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Abstract— We describe two novel methods for predicting pro-
tein interactions, using only the topology of an observed protein
interaction network. The first method searches the protein
interaction network for defective cliques (i.e. nearly complete
complexes of pairwise interacting proteins), and predicts the
interactions that complete them. The second method computes
the diffusion distance between each pair of proteins and then
infers an interaction when such distance is below a given
threshold. We show that both methods have a good predictive
performance and compare their results.

I. INTRODUCTION

A fundamental problem in modern biology is the identifi-
cation of the complete set of interactions among the proteins
in a cell [12], [10], [7]. Different experimental methods are
available to identify such interactions, and they can be roughly
divided into two main categories: small-scale (low throughput)
and large-scale (high throughput) techniques. Given a set of
proteins, small-scale techniques such as co-IP determine the
interaction between one pair of proteins at a time [18], [11],
[17], [1]. On the other hand, large-scale techniques, e.g. yeast
two-hybrid and TAP-tagging, allow identifying a large number
of interacting pairs in a single experiment [3], [4], [5], [15].

With the advent of genome-wide analysis, we are interested
in the identification of the interaction among a great number
of proteins (even of all the proteins in a genome). When
the number of proteins is in the thousands, the number of
possible interacting pairs is in the millions [8]. To discover
all these interactions using small-scale experiments becomes
very labor-intensive and time-consuming, and in this situation
large-scale experiments are preferred.

However, low throughput experiments allow much more
precise identification of the interacting pairs than high through-
put experiments — the latter are known to be more error-
prone [6], [16].

Two types of errors are possible: the large-scale experiment
can wrongly indicate that an interaction exists, i.e. yield a
false positive (FP); or it can fail to detect an interaction
that actually exists, thus producing a false negative (FN).
However, experimentalists would agree that the these two
types of errors occur with different frequency in large-scale
experiments. While false positives have “higher visibility”

due to the relatively small number of true interactions, it is
generally observed that experiments allow a higher absolute
degree of confidence when an interaction is observed, but
a much lower degree when no interaction is detected. In
other words, most of the errors (as an absolute count, not
relative to the numbers of actual interacting or noninteracting
protein pairs) are false negatives: it is believed that when no
interaction is detected, it is not unlikely that the interaction
actually exists, but the experiment has failed to detect it. In
support of this observation, Figure 1 shows the differences
between the low-throughput and high-throughput experimental
data on protein-protein interactions in a subset of 56 proteins
of S. cerevisiae, for which we were able to obtain complete
matrices of experimental results. Of the 1596 pairs of proteins
(including possible self-interactions), the results of the two
types of experiments were the same for 1033; in the 563
cases when the results were different, 521 (92.5%) were false
negatives and 42 (7.5%) were false positives.

Ideally, we would like to have a computational method
which would be able to correct many of the errors made by
large-scale interaction experiments.

In this paper we propose two new methods, based purely
on topological properties of graphs representing protein inter-
action networks, that attempt to infer those interactions that
have been missed by large-scale experiments.

II. THE DEFECTIVE CLIQUE COMPLETION ALGORITHM

The basic idea of the defective clique completion algorithm
derives from the way in which pull down experiments, a
particular type of large scale experiments, are carried out,
and particularly from the matrix model interpretation of their
results [3], [4], [13], [2]. In these experiments one protein—the
bait—is used to pull out the set of proteins interacting with it,
i.e. its protein complex, in the form of a list. When such lists
differ only in a few elements, it is reasonable to assume that
this is due to experimental errors, and such elements should
therefore be added (thus making the lists equal). Each list can
be represented as a fully connected graph in which proteins
occupy the nodes. Then the problem of identifying lists that
differ in only a few elements is equivalent to finding a clique



Interactions observed:

in small-scale but not in large-scale (FN)

in large-scale but not in small-scale (FP)

the same in both types

Fig. 1. A graphical representation of the symmetric matrix of the differences between complete protein-protein interaction data obtained in small-scale and
large-scale experiments on 56 proteins of S. cerevisiae. Only the upper triangular part is shown, and element (i, j) of the matrix represents the interaction
between protein i and protein j. White squares indicate interactions observed in small-scale but not in large-scale experiments (false negatives); black squares
stand for interactions observed in large-scale but not in small-scale experiments (false positives); gray squares show protein pairs for which both the small-
and the large-scale experiments produced the same result. The number of false negatives exceeds the number of false positives by an order of magnitude.

with a few missing edges, which we shall call a defective
clique.

