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Summary 

Structural genomics provides an important approach for characterizing and understanding 

systems biology.  As a step towards better integrating protein three-dimensional (3D) structural 

information in cancer systems biology, we have constructed a Human Cancer Pathway Protein 

Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling 

pathways and their physical protein-protein interactions.  Many well-known cancer-associated 

proteins play central roles as “hubs” or “bottlenecks” in the HCPIN. At least half of HCPIN 

proteins are either directly associated with or interact with multiple signaling pathways. While 

some 45% of residues in these proteins are in sequence segments that meet criteria sufficient for 

approximate homology modeling (Blast E-val < 10-6), only ~ 20% of residues in these proteins 

are structurally covered using high-accuracy homology modeling criteria (i.e. Blast E_val < 10-6 

and at least 80% sequence identity) or by actual experimental structures.  The HCPIN website 

(http://nmr.cabm.rutgers.edu/hcpin) provides a comprehensive description of this biomedical 

important multi-pathway network, together with experimental and homology models of HCPIN 

proteins useful for cancer biology research.  In order to complement and enrich cancer systems 

biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) is targeting > 

1,000 human proteins and protein domains from the HCPIN for sample production and 3D 

structure determination. The long-range goal of this effort is to provide a comprehensive 3D 

structure-function database for human cancer-associated proteins and protein complexes, in the 

context of their interaction networks. The network-based target selection (BioNet) approach 

described here is an example of a general strategy for targeting co-functioning proteins by 

structural genomics projects.  
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Introduction  

In the past decades, many cancer-associated genes have been discovered, their mutations 

precisely identified, and the pathways through which they act characterized (1-3). The 

completion of the human genome sequence (4-6), the use of automated sequencing technology, 

and the development of microarray-based genomics  and proteomics  technologies (7,8), have 

had a significant impact on the field of cancer biology (9).  In part based on these genome-scale 

data, cancer is now recognized as a systems biology disease (10). Accordingly, a comprehensive 

analysis of the molecular basis of cancer requires integration of the distinct, but complementary 

fields of biochemistry, genomics, cell biology, proteomics, structural biology, and systems 

biology (8).  

 

 Recently, a large number of biological pathway and network databases have been 

developed to capture the expanding knowledge of protein-protein interactions (e.g., HPRD (11) 

and DIP (12)) and of metabolic and/or signaling pathways (e.g., KEGG (13), Reactome (14), 

STKE – http://stke.sciencemag.org, and BioCarta - http://www.biocarta.com). A few databases 

are specifically focused on cancer-associated signaling pathways, such as The Cancer Cell Map 

(http://cancer.cellmap.org) and the Rel/NF-κB Signal Transduction Pathway (http://www.nf-

kb.org).  Pathguide (15) provides an overview of more than 200 web-based biological pathway 

and network databases. It is challenging to appropriately integrate and utilize this large number 

of individual databases for systems biology (16). Lu et al. (17) have proposed to merge both 

pathway and network approaches by embedding pathways into large-scale network databases. 

This approach integrates data on classical biochemical pathways with newly generated large 

scale proteomics data.  
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 Since the era of genome sequencing, biologists have made extensive use of protein 

sequence information. 3D structural information is increasingly being used for understanding 

evolution and the mechanisms of molecular function. Three-dimensional (3D) structure provides 

critical information connecting protein sequence with molecular function. While sequence 

alignments, which are broadly used by the molecular biology community, provide useful 

suggestions about which residues in homologous protein sequences are in corresponding 

positions, 3D structure-based alignments provide the true determination of corresponding residue 

positions (18-20), which may be inaccurately identified by sequence alignment information alone 

especially in cases where the sequence conservation is weak. In favorable cases, protein structure 

can yield insights into mechanisms of enzyme activities and protein-ligand interactions. In 

addition, 3D structures of proteins involved in human disease can be used to discover and/or 

optimize new pharmaceutical agents (21,22).  

