rela-
tionships other than membership in a complex,
e.g., being in the same metabolic pathway?

A simple way to analyze these questions is to look at
the conditional probability P(class|C) that two pro-
teins are in the same particular class (e.g., functional
class or complex) given that their expression profiles
have a particular correlation C. We expect this condi-
tional probability to increase with rising correlation
C. Unfortunately, it is difficult to compare this varia-
ble between complexes differing in size, as we are
much more likely to find two randomly selected pro-
teins within a large complex than a small one. We,
therefore, compare the odds ratio P(complex|C)/
P(complex) between different complexes. In this case,
the probability of two random proteins being in the
same protein complex P(complex) functions as a nor-
malization factor correcting for complex size. To bet-
ter understand the meaning of this ratio, we can re-
write it applying Bayes’ rule:

P(complex| C)/P(complex) = P(C|complex)/P(C)

We can see that the right-hand side of the equation
represents the distribution of correlation coefficients
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of the pairs with known biological interactions di-
vided by the distribution of correlation coefficients of
all possible pairs of genes in this genome.

Figure 1A shows the results of the odds-ratio cal-
culations, addressing the first question above. As ex-
pected, the odds for finding a protein in a complex
increase with higher levels of correlation. Note, how-
ever, this increase is much steeper for the permanent
complexes than transient ones. This means that a
highly correlated pair of genes has much greater odds
of being in a permanent complex, by an order of mag-
nitude or more. If we factor in that there are in gen-
eral many more interactions in permanent complexes
than transient ones, we can see that there is an over-
whelmingly greater chance that a highly correlated
pair of genes will be in a permanent complex than a
transient one. Specifically, by adding up the interac-
tions, we can see there are ~ 13 : 1 odds of finding a
pair of proteins in a permanent complex as opposed
to a transient one, independent of gene expression.
However, if genes have an expression correlation
close to 1, the odds rise to ~ 1530 : 1. Conversely, if
the genes have a correlation close to — 0.5, then the
odds drop precipitously to — 1 : 9. (Due to their size
and great degree of correlation, the cytoplasmic ribo-
somes could potentially skew the results. Conse-
quently, in the figure, we show the results for the per-
manent complexes, with and without the ribosome.)
Overall, one can observe that in the high correlation
coefficient region, the overall likelihood of belonging
to a protein complex for two genes is much higher
than expected because their odds ratios are much
larger than 1. On the other hand, in the low correla-
tion coefficient region, the likelihood of finding inter-
actions is either close to or lower than expected ac-
cording to their odds ratios. The likelihood of finding
two genes belonging to a protein complex increases
monotonically with the expression-profile correlation
coefficient, which means there is some predictive in-
formation for protein complexes in the gene expres-
sion data.

Figure 1B addresses the second question, compar-
ing the odds ratios for protein complexes with those
for proteins belonging to the same metabolic pathway
[31]. The observed odds ratios are similar to those for
transient complexes. This indicates that the odds of
highly correlated genes being in the same pathway are
similar to those for being in a transient complex but
substantially lower than for being in a permanent
complex.
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Interaction data

It is a straightforward idea to predict membership of
protein complexes with existing interaction data. For
this purpose, we looked two yeast two-hybrid datasets
[10, 11].

The yeast two-hybrid data present in some sense
different types of interactions from those among the
groups of proteins unified in complexes. This is illus-
trated in Figure 2. Still, the yeast two-hybrid data can
of course contribute to the prediction of protein com-
plexes, although it is far from sufficient in itself and
needs to be complemented with other data sources.

Essentiality data

Essentiality data comes from the MIPS database as
well as from transposon and gene deletion experi-
ments [6, 7, 31]. We look here at whether two pro-
teins are either both essential or both non-essential as
an indicator for membership in the same protein com-
plex. If a complex is essential, then its subunits
should also be essential if they are necessary for the
function of the complex as a whole.

