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Rewiring of Transcriptional Regulatory Networks:
Hierarchy, Rather than Connectivity, Better
Reflects the Importance of Regulators
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Network connectivity has been related to essentiality: Highly connected proteins (hubs) are more impor-
tant for cell growth and survival. Although this is intuitively reasonable, another way to assess the role of
a regulator is to assign it to a level within a “chain-of-command” hierarchy. Here, we analyzed the effects
of network rewiring events on transcriptional regulatory hierarchies in two species. First, we
superimposed the phenotypic effects of tampering with specific genes and their regulatory connections
directly onto the hierarchies. To study second-order effects, which involved changes in the level of reg-
ulators within the hierarchy upon deletions or insertions of other regulators or connections, we recon-
structed modified hierarchies. We found that rewiring events that affected upper levels had a more
marked effect on cell proliferation rate and survival than did those involving lower levels. Moreover,
we showed that the hierarchical level and type of change better reflected the phenotypic effect of rewiring
than did the number of changes. We also investigated other features connected to the importance of
upper-level regulators: In particular, relative to lower-level regulators, upper-level regulators exhibited
a greater range of expression values across species, had fewer functionally redundant copies, and
had a shorter half-life. Overall, our analysis shows that broadly constructed hierarchies may better reflect
the importance of regulators for cell growth than classifications based on the number of connections
(hubbiness).
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INTRODUCTION

The transcriptional regulatory machinery consists of a set of transcription
factors (TFs) responsible for regulating the spatial and temporal expres-
sion of genes in any given genome (1, 2). Such functional linkages can be
visualized as a network with edges pointing from TFs to their target
genes. This regulatory network, by analogy to various other kinds of net-
works, has been the focus of efforts to understand the system-level
features of biological organization in the postgenomic age (3, 4). Other
kinds of biological networks, such as protein-protein interactions (5, 6)
and genetic interactions (7), along with other more commonplace ones,
such as social interactions, the Internet, and food webs (4, 8–10), have
also been studied to obtain more intuition into network organization.
Analysis of these diverse networks has revealed various properties, such
as small-world property (11), scale-free nature (10, 12), modularity (13–15),
and disassortativeness (16). Many of these properties are believed to in-
crease the tolerance of networks to errors and deletions (10, 16–18).

The analysis of network robustness to perturbations, such as the de-
letion and addition of nodes and edges, from a dynamic perspective has
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emerged as a new frontier. There have been systematic studies to estimate
the effects of tinkering with networks (19–23). In a biological network,
these perturbations represent such changes as deletion or overexpression
of genes (nodes), or the addition or removal of regulatory connections
(edges) between nodes. For example, Isalan et al. determined the toler-
ance of Escherichia coli to the addition of new regulatory edges between
a subset of regulators by measuring deviations in mutant proliferation
rates from the wild-type rates (21). The accurate determination of prolif-
eration rate and fraction of surviving colonies upon deletion of every
single gene has been accomplished for E. coli and Saccharomyces cere-
visiae (19, 20). For yeast, synthetic genetic arrays have identified genetic
interactions by measuring double mutant fitness through the effect of the
mutations on proliferation rates (7, 22, 24). These studies have identified
the relative importance of genes for cell survival and proliferation by
measuring the phenotypic effect of network rewiring.