 

 A complete understanding of molecular interactions requires high-resolution 3D 

structures, as they provide key atomic details about binding interfaces and information about 

structural changes that accompany protein-protein interactions.  Structural genomics is an 

international effort aimed at providing 3D structures, either directly by X-ray crystallography or 

NMR spectroscopy, or by homology modeling, for all proteins in nature (23). Such a 

comprehensive structure-function database, containing experimental structures and homology 

models for hundreds of thousands of proteins, will accelerate research in all areas of biomedicine 

(24-26).   
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 Recently, Xie and Bourne (27) have discussed the structural coverage of human proteins 

grouped by the Enzyme Commission and the Gene Ontology classifications. This analysis 

provides a valuable summary of the structural information available for many human disease-

related proteins, and provides guidance for protein target selection by structural genomics 

projects. 

  

 As a component of this vision of structural genomics, we have established the Human 

Cancer Pathway Protein-Interaction Network (HCPIN) database, a collection of human proteins 

that participate in cancer-associated signaling pathways, and their protein-protein interactions. 

HCPIN (version 1.0) includes ~3000 proteins and ~10,000 interactions.  HCPIN integrates 

(embeds) pathway data with protein-protein interaction data (17), and provides protein structure-

function annotations to inform cancer biology. The HCPIN website 

(http://nmr.cabm.rutgers.edu/hcpin), illustrated in Fig. 1, provides an extensive collection of 

experimental and homology models of proteins or domains associated with human cancers.  

 

  In this paper we summarize the current 3D structural coverage of HCPIN, and present 

plans for targeting the remaining proteins in this network for structural analysis. The Northeast 

Structural Genomics Consortium (NESG) has selected proteins from HCPIN for cloning, 

expression, purification, and 3D structure determination. This network-based target selection 

approach provides a framework not only for completing structural coverage of a disease-

associated protein interaction network, but also provides specific hypotheses regarding protein 

interaction partners which can be tested by co-expression, co-crystallization, and 3D structure 

determination of the resulting protein-protein complexes (28,29). The long-range goal of this 
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effort is to provide a comprehensive 3D structure-function database for human cancer-associated 

proteins, the corresponding protein-protein complexes, and their interaction network. 

 

Experimental Procedures   

Database Searches  

Cell cycle progression, apoptosis, MAPK, Toll-like receptor, TGF-beta, PI3K, and JAK-

STAT signal transduction pathways were downloaded from KEGG database (version 0.6, 

January 2006) (13). Protein-protein interactions, and multi-protein complexes were downloaded 

from Human Protein Reference Database (11) (09_13_05 release), which included ~16,000 

proteins and ~20,000 interactions. Interactions for all pathway proteins and also additional 

interactions between interaction proteins are included in the HCPIN network.  The list of 363 

genes involved in human cancer was obtained from the Cancer Gene Census  (CGC) Database 

(http://www.sanger.ac.uk/genetics/CGP/Census) (1). This list is exclusively restricted to genes in 

which mutations that are reported are causally implicated in oncogenesis. We used IPI human 

cross reference file (release 3.12) (30) to cross reference proteins from HCPIN,  CGC, and 

SwissProt (31).  

 

HCPIN 3D structural coverage statistics is assessed by running a BLAST search against 

PDB sequences (February, 2006), using the TargetDB search tool (http://targetdb.pdb.org/) with 

standard default parameters. Disordered residues, with missing coordinates for segments within 

otherwise well-determined 3D structures, are counted as “structurally covered” in our structural 

coverage statistics. HCPIN proteins with no cross-referenced SwissProt ID are considered as not 

having verified gene models, and are excluded from structure statistical analysis. 
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Bioinformatics Programs  

SignalP v3.0 (32) and TMHMM v2.0 (33) were used for predicting secreted and trans-membrane 

proteins. The Pfam domains are identified in the Swisspfam file provided from Pfam v19.0 

(34,35).  The program COILS (36) was used to predict coiled-coil regions. We labeled regions of 

low complexity by using the program SEG (37).   Default options were used for all programs.  A 

in-house Perl program was written to predict disorder regions based on mean charge and mean 

hydrophobicity (38).  