Localization data

The localization information we use comes from
merging data from the MIPS, Swissprot, and YPD
databases [28, 31, 34, 35]. If the localization is
known, each protein is located in one of the five gen-
eral compartments: N (nuclear), C (cytoplasm), M
(mitochondria), E (extracellular environment or
secretory pathway), T (transmembrane). If two pro-
teins are in the same compartment, we use this as an
indicator of potential membership of the same protein
complex.

MIPS complexes catalog

The MIPS complexes catalog provides a complete list
of the currently known protein complexes in yeast
[31]. We extracted all possible protein pairs within the
same complexes from the complexes catalog. We
used this list in order to judge the performance of our
prediction.

We systematically removed all those protein
classes from the catalog that do not really represent
complexes, but rather aggregated classes of related
proteins. This left us overall with 8250 different pro-
tein pairs within the same complexes.
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Figure 1. We show different plots of the odds ratio P(class|C)/P(class), which is the ratio of the conditional probability of two proteins with
a correlation C being in the same protein class to the probability of finding these two proteins in the same class independent of the corre-
lation. (A) focuses on different complex classes. Two proteins are considered to be in the same class if they are both in the same complex.
(B) shows the odds ratios for four representative pathways compared with those for permanent complexes from (A). In this case, proteins are
considered to be in the same class if they are both participating in the same pathways (according to the MIPS functional catalog) or if they
are directly interacting with one another by a genetic, physical or yeast two-hybrid interaction.

The definitions of permanent and transient complexes can be found in a previous publication [22]. Complexes with 10 or more subunits that
are neither classified as permanent or transient are listed as ‘other’.

In general, all odds ratios show a comparable significant increase as a function of the correlation C. However, the ‘permanent’ complexes
show the greatest difference between odds ratios for high and low correlations.
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—

Protein complex with
4 subunits

Binary interaction
network
Figure 2. Conceptually, there are two different types of protein ‘in-
teractions’. First, there are binary-type interactions between pairs
of proteins such as those measured by the yeast-two hybrid system
(shown in the left part of the figure). These interactions are mostly
of a physical nature, that is, the proteins are interacting with one
another through a structural contact interface. Taken together, the
collection of these interactions results in a whole network of ge-
nome-wide binary links between proteins. Secondly, there are in-
teractions of whole groups of proteins that together form a struc-
tural complex (shown in the right part of the figure). Although not
all of the subunits in a protein complex are in structural proximity
and thus do not physically interact with one another, they form a
coherent structural unit as a whole with common properties. For
instance, if the protein complex localizes in a particular subcellular
compartment, then all its subunits should be present in the same
compartment as well. Thus, the subunits share certain properties,
regardless of their structural proximity in the complex. The sche-
matic shows the example of a protein complex composed of four
subunits, with each link indicating a shared property between two
subunits. All subunits are equally linked with the other subunits,
thus, the resulting graph is complete with (42 —4)/2 =6 edges be-

tween the 4 nodes (proteins).

How to go about combining datasets

How should one go about combining these different
data sources to improve prediction? The problem can
be thought of as overlapping different protein—protein
interaction networks (interactomes). Two different ex-
tremes can be imagined. For networks with individu-
ally low FP but high FN rates, the benefit of combin-
ing data comes from looking at the union of the dis-
parate datasets. On the other hand, for networks with
individually high FP and low FN rates, it is most use-
ful to look at their intersection (see Figure 3).
Given that individual datasets have different FP
and FN rates, they should be weighted differently. In
general, there should be more effective rules for com-
bining networks. Rather than building the union or
intersection for all of the datasets at once, one should
look at different combinations of unions and intersec-
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Figure 3. The integration of different datasets to predict member-
ship in protein complexes can be visualized as overlapping differ-
ent protein—protein interaction networks (interactomes). Two dif-
ferent extremes can be imagined. On the one hand, the networks
might be associated with low FP but high FN rates (left). In this
situation, the benefit of combining data comes from looking at the
union of the disparate datasets. On the other hand, the individual
networks might be associated with high FP but low FN rates (right).
In this case, it is most useful to look at intersections of the differ-
ent datasets. Circles represent proteins, links interactions, and dot-
ted lines known associations.