In agreement with intuition, the effects of gene perturbations on cell
survival and proliferation fall on a continuum (Fig. 1). On one extreme
are genes for which single knockout mutants are not viable (the cell dies).
On the other extreme, there are genes that can be deleted without any loss
of viability or any defect in proliferation. In the middle, there are genes
that when perturbed produce a range of effects; removal of certain genes
will affect only the expression of a few other genes, whereas others are
synthetically lethal (simultaneous removal of certain nonessential gene
pairs causes cell death), and the loss of yet others causes a conditional
phenotype (where the cell grows only under certain conditions). Thus, the
“essentiality” of genes should be considered as a continuous metric that
has been termed “conditional benefit” or “marginal essentiality” (25, 26).
A given gene’s position along this continuum can be estimated from the
deviation of a deletion mutant from the wild type in terms of prolifera-
tion, the number of colonies with correct structure, or cell survival in a
specific environment.
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Some previous studies suggest that connectivity is related to essentiality—
that is, hubs are often essential parts of the network (18, 26–28). Although
at first this may be intuitively reasonable, connectivity distribution is only
one of the numerous properties of networks. A highly connected protein
can be more indispensable for cell survival, but stipulating this as a re-
quirement or definite signature of essentiality may be an oversimplifi-
cation. Whether the connectivity-essentiality relationship is true or whether
it might be due to a bias resulting from incomplete data remains an open
issue (29). An alternative way to gauge the importance of regulators would
be to assign them to “chain-of-command” hierarchical levels, which are
analogous to the positions held by employees within a corporate or govern-
mental hierarchy. The representation of networks into intuitive hierarchical
structures also provides the potential for greater insight into the organiza-
tional principles governing regulatory networks. For example, these networks
may be arranged into pyramidal hierarchies that share many common char-
acteristics with corporate and government hierarchies (30). Arrangement into
hierarchies has also been used to obtain insights into the evolutionary history
of these networks (31) and to identify modules in the network by a top-down
approach—starting from the whole network structure and identifying sub-
systems or modules by network decomposition (32). The representation of
networks as hierarchies has also been used to identify topological units
(subhierarchies, called “origons”) that originate at the top of a hierarchy
and are responsive to specific environmental signals (33). The interme-
diate levels of these regulatory hierarchies segregate into distinct densely
interlinked subnetworks and integrate signals under specific conditions
(34). Furthermore, within a regulatory hierarchy of TFs, top-level TFs are
relatively abundant, long-lived, and noisy in terms of their abundance in a
cell population, whereas middle-level TFs are involved in more biological
processes and have a larger number of targets (35). Although there has
been a limited analysis of the essentiality of regulators in different hierar-
chical levels in the context of a static network without any perturbations
(30), examination of the phenotypic effects of network rewiring should
provide additional insight into the relationship between hierarchical rear-
rangement and cell proliferation and survival in a dynamic context.
www.
We report the phenotypic effects of tinkering with E. coli and S. cere-
visiae transcriptional regulatory networks organized into a hierarchical
arrangement in the context of static networks, as well as in networks that
undergo rewiring in response to the introduced changes. We mapped the
phenotypic effects of tinkering with different levels to elucidate which levels
were more tolerant to perturbations. To examine how tinkering influenced
phenotype in a dynamic context, we rebuilt the hierarchies in response to
the introduced perturbations and correlated the phenotypic effects to the lo-
cations of changes in modified hierarchies. We studied two kinds of pertur-
bations: addition of new edges to the existing network and deletion of nodes.
We primarily focused on genes that are in the middle of the “phenotypic
effect spectrum”—those genes that, when perturbed, do not cause cell
death but have other intermediate effects.

RESULTS

Construction of regulatory hierarchies
We used a breadth-first search (BFS) algorithm to build hierarchies in a
bottom-up approach (30), which is reasonable because all of the regulatory
interactions point downward in a chain-of-command fashion. With the
BFS algorithm, the TFs that do not regulate any other TF were assigned
to the bottom level (level 1) along with TFs that only regulate themselves
(only autoregulators). Beginning from each level 1 TF, we searched for
their immediate regulators, which were assigned to the level immediately
above (level 2). To handle loops, we placed the targets of TFs and un-
assigned targets in the same level, implying that loops will only be placed
in the same level. Continuing in the same way, we built a breadth-first tree
for both E. coli (list S1) and S. cerevisiae (list S2) consisting of four levels
in a pyramidal shape (with level 4 at the top and level 1 at the bottom).
These four levels are composed of regulators only; all nonregulators are
placed in the lowest level (level 0, below level 1). This approach unam-
biguously placed the TFs into different levels, with all regulatory edges
pointing downward, or horizontally for loops (Fig. 2). This means that
no lower-level TF regulates an upper-level TF. This type of hierarchy is sim-
ilar to any social or corporate hierarchy, in which the chain of command
points downward. With the BFS approach, the resulting hierarchies were
pyramidal, which are intuitive and allow analogies to be drawn with oth-
er more commonplace hierarchies from corporate or government settings
(30). This also makes sense from a biological context, because there are
a handful of master regulators at the top that initiate most of the down-
stream processes. These top-level regulators control a larger number of
middle managers, which, in turn, control an even larger set of lower-level
regulators. At the bottom of the hierarchy is the pool of nonregulators
that perform their stand-alone function(s). In addition, most previous
SCIENCESIGNALING.org 2 N
studies related to regulatory hierarchies have
resulted in pyramidal or near-pyramidal
arrangements (21, 30, 33–39). The BFS
approach is only oneway to build a hierarchy;
there are many other methods (30, 35).