 

Topology and Statistics Analysis  

Program pajek is used for network topology analysis (39). The program R was used for statistics 

analysis (40).  

 

Homology Modeling and Structure Quality Assessment 

HCPIN homology models are selected from MODBASE (41) and/or built using the XPLOR 

homology modeling protocol of HOMA (42). If multiple models are available from MODBASE, 

the model with highest sequence identity is selected by HCPIN. Structure quality reports for each 

of the experimental structures and models were generated using the Protein Structure Validation 

Software suite (43), which includes structure validation analysis with ProsaII (44), Verify3D (45), 

Procheck (46), MolProbity (47), and other structure quality assessment tools.  Over time, the 

homoly model database of HCPIN will be updated and expanded. 
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The HCPIN Web-Accessed Database  

Generation of web pages (HTML) for the HCPIN server was done using JAVA and a relational 

database (MySQL).  We recommend the following web browsers: Firefox version 2.0 or higher, 

and Internet Explorer 7 or higher, to provide full JAVA functionality. Ribbon diagrams were 

generated using PyMOL. We plan to update structure coverage annotation information weekly 

and update HCPIN protein information every four months.  

 

Results  

Human Cancer Pathway Protein-Interaction Network  

The Human Cancer Pathway Protein-Interaction Network (HCPIN) is a collection of proteins 

from cancer-associated signaling pathways together with their protein-protein interactions. The 

HCPIN version 1.0 was constructed by combining proteins from seven KEGG (13) classical 

cancer-associated signaling pathways, together with protein-protein interaction data from the 

Human Protein Reference Database (HPRD) (11). HPRD is a resource of protein-protein 

interaction information manually collected from the literature and curated by expert biologists to 

reduce errors (11). We used KEGG because of its high quality (48). Pathway interaction 

information from KEGG was excluded from HCPIN, owing to lack of precise definitions (17).  

 

The seven pathways in this initial version of HCPIN include (i) cell cycle progression, (ii) 

apoptosis, (iii) MAP kinase (MAPK), (iv) innate immune response (Toll-like receptor), (v) TGF-

beta, (vi) phosphotidyl inositol kinase (PI3K), and (vii) JAK-STAT pathways. Many well-known 

important cancer-associated proteins, such as P53 and NF-κB, are associated with at least one of 

these pathways. The current version of HCPIN includes 2977 proteins and 9784 protein-protein 
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interactions, including 240 multiprotein complexes each comprised of at least 3 proteins (Table 

1).  

  

 HCPIN proteins collected from the KEGG pathways are called pathway proteins. Other 

HCPIN proteins that are not included in the KEGG pathways but interact with these pathway 

proteins are called interaction proteins. The representation of protein complexes using binary 

protein-protein interaction graph remains a challenge, as without detailed structural studies it is 

often not possible to distinguish direct physical interactions from interactions mediated through 

the complex (49,50). We used triangular pseudonodes, which link proteins involved in the same 

complex, to represent multi-protein complexes (50).  These multi-protein complexes account for 

~1000 edges, of the total ~ 10,580 edges, in the HCPIN network.  Table 1 summarizes other 

statistics of the HCPIN network with and without these multi-protein complexes.  Of 664 

pathway proteins defined by KEGG, 150 have no annotated physical interactions in HPRD. 

Some of these may be associated with the seven KEGG pathways by gene transcription, or have 

interaction partners that are not yet identified or annotated in the HPRD database.   

 

The interaction data included in the current version of HCPIN is a subset of HPRD.  

Although including only ~15% of HPRD proteins, HCPIN accounts for about half of the protein-

protein interactions in the HPRD database (09_13_05 release).  Despite the fact that HCPIN 

represents only a portion of signaling network of the human interactome, its degree distribution 

is similar to that of many other scale-free interactome networks (51-56). The clustering 

coefficient in the HCPIN network is better approximated by C(k) ∝ k-1 than by a k-independent 

clustering coefficient C(k), which further indicates HCPIN’s modularity (57,51,52). Future 
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expansions and refinements of HCPIN will include cancer-related signaling pathways from other 

sources (15), as well as protein-protein interaction data from other manually-curated sources 

(e.g., DIP (12), MINT (58), or Reactome (14)).  We envision HCPIN as an evolving, curated 

resource of structure-function information for the human cancer protein interactome. 