We shall represent a protein interaction network with a
graph G, whose vertices V are proteins, and whose edges
E are the pairs of interacting proteins. A clique in a graph is
a set K of vertices such that K × K ⊆ E, i.e. each pair of
vertices in K is connected by an edge in E. The size of this
clique is the number of vertices in it.

As we just discussed, under the matrix model interpreta-
tion of the results of large-scale experiments, two proteins
interacting with the same protein clusters are likely to interact
with each other. Thus in graph-theoretic terms our approach is
based on the following observation about protein interaction
networks:
(∗) If vertices P and Q are both adjacent to each vertex in a

clique K , then it is likely that P and Q are adjacent to
each other, if they are not adjacent already.

This observation can be depicted as shown in Figure 2;
in this example the size of the clique K is 5. The dashed
edge between P and Q corresponds to an interaction which is
missing from the experimental data, but which (according to
observation (∗)) is very likely to occur. We say that P, Q, and
K form a defective clique KPQ with a missing edge PQ.

Clearly the size of K plays an important role in determining
how likely it is that P and Q interact. For example, if the
size of K is 1 (i.e. P and Q both interact with one or more
proteins, but those proteins do not interact among themselves),
the likelihood of an interaction between P and Q is much
smaller than it is in the case when the size of K is, say,
42. Thus a natural parameter of a prediction algorithm based
on observation (∗) is the minimal size k of K for which the
interaction PQ is predicted.

Another parameter with which we can extend observation

(∗) is the number of edges missing from the clique when its
size is sufficiently large. We will discuss the effects of this
parameter in subsection B, when we describe our algorithm in
detail.

A. An algorithm for finding defective cliques

Our definition of a defective clique does not suggest im-
mediately a method for finding such patterns in a protein
interaction network. For this purpose it is useful to find an
alternative characterization of a defective clique in standard
graph-theoretic terms, which will allow us to use some off-
the-shelf algorithms.

The main idea of our algorithm is based on the realization
that a defective clique KPQ of size n with one missing edge
is the union of two (complete) cliques of size n−1, namely
K ∪ {P} and K ∪ {Q}, as shown in Figure 3. Thus we can
reduce the algorithm for finding defective cliques to repeating
the following steps until reaching a fixed point:

1) Step 1: Find all cliques in the network.
2) Step 2:

• Find pairs of cliques overlapping on all but one node
each.

• In each of these pairs predict the edges between the
non-overlapping nodes.

• Add the new edges to the network.
The algorithm terminates when no new edges were added in
Step 2.

However, directly applying this naı̈ve recipe to typical
protein interaction networks is unrealistic, for the following
reason: Since every subset of nodes in a given clique is itself
a clique, the number of all cliques in a graph is at least
2m, where m is the size of the largest clique in the graph.
For example, the experimental data for the protein interaction
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Fig. 2. A defective clique in a protein interaction network; the dashed edge between proteins P and Q corresponds to a predicted interaction.
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Fig. 3. The decomposition of a defective clique into the union of two overlapping cliques.

network of S. cerevisiae we used to test our algorithm (see
Section IV) contains four cliques of size 38; this yields more
than 1012 cliques (even if we do not consider cliques of size
less than 5, whose number is negligible), hence more than
1023 pairs of cliques to check in Step 2 of the algorithm.
Since this number is prohibitively large, we need a more
effective formulation of the algorithm. For this purpose in the
next section we design an equivalent algorithm which only
considers the maximal cliques in the graph.