First-order effect: Phenotypic
effects of perturbations in the
absence of network rewiring
(static analysis)
We mapped the phenotypic effects of
perturbing the TFs (their deletion or intro-
ducing new regulatory edges into them) of
different levels of the hierarchy (Fig. 2). In
the E. coli and S. cerevisiae TF networks,
we found that perturbations affecting the
Fig. 1. Phenotypic effect spectrum. Range of possible phenotypic effects
arising from perturbation of certain genes or network tinkering.
Fig. 2. Analysis of first-order effects. First, the network is arranged into a hierarchy, with the regulatory
edges pointing downward only. Next, the phenotypic effects of tinkering with various nodes are overlaid
onto the hierarchy. The color of the nodes (scaling from white to red) indicates the effect of tinkering on
cell growth: Tampering with white nodes has a minimal effect, whereas red nodes are the genes that,
upon deletion, affect the cell growth adversely. This figure serves as a schematic representation only
and does not reflect the actual data.
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http://stke.sciencemag.org


R E S E A R C H A R T I C L E

D
ow

nloaded f
higher-level TFs had a greater effect on cell proliferation rate or survival
than did perturbations to lower-level TFs (Fig. 3). We determined the Pearson
correlation coefficient (PCC) and then calculated P values by generating
the null model, using Fisher’s transformation with the null hypothesis that
there is no correlation (PCC = 0). PCC ranges between −1 and 1, indicat-
ing that there is a strong negative and positive correlation between the
paired samples, respectively, and PCC = 0 indicates no correlation.

For E. coli, deletion of upper-level TFs (data S1) or addition of reg-
ulatory edges into the upper levels (data S2) resulted in a slower growth
rate or higher fraction of colonies with incorrect structure (Fig. 3A; PCC =
0.39 with P = 7.9 × 10−4 for the left plot, PCC = 0.34 with P = 8.2 × 10−3

for the right plot). Similarly, in the yeast network, deletion of higher-level
TFs (data S3 and S4) led to a lower cell fitness (as measured by prolif-
eration rate) than did the deletion of lower-level TFs (Fig. 3B; PCC =
0.28 with P = 1.6 × 10−4 for the left plot, PCC = 0.36 with P = 9.2 ×
10−4 for the right plot).

We built similar hierarchies based on a specific subset of the data:
operon-based hierarchies for E. coli (fig. S1 and list S5) and condition-
specific hierarchies for S. cerevisiae (fig. S2 and list S6). We grouped genes
according to their operon organization in E. coli [data from RegulonDB
(40)] and rebuilt the hierarchy, using the same algorithm as that described
above. Because the data set was smaller (one operon represented all the
component genes), there were only three levels in this hierarchy (fig. S1).
www.
Similarly, for S. cerevisiae, we used subnetworks that were responsive only
under certain conditions to build smaller hierarchies with only three levels
using the same method (41). We used the subset of the transcriptional net-
works that is active under four conditions: cell cycle, sporulation, diauxic
shift, and DNA damage (list S6). For many of these subhierarchies (except
the sporulation and cell cycle hierarchies), we found that the deletion of
upper-level nodes had a larger effect on cell growth and survival. Similar
results were obtained when subnetworks reported by individual studies
were analyzed (figs. S4 and S5). These observations in both species fur-
ther reinforce our results above.