 

The Cancer Gene Census Database comprises 363 protein-encoding human genes that are 

causally implicated in oncogenesis (1), defined here as CGC proteins. Among these 363 CGC 

proteins, 186 CGC proteins are included in the HCPIN network, and only 52 of these are 

pathway proteins. This high coverage of cancer genes in the HCPIN confirms that the cancer 

genes are heavily associated with signaling pathways and their interactions, and also 

demonstrates that the 7 pathways that we selected for this analysis are central to cancer biology. 

This coverage may be increased by including additional cancer-related signaling pathways.  

Many HCPIN proteins that are fundamental in cancer biology, such as Grb2, Jun, Src, etc, are 

not included in CGC, and many CGC proteins are not included in HCPIN because they are not 

characterized to date in the protein-protein interaction literature covered by KEGG or HPRD.    

 

Network centrality measures vs. essentiality 

The degree of a protein (node) is defined as the number of interactions a particular protein 

participates in (vertex degree). The betweenness of a protein (vertex betweenness) measures the 

number of non-redundant shortest paths going through this protein. Proteins with high degree or 

high betweenness are central proteins, which are often critical for cell survival (59-63).  For 

many scale-free interaction networks, degree and betweenness are highly correlated (63).  

Similarly, strong correlations are observed for the HCPIN (Kendall’s τ = 0.79, P-value < 2.2e-
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16). As can be seen in Fig. 2, top central proteins of HCPIN with both high degree and high 

betweenness include key cancer-associated essential proteins, such as P53, Grb2, Raf1, EGF 

receptor (EgfR), and others. Fig. 2 also shows that proteins with high betweenness but low 

degree are quite abundant, especially for CGC proteins (in red). This suggests that bottleneck 

proteins, like hub proteins, play essential biological roles, which is in agreement with previous 

observations (61-63).  

 

Crosstalk between signaling pathways 

Signaling pathways interact with one another to form complex networks (64).  The sub-network 

of proteins in a specific pathway together with their interaction partners forms a pathway 

interaction subnet (also called embedded pathways (17)).  Accordingly, the seven core KEGG 

signaling pathways used to construct this version of HCPIN are associated with seven larger 

pathway interaction subnets.  We have also estimated here the crosstalk of the seven signaling 

pathways by looking at the frequencies of specific proteins in (i) each of the seven signaling 

pathways, and (ii) in each of the seven associated pathway-interaction subnets.   

 

 We first analyzed the crosstalk between pathway proteins associated with each of the 

seven KEGG signaling pathways.  About 20% of all HCPIN pathway proteins are included in 

more than one KEGG signaling pathway. Fig. 3A summarizes the frequency of observing one 

pathway protein in multiple signaling pathways.  For example, the AKT family of paralogs, the 

phosphoinositide 3-kinase (PI3K) family of paralogs, and the TNFα protein are involved in four 

of the seven signaling pathways. The uniqueness of particular proteins to particular KEGG 

pathways differs for the different signaling pathways.  While some 60-70% of pathway proteins 
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from either the innate immune response and apoptosis pathways are directly associated with at 

least one other signaling pathway, for the other pathways studied only ~30% of pathway proteins 

are associated with more than one pathway.   

 

 We next analyzed the crosstalk between the pathway interaction subnets associated with 

each of the seven KEGG signaling pathways by HPRD interaction data.   Fig. 3B summarizes the 

frequency of observing one HCPIN protein in multiple pathway interaction subnets.  These data 

show that HCPIN proteins are frequently shared between multiple pathway interaction subnets.  