Individual datasets should be weighted differently, given their dif-
ferent FP and FN rates. The data from some sources might be more
reliable than from others. This is illustrated in the right hand panel,
where the thicker lines correspond to lower FP rates.

tions among the datasets [36]. What kinds of data
combination rules can one use in order to achieve si-
multaneously a low error rate and a high coverage of
the prediction?

Note that there needs to be some degree of inde-
pendence or orthogonality between the datasets in or-
der for the integration to work properly.

A more refined integration strategy than just inter-
sections or unions of all datasets would be to first di-
vide the data into all possible combinations of differ-
ent subsets (see Figure 4).

Then one could go about determining the error
rates for each subset by comparing the protein pairs
in each subset with the MIPS complexes catalog as a
standard. The error rate for a subset is defined as the
fraction of false positives among the predicted inter-
actions. We explain, in the results section below, why
the error rate rather than the false positive rate [ = FP/
(FP + TN)] should be the crucial statistic.

Once this is done, the question remains which sub-
sets to include for the best final prediction. It seems
best to start with ordering all the subsets with respect
to their error rates. One would pick the subset with
the lowest error rate first and then successively add
the subsets with the lowest remaining error rates.
Each time, this would increase the coverage while in-
creasing the error rate by the smallest amount. The
process of including more and more subsets (i.e., ac-
cepting that the protein pairs in them are positives)



Data source A

Data source B

Data source C

Data source A
Subset
profile

Data source B
Data source C

011

Figure 4. Hypothetical integration of three datasets. We define a
binary ‘subset profile’ for each of the subsets of the Venn diagram.
For instance, the profile ‘101’ encompasses all data points that are
present in dataset A and dataset C, but not in dataset B. The degree
of intersection of a subset can be defined as the sum of the profile.
For instance, for profile ‘101’ the degree of intersection is 2, mean-
ing that two data sources are intersecting. These definitions are
useful when dealing with more than three data sources (see Figure
5). When integrating an increasing number of data sources, gener-
ally the error rates go down if more and more datasets agree with
one another (although this is not necessarily the case). In other
words, the error rates go down with increasing intersection among
the several datasets. In the Venn diagram, darker shaded areas sche-
matically indicate lower error rates. As the Venn diagram shows,
there are overall 7 different subsets for 3 data sources. In general,
for N data sources, there are 2V — 1 different subsets.

While focusing on the subsets of the data with higher degrees of
intersection between the different data sources tends to reduce the
error rate, it simultaneously reduces the coverage. The higher the
degree of intersection of a subset, the fewer data points the subset
usually contains.

Thus, an optimal strategy for combining multiple datasets would
be to find a reasonable trade-off between the highest possible cov-
erage and the lowest possible error rate. For the schematic example
in the figure, one could for instance start by first considering the
subset ‘111’ (the intersection of datasets A, B, and C), thus choos-
ing the subset the with the lowest error rate. Then, in order to in-
crease the coverage, one could subsequently add the subsets with
the lowest error rates, in this case the subsets ‘101’ and ‘110’°, and
so on. This would increase the coverage while simultaneously in-
creasing the overall error rate at the lowest amounts. A practical
example of this strategy is shown in Figure 5.

An open question is how to determine the error rate. In our ex-
ample, we use the MIPS complexes catalog as the standard for
protein complexes. We look at how the protein pairs in each subset
profile compare with this standard and compute empirical error
rates based on that.
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should stop after a good compromise between cover-
age and error rate is reached.

Results

How much predictive information is there in the
individual datasets?

Table 1 shows the six data sources we used in the
prediction of whether two genes belong to the same
protein complex. Before combining the data, we in-
vestigated to what extent the individual data sources
overlap with the MIPS complexes catalog. For in-
stance, for the expression data we asked how likely it
is that two genes belong to the same complex based
on whether their expression profiles exceed a certain
similarity threshold (see Table 1 for details). Table 1
shows the resulting false-positive (FP) and false-neg-
ative (FN) rates if gene pairs are solely classified
based on these threshold criteria, after comparing it
with the MIPS complexes catalog. For both the cell
cycle and the Rosetta data, the FP rates are 1.6%
whereas the FN rates are well above 50%.