Apart from the removal of nodes and the addition and deletion of
edges, we also studied another kind of perturbation: changing the strength
of interactions between regulators and targets through overexpression of
regulatory nodes. Sopko et al. studied the phenotypic effects of gene
overexpression systematically covering >80% of the S. cerevisiae genome
and compiled a list of ~15% of overexpressed genes (called “toxic
genes”) that reduced cell growth rate through colony defects (23). We
mapped these toxic genes onto the regulatory hierarchy and found that
the top level had the highest fraction and the bottom level had the lowest
fraction of toxic genes, with the middle levels having intermediate
fractions (fig. S3). This result agrees with our above observation that tin-
kering with upper-level regulators had larger effects on cell growth and
survival.
SCIENCESIGNALING.org 2 N
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Second-order effect: Changes
in the hierarchy upon
network rewiring
To study the second-order effects of tam-
pering with the network, we allowed the
hierarchy to rearrange in response to rewir-
ing of the network, such as the addition or
deletion of edges or the removal of nodes.
For example, in many cases, the deletion
of nodes from the middle level sometimes
resulted in the migration of one or more
TFs to a lower level (Fig. 4A) or an upper
level (Fig. 4B). Similarly, the addition of a
new edge from a lower-level TF to an
upper-level one sometimes resulted in the
reassignment of one or more TFs to lower
levels (Fig. 4C). For every rewiring of the
network, we rebuilt the corresponding
modified hierarchies and compared them
to the wild-type hierarchy (tables S2 to
S5 and data S1 to S4). We computed the
changes in the hierarchy by counting the
absolute number of regulators that changed
their levels in the rearranged hierarchy. The
extent of rewiring (the number of nodes de-
leted or edges added) did not correlate di-
rectly with the number of changes in the
hierarchy; the deletion of one node may lead
to any number of changes in the hierarchy
(including zero), and the addition of one or
more edges may result in an unchanged hi-
erarchy (tables S2 to S5 and data S1 to S4;
http://info.gersteinlab.org/Rewiring_hierarchy).

We found that the number of changes
did not correlate well with the phenotypic
effect either (Fig. 5); there were no con-
Fig. 3. Phenotypic effect of node tampering from various levels in E. coli and S. cerevisiae. Level 4
(at the top of the hierarchy) has the fewest nodes and level 1 (at the bottom) has the most. (A) For
the E. coli network, the left graph plots the deviation from wild-type (WT) growth upon addition of new
edges to nodes of different levels [as measured by Isalan et al. (21)], and the right graph displays the
fraction of dying colonies upon deletion of genes [data from Baba et al. (19)]. The average ∑l.s.d. in the
left graph measures the “least-squares difference” between mutant and WT growth rates as monitored
by measuring the absorbance at 600 nm (A600) or simply A. (B) For the S. cerevisiae network, both
graphs plot cell growth relative to WT upon deletion of nodes. Phenotypic data were obtained from
Deutschbauer et al. (20) (left plot) and Costanzo et al. (7) (right plot).
ovember 2010 Vol 3 Issue 146 ra79 3
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sistent trends between the number of genes that changed their levels and
the phenotypic effects of these changes. For example, for S. cerevisiae, cell
proliferation rates from both node-deletion studies (7, 20) were poorly
correlated with the number of changes in the hierarchy (Fig. 5, C and D).
For E. coli, the highest deviation from wild-type proliferation occurred when
there was only one change. Upon further inspection of these network
changes in E. coli, we found that all of these changes resulted from the ad-
dition of new regulatory edges into rpoE, encoding a TF in level 3 of the E.
coli regulatory hierarchy, and more than 75% of these changes involved re-
assignment of rpoE within the hierarchy. Thus, we hypothesized that the lo-
cation of changes within the hierarchy, rather than the absolute number of
changes, might be more closely related to the phenotypic effect of rewiring.

We plotted the phenotypic effect of each kind of statistically signifi-
cant change (a change that had five or more instances) that occurred in
the hierarchy upon rewiring. Higher-level changes had a greater effect on
cell proliferation and survival than did those in the lower levels (Fig. 6).
For example, the changes when a TF moved from level 4 or 3 to level
1 had a greater effect on cell proliferation and survival than the effect of a
TF moving from level 2 to level 1. This suggests that the location of the
change correlates better with the phenotypic effect.