Overall, about 53% of HCPIN proteins are associated with more than one pathway interaction 

subnet. In other words, more than half of HCPIN proteins are either directly associated with, or 

interact with, multiple signaling pathways. Although only ~ 20% of all pathway proteins are 

directly associated with multiple (> 1) pathways (Fig. 3A), ~ 58% of pathway proteins are 

associated with multiple pathway interaction subnets (Fig. 3C). The percentage of pathway 

proteins associated with multiple pathway interaction subnets (58%) is similar to the percentage 

of all HCPIN proteins associated with these interaction subnets (53%); the cross talk between 

pathways is mediated approximately equally by core pathway proteins and interaction proteins.   

 

 Seven pathway proteins are involved in all seven pathway-interaction subnets (i.e., Raf1 

– a serine/threonine kinase, Stat1, Stat3, Rb, P53, CBP, TGFR1). Another seven interaction 

proteins (i.e. proteins in the interaction subnet that are not core pathway proteins) are included in 

all seven pathway-interaction subnets (i.e. tyrosine kinase Lyn, estrogen receptor alpha, β catenin, 

insulin receptor, casein kinase II, Hsp90-alpha, and Sam68). These proteins associated with all 

seven interaction subnets play central roles in cancer biology. 
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Structural Coverage of HCPIN Proteins 

The accuracy of homology models is largely determined by the percent sequence identity with 

the template 3D structure upon which the model is based (65,43).  Models built at ~30-50% 

sequence identity with the template (a medium-accuracy modeling level) tend to have ~90% of 

the main-chain modeled within 1.5 Å RMS deviations from the correct structure, but with 

frequent side-chain packing, core distortion, and loop conformation errors (65,66).  Homology 

models built with more than 50% sequence identity tend to have about 1.0 Å RMS deviation 

from correct structures for the main-chain atoms, with larger deviations for side-chain packing 

(66).  Our goal is to characterize the structural coverage of the HCPIN using high quality 

experimental structures or accurate models, especially for enzyme active sites, based on 

structural templates with Blast E_val < 10-6 and sequence identity > 80% (a high-accuracy 

modeling level).  Although this cutoff is somewhat arbitrary, models generated from such 

templates will usually be of high reliability and accuracy.  Such high-quality structures or models 

of these human proteins are potentially useful for active site docking, studying catalytic 

mechanism, and designing ligands useful for drug discovery (67).  

 

 We have estimated the structural coverage of HCPIN at both medium-accuracy modeling 

level (defined here as Blast E value < 10-6), and high-accuracy modeling level (defined here as 

Blast E value < 10-6 and at least 80% sequence identity).  Human protein sequence information 

has been annotated by different experimental and computational methods, and stored in different 

databases with various levels of gene model accuracy (30).  Alternative splice sites, translation 

initiation sites, and other gene modeling issues complicate the protein sequence annotation 
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process (68).  SwissProt is a high-quality manually annotated protein knowledgebase (69).  

About 78% of HCPIN protein sequences (2328 sequences) can be validated by SwissProt (IPI 

v3.12) gene model annotations (30).  The structural coverage statistics discussed here are for 

only these 2328 protein sequences that can be verified by SwissProt data.  

 

 Table 2 summarizes the structural coverage of HCPIN proteins at medium- and high-

accuracy homology modeling levels. At medium-accuracy level, about 86% of  SwissProt 

verified proteins from the seven HCPIN  pathways (pathway proteins) have at least one domain 

with structural information available from the PDB.  These proteins are defined as having single-

domain coverage (27); i.e. either an experimental structure or a structure template useful for 

medium-accuracy modeling of at least part of the protein structure.  These structures and models 

cover about 55% of residues in HCPIN (define here as residue coverage), excluding predicted 

low-complexity and coiled-coil regions.  Interestingly, innate immune response and apoptosis 

pathways, which are heavily involved in pathway cross talk, also have the highest residue 

coverage (>70%). At the high-accuracy modeling level, the structural coverage of pathway 

proteins is much lower; only 52% have single-domain coverage, with 25% of residues covered. 

These structural coverage statistics are upper bounds, since this analysis excludes the ~20% of 

proteins in HCPIN for which protein coding sequences cannot be verified by the SwissProt (IPI 

v3.12) database. 