B. Improving Efficiency Using Maximal Cliques

A maximal clique in a graph G is one which is not contained
in any other clique in G. In the worst case the problem of
finding all maximal cliques still takes time exponential in the
size of the graph1; however, if Step 1 is modified to only
produce the maximal cliques in the graph, as discussed in the
previous section its output would be exponentially smaller than
with the naı̈ve approach. This would reduce by an exponent
the running time of Step 2 of the algorithm.

In practice, the protein interaction networks are rather sparse
(e.g. less than 15,000 interactions are observed with high
confidence in the network of S. cerevisiae, out of over 18

1More precisely, the problem is NP-complete, i.e. only exponential-time
algorithms are known for it.

million possible pairs of about 6,000 proteins [16]). Our results
show that existing algorithms for finding maximal cliques [14]
are very efficient on graphs with this structure.

However, if we only compare maximal cliques for overlap
on all but one node each, as we did with all cliques in the naı̈ve
version, the output of this algorithm will not be the same as
that of the naı̈ve version. The reason is that if a defective
clique KPQ consists of a core clique K and two nodes P
and Q, we know that K ∪ {P} and K ∪ {Q} are cliques,
but in general they are not maximal cliques. Suppose KP and
KQ are cliques containing P and Q respectively, and such
that K ∪KP and K ∪KQ are maximal cliques. (If K ∪ {P}
and K ∪ {Q} are cliques, then KP and KQ always exist, but
are not necessarily unique.) Then Step 2 of the algorithm will
compare K ∪KP and K ∪KQ; however, KP in general may
contain other nodes in addition to P , and these nodes will
not necessarily all be in KQ. As a result, the nonoverlapping
parts of the maximal cliques will consist of more than one
node each, and the naı̈ve algorithm will ignore the pair and
thus fail to predict the edge PQ.

Hence, to obtain the same results as with our original
algorithm, we have to modify Step 2 of the algorithm to look
for partial overlaps of maximal cliques which differ in more
than one node. This leads us to generalize the notion of a
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Fig. 4. Generalized defective cliques.

defective clique as shown in Figure 4. To obtain the same
result as in the original approach, any pair of nodes Pi and
Qj , belonging to the two non-overlapping components KP and
KQ respectively, must be predicted as interacting, because the
original algorithm would have predicted it (since it completes
the defective non-maximal clique KPiQj). The maximal size
n of non-overlapping sub-cliques KP and KQ is a parameter
of the algorithm.

Since even the number of maximal cliques can be significant
(in the hundreds of thousands for some of our experimental
datasets), and their sizes can be in the hundreds of nodes,
the number of comparisons between nodes in pairs of cliques
in Step 2 can still be formidable in practice. We further
reduce the time complexity of Step 2 by organizing the cliques
(represented as strings sorted by node index) into a prefix
tree. This structure allows us to reuse some comparison results
among cliques sharing a common prefix of nodes.

III. THE DIFFUSION DISTANCE ALGORITHM

As we stated earlier, two proteins interacting with the same
protein cluster are likely to interact with each other. This
principle is derived from the way in which pull down exper-
iments are carried out, and the clique completion algorithm
that we have just described is the literal implementation of
this idea. One possible shortcoming of this method is that
edges are inferred only when they are found within specific
defective cliques which comply with a particular setting of the
parameters of the algorithm. However, we may want to think
about our principle in a softer way, and realize that ideally
what we would really like is to infer an edge between two
proteins whenever they are connected by many short paths in
the graph. A possible way of implementing this idea is by
considering diffusion distances.

Let us again think about our protein-protein interaction

prediction problem in terms of graphs, but this time we think
of a graph as a system with some dynamics. We can imagine
that at any given time there are some particles on the vertices
of the graph, and at each time step these particles jump from
one vertex to another with certain probabilities. Since our links
are binary (either an edge exists between two proteins or it is
missing) we shall assign equal probability pi,j to each existing
link going from node i to node j: pi,j = 1/di where di is the
degree of node i. We can collect these probabilities into a
matrix: M = A ·D−1 where A is the adjacency matrix of the
graph and D is the diagonal matrix of the degree of the nodes.
This matrix is called Markov transition matrix and a path that
a particle travels is called a random walk.