Properties of upper-level regulators
A previous study has shown that upper-level deletions lead to larger
changes in gene expression and affect a higher number of genes (30).
We further analyzed the different levels of the hierarchy for other char-
www.
acteristics that might rationalize their relative importance in terms of phe-
notypic effects. First, we investigated the extent of expression divergence
of regulators from different levels. Expression divergence quantifies the
difference in patterns of expression profiles of homologous (similar)
genes in closely related species. It is often caused by the adaptive evolu-
tion of regulatory sequences and frequently results in different pheno-
types. Thus, a higher level of divergence of gene indicates its role in
phenotypic variations. Using data from a previous study on yeast (42),
we mapped the expression divergence onto the hierarchy and found that
upper-level regulators display a higher degree of divergence (Fig. 7A).

Using a large-scale genetic interaction map from a previous study, we
also studied the patterns of genetic interactions between and within dif-
ferent levels (7). Genetic interactions occur between genes for which the
phenotypic effect of simultaneous deletion is much stronger than would
be expected from the two single deletions, indicating that the two genes
compensate for each other in the event of single gene deletion (43). We
define “genetic interaction propensity” to quantify the tendency to have
genetic interactions between two different genes from the same or differ-
ent levels (Li − Lj) as (Iij × 100)/(|Li|·|Lj|) when Li =/ Lj, and (Iij × 2 ×
100)/[|Li|·(|Lj| − 1)] when Li = Lj, where |La| is the size of level La (the
number of regulators), and Iij is the number of interactions between the
gene pairs from Li and Lj. In other words, it is the percentage ratio of
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Fig. 4. Change in a hierarchy upon the deletion of nodes and the addition
of new edges. (A) When the only target (red node) of a certain node (yel-
low node) is deleted, it (yellow) may change its levels, because it occupied
a higher level only by virtue of its regulation of a lower-level gene. Once its
target is deleted, it slides down (along with its regulator, in blue). (B) Node
deletion may result in the migration of some genes up the hierarchy. When
the red node is deleted, its regulator (yellow), which had occupied themid-
dle level only by virtue of its regulation of the deleted node, moves up the
hierarchy, because its only remaining target is in the middle level. (C)
When a new edge is added (in red) from a lower-level gene (red node)
to an upper-level gene (in yellow), the upper-level gene moves to the lower
level, because regulatory edges from lower- to higher-level genes are not
allowed. In certain cases, this condition requires more than one node to
change level. For example, the blue node also moves down because it is
also regulated by the yellow node.
Fig. 5. Phenotypic effect does not correlate with the absolute number of
changes in the two regulatory hierarchies of either E. coli or S. cerevisiae.
Distribution of various cell fitness parameters is plotted for different
numbers of changes in the hierarchy. (A) ∑l.s.d., a measure of deviation
of E. colimutant cell growth fromWT values, was obtained from Isalan et al.
(21). There is a large variability in cell growth when exactly one change
occurs in the hierarchy (indicated by the arrow). All those changes cor-
respond to the addition of new edges to rpoE. (B) The fraction of surviving
E. coli colonies, as measured by Baba et al. (19), is plotted against the
number of changes in the hierarchy. (C and D) S. cerevisiae growth rel-
ative to WT, as measured by Deutschbauer et al. (20) and Costanzo et al.
(7), respectively, is plotted for different numbers of changes in the hierarchy.
SCIENCESIGNALING.org 2 November 2010 Vol 3 Issue 146 ra79 4
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the actual number of genetic interactions to the total number of possible
interactions, normalized by the size of the two levels. We found that, al-
though there were some interactions between and within lower-level reg-
ulators (from levels 1 and 2), there were no genetic interactions between
upper-level regulators (from levels 3 and 4; Fig. 7B). This shows that these
regulators have no backup genes within the same level, suggesting that in
the event of deletion of these nodes, there are no upper-level regulators
that can compensate for their loss.

We also analyzed the expression of regulators in different hierarchical
levels. These quantities were obtained from previous studies in yeast that
measured absolute abundance of transcripts in normal growth conditions
(44) and messenger RNA (mRNA) half-life (45). We found that regulators
higher in the hierarchy had a lower amount of expression (less abundant
transcripts) and a shorter half-time of the corresponding mRNAs (Fig. 7,
C and D). This shows that, relative to the lower-level regulators, the ex-
pression of upper-level genes is under tighter control, presumably because
of their higher importance. Hence, an artificial perturbation to these reg-
ulators has a more marked effect on cell growth and survival than does
perturbation of the lower-level ones.