There are many protein pairs predicted to interact
according to the individual data sources that are not
in the MIPS complexes catalog. We define these as
FP. This is, of course, because the MIPS complexes
catalog is far from complete (not all protein complex
interactions are known); thus the FP either represent
protein pairs that do not interact in reality or new in-
teractions not previously recorded in the MIPS com-
plexes catalog. Thus, the FP are ‘false’ in the context
of this classification and a machine-learning sense,
rather than in a biological sense. However, the num-
ber of FPs we report here can be regarded as an up-
per bound of the real number of FPs if all protein—
protein interactions were known. They also provide a
numerical criterion to rank the data sets. If we assume
that the protein—protein interactions from the MIPS
catalog are a representative subset of all protein—pro-
tein interactions, then the ranking of the FP rates
should not change very much if all interactions are
known. Thus, we can rank the subsets in terms of
their quality (see supplementary website).

For the essentiality and localization data, we asked
how likely it is that two genes belong to the same
complex if they both have the same essentiality and
the same localization. Again, Table 1 shows the re-
sulting FP and FN rates.
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Table 1. The table shows the six data sources we used in the prediction of whether two genes belong to the same protein complex. Here we
look at the data sources individually before combining them. The first two data sources are expression data, from the yeast cell-cycle time-
course by Cho et al. [32] and from the Rosetta knockout experiments [33]. The third and fourth data sources are both from yeast two-hybrid
experiments [10, 11]. The fifth and sixth data sources stem from information about the essentiality of genes [6, 7, 31] and the subcellular
localization of their proteins [28, 31, 34, 35].

Data source TP FN TN FpP FN rate (%) FP rate (%) & (%)
Cell cycle 3466 4784 17703707 296293 58.0% 1.6% 98.8
Rosetta 2772 5478 17720318 279682 66.4% 1.6% 99.0
Y2H (Uetz) 50 8200 17999109 891 99.4% 0.0% 94.7
Y2H (Ito) 78 8172 17995806 4194 99.1% 0.0% 98.2
Essentiality 2718 5532 15520460 2479540 67.1% 13.8% 99.9
Localization 7220 1030 17523304 476696 12.5% 2.6% 98.5

We have shown expression data to be predictive with respect to protein complexes, but so is the information about essentiality and subcel-
lular localization. The reasoning is simply that if two genes belong to the same complex, then they should have the same or similar properties
in terms of essentiality and localization of their protein products. If one subunit of a complex is essential, then the other subunits are often
essential as well, and if a complex is present in a particular cellular compartment, then its subunits should most likely be present in the same
compartment too.

We investigated to what extent we can predict whether two genes are in the same protein complex based on each of these data sources
individually. For instance, for the expression data we asked how likely it is that two genes belong to the same complex based on whether
their expression profiles exceed a certain similarity threshold. For the cell-cycle data, we looked at gene pairs for which either the regular
correlation or the time-shifted and inverted correlations exceed a threshold with a match score of 13 [23]. For the Rosetta data we simply
looked at gene pairs that exceeded the regular (Pearson) correlation of 0.52. Each of these criteria yields about 300000 protein pairs. As the
standard to decide whether two genes really belong to the same complex, we used the complex catalog from the MIPS database. Table 1
shows the resulting FP and FN rates if gene pairs are solely classified based on these threshold criteria [FP rate = FP/
(FP + TN) = 1 — sensitivity and FN rate = FN/(FN + TP) = 1 — specificity]. For both the cell cycle and the Rosetta data the FP rates are
1.6% whereas the FN rates are well above 50%.

For the essentiality and localization data, we asked how likely it is that two genes belong to the same complex if they both have the same
essentiality and the same localization. Table 1 shows the resulting FP and FN rates. Note the low FN rate for the localization data, indicating
that two proteins with different subcellular localizations are very likely not interacting in a complex, as expected.