Given a graph with n vertices, we can describe the initial
position of a particle as a discrete probability distribution over
the n vertices, that can be written out as a vector v0 ∈ Rn

whose components are all positive and sum to one. Then the
probability distribution of the particle at the next time step is
given by: v1 = M · v0 and the probability after k iterations is
given by: vk = Mk·v0. Therefore, for any initial configuration,
we can compute the probability of ending up in any final
configuration after a given number of steps.

We can now think of this probability as defining some
kind of distance: starting from a given initial node, the higher
the probability of ending up at a certain node, the smaller
the distance between the two nodes. Clearly, such distance
between two nodes will depend on two factors: how many
different paths connect the two nodes, and how long these
paths are.

This type of distance is called Diffusion Distance, and our
idea is to use it in order to measure the connectivity between
two nodes: when two proteins are connected by many short
paths in the graph such distance would be small, and we could
infer an edge between them.



It is possible to show [9] that such distance between nodes
x and y has a simple form:

Dm(x, y) =
n∑

i=1

λm
i · [ui(x) − ui(y)]2

where ui and λi, i = 1 . . . n are respectively the eigenvec-
tors and eigenvalues of a symmetric matrix similar to M , and
m is a parameter denoting the maximum length of the Markov
random walks between x and y which are taken into account
by the measure. The algorithm for inferring protein-protein
interaction then consists of two steps:

1) For each pair of proteins compute the diffusion distance
between them

2) Infer that two proteins interact if their diffusion distance
is lower than a certain threshold τ .

Therefore, as for the clique completion algorithm, this method
requires the setting of two parameters: m, the maximum length
of the Markov random walks; and τ , the threshold for the
distance, below which we should infer the interaction.

IV. RESULTS

Here we shall present the results obtained using our two
methods for inferring protein-protein interactions which had
been missed by large scale experiments.

A. Performance of the Clique Completion Algorithm

We applied the clique completion method to a large scale
experimental dataset of the protein interaction network of S.
cerevisiae obtained combining the results of different separate
experiments by [3], [4], [5], [15]. For this organism we also
had available a gold standard set of protein pairs known with
high degree of confidence to be “positive” (interacting) or
“negative” (noninteracting), published in [7]. The gold stan-
dard set for these tests contained 8250 positive and 2708622
negative pairs. Our idea was to use the gold standard set in
order to check the performance of our algorithm at predicting
protein-protein interactions from a large scale experiment.

Given their experimental and heterogeneous origin, these
datasets present some complications. Firstly, the adjacency
matrix for the gold standard is incomplete, in the sense that for
many pairs of proteins no experiment was performed in order
to verify their interaction. Secondly, the large scale dataset
is also incomplete, in the sense that its adjacency matrix
does not overlap perfectly with the gold standard dataset —
some proteins present in the gold standard were not included
in any of the large scale experiments. So we had to decide
how to treat such missing datapoints and how to evaluate the
performance of the algorithm.

As regards the missing values in the large scale experimental
data, we assumed that in these cases the input data showed
no interaction between the proteins (therefore notice that the
performance of the algorithm should improve if all possible
experiments were performed).

For evaluating the performance of the algorithm we used the
likelihood ratio of the predicted interactions, defined in [7] as

L =

P+

G+

P−
G−

where

P+ is the number of true positives – predicted interactions
which are positive in the gold standard;

P− is the number of false positives – predicted interactions
which are negative in the gold standard;

G+ is the total number of positive pairs in the gold standard;
and

G− is the total number of negative pairs in the gold standard.

Higher values of L correspond to sets of predictions having
higher overlap with the positive and/or lower overlap with the
negative gold standard, and generally indicate better predic-
tors.