DISCUSSION

We have shown that the phenotypic effects of rewiring in two transcrip-
tional networks are well reflected in the position of TFs within the hier-
archy, both in a static picture as well as upon network rewiring and
rearrangement. In a static context, our results show that, whereas changes
in the lower-level TFs had little effect on proliferation, tampering with
nodes in higher levels had a greater effect on cell proliferation and sur-
vival. Upon rearranging the hierarchies in response to rewiring events, we
showed that upper-level changes had more influence on cell fitness than
did changes in lower levels. The results were consistent for two different
species and for different kinds of rewiring events. We also showed that
similar results were obtained for two condition-specific hierarchies in S.
cerevisiae and operon-based hierarchies in E. coli. Both of these types of
hierarchies are derived from a subset of the entire network. Finally, we
observed that upper-level TFs had greater influence when smaller subsets
of the regulatory network based on different individual studies were ana-
www.
lyzed (figs. S4 and S5). Consistent results obtained for a smaller subset
shows that our results are unlikely to be affected by the incompleteness of
the data, an issue often addressed by repeating the analysis with a subset
of the data. A previous study reported that lower levels in regulatory hier-
archies in E. coli and S. cerevisiae had higher fractions of essential genes
(30) than did upper levels. Although that observation was pertinent only
to essential genes (defined as those that result in cell death when deleted),
in this study, we examined genes in the intermediate region on the phe-
notypic effect spectrum (Fig. 1); their deletion does not result in cell death
but affects the rate of cell proliferation, gene expression, conditional
fitness of the cell, or some combination thereof.

In our analysis, the placement of regulators into different levels was
determined not by the number of regulatory interactions with other nodes
(in- and out-degrees) but by the other regulators that they control. Level
position is thus a global, rather than a local, property of the network. Pre-
vious work has shown that there is no direct correlation between the local
connectivity of a TF (its degree) and its position in the hierarchy (30). We
calculated the number of direct and indirect targets (the ones that might
be affected downstream, such as the targets of targets) and found that this
number was not directly related to the position of a TF in a hierarchy
(figs. S6 and S7). This fact, combined with our result that upper-level
changes in the hierarchy had a larger effect on cell proliferation and sur-
vival, suggests that the relative importance of a TF is determined not just
by its local connectivity but also by the other TFs it regulates. For exam-
ple, dnaA, which encodes a protein that initiates chromosomal replica-
tion, has only nine direct targets, but its deletion reduces the cell
survival rate to 10%. However, this gene has more than 200 indirect tar-
gets. This suggests that a “cascade effect”might occur such that the effect
of tinkering with an upper-level gene is propagated downstream to the
lower levels through all its direct and indirect targets, amplifying further
er 9, 2010 
Fig. 6. Phenotypic effect plotted as a function of the type of change in
the hierarchy. (A) For the E. coli regulatory hierarchy, the fraction of
surviving colonies [as measured by Baba et al. (19)] is plotted as a
function of the type of changes. (B and C) For the S. cerevisiae hierar-
chy, cell growth relative to WT [as measured by Deutschbauer et al. (20)
and Costanzo et al. (7), respectively] is plotted against different kinds of
changes in the hierarchy. Perturbation of the higher-level regulators
markedly affects cell growth and survival.
Fig. 7. Properties of regulators from different levels. (A) Range of expres-
sion divergence for different levels in yeast regulatory hierarchies. A
higher value indicates that the genes display higher expression
divergence across species. The width of the boxes is proportional to
the SD of the data. (B) Genetic interaction propensity between different
levels and within the same levels. Level pairs are indicated on the x axis
(for example, the bar corresponding to 1-2 indicates the propensity be-
tween levels 1 and 2). (C) Normalized gene expression. (D) Half-life of
the corresponding mRNA, in minutes.
SCIENCESIGNALING.org 2 November 2010 Vol 3 Issue 146 ra79 5
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with each level. However, the cascade effect does not always explain the
relative influence of a gene on cell survival. For example, although the
transcriptional activator encoded by modE, which is a component of the
molybdenum transport operon modABC in E. coli, has 35 direct targets
and 73 indirect targets, its deletion reduces the cell survival rate to only
88%. This shows that connectivity alone is not sufficient, and a more
diverse set of properties must be integrated to better assay the relative
importance of regulators for cell growth.