At first, the low FP rates seem to be an encouraging result. However, we are facing the problem that there is only a low number of positive
relative to negative gene pairs in the yeast genome. There are only 8250 protein pairs in all protein complexes according to the MIPS catalog,
but the number of negative pairs is about 18000000 (= 60002%/2 given that there are about 6000 genes in the yeast genome). Thus, even a
relatively low FP rate results in a relatively high absolute number of false positives. The lower part of the table, showing absolute numbers
of false negatives and positives, indicates this. The error rate &£ = FP/(TP + FP) represents the fraction of FP gene pairs among all positively
predicted gene pairs (with TP being the number of true positives). For each data source the error rate is almost 100%. For an acceptable
prediction the error rate should be at least lower than 50%.

At first, the low FP rates seem to be an encourag-
ing result. However, we are facing the problem that
there is only a low number of positive relative to
negative gene pairs in the yeast genome. Recall that
there are only 8250 protein pairs in all protein com-
plexes according to the MIPS catalog, but the num-
ber of negative pairs is about 18000000 ( = 6000?%/2,
given that there are about 6000 genes in the yeast ge-
nome). Thus, even a relatively low FP rate results in
a relatively high absolute number of false positives.
The lower part of Table 1, showing absolute numbers
of false negatives and positives, indicates this. The
error rate € = FP/(TP + FP) represents the fraction of
FP gene pairs among all positively predicted gene
pairs (with TP being the number of true positives).
For each data source the error rate is almost 100%
(see lower part of Table 1). For an acceptable predic-

tion the error rate should be at least lower than 50%.
Again, we should mention here that the FPs are not
necessarily ‘false’ in a biological sense. Thus, the er-
ror rates would be lower if all interactions were
known.

Thus, an optimal combination of all these four data
sources should not only aim to minimize the overall
FP and FN rate, but also the error rate .

Combination of datasets to predict protein
complexes

The application of our combination strategy to the six
data sources is shown in Figure 5. With six data
sources, there are 2% — 1 possible subsets. Each of the
subsets is represented as an open circle on the graph,
with the abscissa representing the total error rate and
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Figure 5. Here we show how the error rate and coverage change as we include more and more subsets for the prediction of membership in
protein complexes. The subsets arise from the combination of the 6 data sources shown in Table 1. The abscissa shows the total error rate in
decreasing order, whereas the ordinate shows the number of true positives, a measure of the coverage. We start in the lower right of the graph
with the subset ‘111101” (the subset profile is explained in the legend at the bottom). There is only one protein pair in this subset, which is
also present in the MIPS complexes catalog. Thus, we record 1 true positive and an error rate of 0%. Next we include the subsets ‘011011’
and ‘101011°, which increase the number of true positives to 4. The next subset with the lowest error rate among the remaining ones is
‘110101°, which includes 3 true positives and 1 false positive. Thus, at this point, the total coverage would be 7 true positives, while the total
error rate has increased to 1/(1 +7) = 12.5%. The process of including successive subsets with the lowest error rate can be continued such
that the coverage increases at the cost of a minimally increasing total error. The total error rate can be computed as & = SFP/(SFP + X TP).
The first 11 of the 63 (=2°—1) subsets with the lowest error rates are labeled in the figure. Note that subsets with higher degrees of
intersection generally have lower error rates, whereas subsets with lower degrees of intersection contribute more to coverage (although this
relationship is not strict, given that the different data sources are of varying quality). In fact, several of the subsets with high degrees of
intersection (>4), are empty. The subset with the highest degree of intersection ‘111111” is not shown because it did not contain any data.
The subset ‘110001° — which is the intersection of the two expression data sets and the localization data — causes the coverage to increase
strongly, but pushes the total error rate above 50%. In the extreme, when all subsets are included, both the coverage and the error rate are
near 100%.

the ordinate showing the number of TPs, a measure
for coverage. (If TP = 8250, then the coverage is
100% because all protein pairs from the MIPS com-
plex catalog would have been detected.) The subsets
are ordered with decreasing error rate from left to
right. The successive inclusion of subsets would start
in the lower right of the graph. Then more and more

subsets would be added, moving along the graph in
the upper left direction. The points associated with
particular subsets show the total error rate and the to-
tal coverage if all subsets up to the current one were
combined (i.e., accepting all the protein pairs in them
as positives).
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The total error rate can be computed as & = XFP/
(SFP + 3TP) where SFP and TP are the sums of the
numbers of all false and true positives in the subsets
included.