The initial large scale experiment graph contains 7047
edges between 2283 nodes. In this graph the Maximal Cliques
algorithm found 543 maximal cliques of size at least 4. Step
2 of the algorithm, configured to search for partial overlaps of
size at least k = 5 and non-overlapping parts of size at most
n = 3, predicted 270 new interactions. Of these, 49 were in the
gold standard set; of them 38 were positive and 11 negative,
which yields a likelihood ratio of 1134.19, significantly higher
than the likelihood ratios of other single features reported
in [7] (essentiality, expression correlation, MIPS function, and
GO biological process), which are below 400.

The chosen values of the parameters are in a “plateau” of
relative stability of the results. The likelihood ratio of the
predicted set was between 59.13 and 3720.94 when varying
the parameters of the algorithm as follows: k (the minimal
overlap size) between 4 and 7, and n (the maximal size of
the non-overlapping parts) between 1 and 20; the number of
predicted interactions was between 12 and 8993. The average
running time was below 4 seconds on a desktop machine.

Taking into account the size of the predicted set, we believe
its high likelihood ratio with respect to the gold standard
is a strong argument for the usefulness of this method as a
predictor of new interactions.

B. Performance of the Diffusion Distance Algorithm

Here we show a preliminary result of the performance of
the diffusion distance algorithm. We took a sub-graph of the
protein interaction network of S. cerevisiae for a set of 43
proteins for which we had information about the interactions
of each pair of proteins in the gold standard set. In other words,
this is a subset of the gold standard set for which there were
no missing values. Then we simulated the experimental noise
present in the large scale experiments by randomly creating
false negatives (FN) in this dataset; that is we randomly turned
a certain percentage of the 1s into 0s. We then tried to see
how many of these FN were fixed by running our diffusion



distance algorithm. Figure 5 shows the results obtained for
different level of noise, for m = 3, and τ = 0.1.
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Fig. 5. Performance of the two algorithms on the 43x43 subset of the gold
standard, for different values of the noise level. The continuous lines represent
the ratio of the number of errors which were recovered over the total number
of errors — the (red) ’*’ line represents the result for the diffusion distance
algorithm, the (green) ’o’ line represents the result for the clique completion
algorithm. The (magenta) ’x’ dashed line represents the ratio of the number
of errors which were introduced over total size of the matrix for the diffusion
distance algorithm. The clique completion algorithm never introduced any
error.

We can see that the diffusion distance algorithm is able
to recover a very high percentage of FN, even for very high
level of noise: when 40% of all 1s are turned into 0s, the
algorithm can correctly recover 99% of them; with 40% noise
the algorithm still recovers about 96% of them. At the same
time, almost no errors are introduced even for high level of
noise.

These results are possible because in this dataset things are
as anticipated by our biological hypothesis: proteins interact
in complexes. Clearly when the noise level is too high,
the complex structure is disrupted and therefore interactions
cannot be recovered and many errors are introduced.

C. Comparison of the two methods

We performed the same experiment using the clique com-
pletion algorithm, with parameters k = 6, n = 17, and results
are also shown in fig.5. We can see that this algorithm also
performs quite well, although it seems to be more sensitive
to noise than the diffusion distance algorithm. For this ex-
periment, the clique completion algorithm never introduced a
false positive, i.e. when it inferred an interaction between two
proteins it was always correct.

V. CONCLUSION

We presented two methods for predicting new protein-
protein interactions, based purely on topological properties of
networks of observed interactions. Each of the two methods

discussed in this paper has its advantages. The main advantage
of the clique completion algorithm over the diffusion distance
one, is that it can always provide an explanation of why a
certain interaction has been inferred, in terms of the cliques
that are completed. Also, it will never introduce a false nega-
tive. On the other hand, the diffusion distance algorithm seem
to provide a better performance due to the extra flexibility
afforded by such distance.

We believe that these methods, although computationally
expensive, have the advantage of being more robust than
other protein-protein interaction prediction methods by virtue
of their independence of non-topological features such as
functional classification.
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