We hope that the findings presented in this study can be related to
(and reveal more about) other networks and hierarchies for which this
kind of dynamic testing is not feasible. Conventional mining studies of
social networks and Web graphs have been limited to observational anal-
ysis, such as determining the connectivity distribution and the network
diameter, because it is infeasible to rigorously test these types of networks
by the experimental analysis, such as rewiring and deletion or addition of
nodes. Because this kind of dynamic testing is possible in biological net-
works, consideration of analogies between biological regulatory networks
and social hierarchies may reveal fresh insights into network behavior in
general. The architecture of TF regulatory networks can be thought of as
a hierarchical corporation with various levels of management. Just as in
biological hierarchies, upper-level officials or managers in government or
corporate settings have more responsibility and a larger impact than do
lower-level officials. As such, upper-level changes in these social hierar-
chies tend to be more influential than would be lower-level changes. Such
analogies between cellular and social hierarchies may aid our understand-
ing of the architecture and dynamics of regulation and the relative impor-
tance of different regulators.
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MATERIALS AND METHODS

We focus on transcriptional regulation in two well-characterized species,
E. coli and S. cerevisiae. For E. coli, the transcriptional regulatory
network was obtained from RegulonDB (as of July 2009) (40) (list
S3). For S. cerevisiae, the data were obtained from various biochemical
and genetic experiments (1, 46–48) (list S4) as used in many previous
studies (37, 41, 49–51). The networks (lists S3 and S4), their size and
properties (table S1), and the hierarchical assignments (lists S1 and S2)
are detailed in the Supplementary Materials and also at the following
Web site (http://info.gersteinlab.org/Rewiring_hierarchy).

Phenotypic data quantifying the effect of tinkering with the networks
were obtained from previous work (7, 19–21). In these studies, individual
nodes (genes) were deleted (for either E. coli or S. cerevisiae) with single-
gene knockouts, such as genome-wide fitness profiling (19, 20), and
double-gene knockout experiments, such as synthetic genetic arrays for
S. cerevisiae (7). In addition, for E. coli, new edges were introduced to the
wild-type network by artificially constructing different combinations of
promoters with different TFs or s factor genes (21). In each case, the data
were used to determine the effect of network rewiring on cell fitness (data
S1 to S4 and tables S2 to S5).

SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/3/146/ra79/DC1
Text
Fig. S1. Operon-based hierarchy in E. coli.
Fig. S2. Condition-specific hierarchies in yeast.
Fig. S3. Effects of overexpression, a means of increasing the strength of regulatory
interactions.
Fig. S4. Phenotypic effect of deletion of nodes from various levels in the yeast regulatory
subnetworks coming from individual studies.
Fig. S5. Phenotypic effect of deletion of nodes from various levels in yeast regulatory
subnetworks coming from individual studies.
www.
Fig. S6. Indirect targets and number of targets versus position in the hierarchy for E. coli
and S. cerevisiae.
Fig. S7. Phenotypic effect versus out-degree.
Table S1. Properties of the regulatory networks used.
Table S2. Description of data S1.
Table S3. Description of data S2.
Table S4. Description of data S3.
Table S5. Description of data S4.
List S1. E. coli transcriptional regulatory network hierarchy.
List S2. Yeast transcriptional regulatory network hierarchy.
List S3. E. coli transcriptional regulatory network.
List S4. S. cerevisiae transcriptional regulatory network.
List S5. Regulatory network based on grouping a subset of the genes in E. coli by operon.
List S6. Regulatory network based on specific conditions in S. cerevisiae.
Data S1 to S4. The rewiring events and effects of gene deletion or edge addition to E. coli
and S. cerevisiae transcriptional networks.
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