Note that, in general, there is a tendency for the
subsets with a higher degree of intersection to exhibit
lower individual error rates, whereas the subsets with
lower degrees of intersection often contribute more to
the coverage.

Summary of results

In summary, Figure 5 clearly shows that one can find
combinations of subsets of all the data sources that
have much lower error rates than the data sources in-
dividually. Recall that these individual error rates
were close to 100% (see Table 1).

In general, Figure 5 shows that, as expected, the
error rates of subsets decrease the more agreement
there is between the individual datasets. However,
this relationship is not strict in the sense that some
individual datasets carry more weight than others do.
For instance, the subset ‘001101’ has a lower error
rate than ‘010111°, although there are fewer individ-
ual datasets that predict an interaction.

The computation of error rates thus gives a numer-
ical measure to weight the confidence in certain pro-
tein—protein interactions. The smaller the error rate of
a subset, the larger is the weight that we can place on
the interactions in the subset. Furthermore, some in-
dividual data sources seem to carry a weight of close
to zero. This is the case for the essentiality data be-
cause there seems to be little difference in the error
rates of subsets that contain the essentiality data and
those that do not. In hindsight, the essentiality data
did perhaps provide the least information with respect
to protein complexes.

A trade-off between error rate and coverage has to
be made. In our example, the error rates for many of
the individual subsets are so high that a small cover-
age (with low error rates) seems advisable. For in-
stance, if we confine ourselves to the 10 subsets with
the lowest error rates (with a coverage of 42 TP), then
the total error rate stays below 50%. A list of the pro-
tein pairs and error rates in these 10 subsets is avail-
able on our supplementary website.

Of particular interest is the subset ‘110001°, in
which the two expression experiments and the local-
ization data would predict a protein pair within a
complex. This subset adds only a small amount of
additional error, but a large amount of additional cov-
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erage. An interesting aspect is that none of these three
data sources were initially intended to detect protein—
protein interactions per se. Given that the MIPS cata-
log of protein complexes is incomplete, the actual er-
ror rate of this subset should be lower. Thus, one may
speculate that expression and localization experi-
ments should provide a valuable tool for identifying
protein complexes in organisms that have not been
studied yet extensively.

Again, we note that the generated FPs are not nec-
essarily FPs in the biological sense, especially if the
error rates are low. There are overall 37 FPs in the
subsets mentioned above. A further investigation of
the results should focus on an analysis of the FPs, in-
cluding further experiments.

Discussion

We have shown that the integration of different data
sources can yield a combined dataset that has a sub-
stantially lower error rate than the individual datasets.
The lower error rate comes at the cost of lower cov-
erage, since those subsets of the data on which many
of the independent data sources agree tend to be rare.
For the example of predicting protein complexes, we
have shown a procedure of how to identify these sub-
sets of high quality.

Our procedure could be improved in many aspects.
For instance, in the treatment of expression data, we
arbitrarily chose particular correlation thresholds. The
correlation thresholds could be optimized with re-
spect to the final prediction. Many more datasets
could of course be included in our analysis. For the
special case of predicting complexes, one could also
take the connectivity of the resulting interaction net-
works into account in addition to just looking at their
overlap.

The MIPS complexes catalog reflects the currently
known inventory of protein complexes in yeast, but
this catalog is probably far from complete. This of
course affects our analysis, in that FPs might give
hints at where true protein complexes actually exist.
This should be analyzed by further computational or
experimental investigations.

The ideas proposed here could have two major
impacts on functional genomics. First, our procedure
could be used to identify new protein complexes in
yeast. Second, they could be used to characterize pro-
tein complexes in newly sequenced organisms that
have not been studied as extensively as yeast by tra-
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ditional methods, but for which new genome-wide
experiments are available.

Supplementary information

Supplementary information is available at |l-1ttp://bi0-|

[info.mbb.yale.edu/integrate/interactions/
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