 

 The single-domain and residue coverage of the interaction proteins, which are included 

in the seven pathway-interaction subnets but not in the seven KEGG pathways, is much lower 

than for pathway proteins; 76% and 42%, respectively, at medium-accuracy level and 44% and 

 14

 by on M
ay 28, 2008 

w
w

w
.m

cponline.org
D

ow
nloaded from

 

http://www.mcponline.org


18%, respectively, at high-accuracy level.   These coverage statistics reflect the traditional bias 

of targeting core signaling pathway proteins in structural biology projects. Overall, HCPIN has 

78% (45%), 46% (20%) single-domain (residue) coverage, at medium- and high- accuracy 

modeling levels, respectively. This single-domain coverage of HCPIN proteins is significantly 

higher than the estimated average single-domain coverage of the human proteome (27).  

 

We have annotated the 3D structural coverage of all HCPIN proteins in the network 

diagrams provided on the HCPIN web site (Fig 1B). These web-based graph representations 

provide direct interactive global views of the 3D structural coverage of these pathway protein 

interaction networks. The outside ring on each node represents the percentage of protein’s 

residue coverage. 

 

HCPIN domains 

Domains are the evolutionary modular building blocks of proteins.  Experimental protein 

structure determination processes using X-ray crystallography or NMR spectroscopy are 

generally domain oriented.  Pfam is a manually curated database of protein domain families 

derived from sequenced genomes (34). There are ~ 1000 PfamA domains identified in HCPIN, 

with size ranging from ~ 50 to 1000 residues. At medium-level modeling accuracy, 53% of 

HCPIN PfamA domain families have complete fold coverage (i.e. at least one member of the 

domain family has essentially complete 3D structural coverage), while 35% of HCPIN domain 

families have no fold coverage at all.  About 10% of Pfam domain families in HCPIN have 

partial fold coverage;  i.e. a 3D structure is available for part of the predicted Pfam domain.  This 
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reflects inherent differences between sequence-alignment based domain boundaries used in Pfam 

and the actual structural domain boundaries.  

 

 Some 10% of HCPIN domains occur at least 10 times in the set of HCPIN proteins.  The 

most abundant domain in HCPIN is the Collagen domain (appearing 265 times), which occurs 

frequently in extracellular structural proteins involved in formation of connective tissue.  Other 

frequently occurring domain types include Pkinase, zf-C2H2, and WD40 domains.  

 

Table 3 summarizes the top 2% most abundant domain types in the HCPIN together with 

their 3D structural coverage statistics. All 21 of these most abundant domain families have 

‘complete fold coverage’, in that at least a medium-level accuracy model or experimental 

structure is available for the full sequence of the domain. Modeling coverage, defined here as the 

percentage of domain members in HCPIN that can be modeled at high-level modeling accuracy, 

is also summarized for these domain families in Table 3.   The frequently occurring domain 

families of intracellular proteins listed in Table 3 have relatively high modeling coverage. For 

example, the SH2, an intracellular signaling domain, has the highest modeling coverage, 58%.  

Experimental structures are available for fewer members of the frequently occurring secreted and 

membrane-associated domains listed in Table 3, resulting lower modeling coverage of these 

domain families. Progress in completing the HCPIN modeling coverage for these most abundant 

domains of HCPIN will provide a comprehensive understanding across the domain family of 

their structure – function relationships.  
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The HCPIN structure gallery  

The HCPIN web site includes over 1000 protein or domain structure models, of which two-thirds 

are experimental structures from the PDB (with greater than 99% sequence identity to the human 

HCPIN protein or protein domain), and one-third are homology models built with structural 

templates having Blast E-value < 10-6 and at least 80% sequence identities (Fig. 1D). To date, the 

NESG structural genomics project has determined 3D structure of ten human proteins or 

domains targeted from the HCPIN; some of these are shown in Fig 4.   

 

HCPIN Target Selection for Structural Genomics 

With the goal of providing high-accuracy structural models of disease-associated human proteins, 

especially enzymes, our homology models of HCPIN proteins require a template protein of 

known 3D structure with pairwise Blast E-value < 10-6  and > 80% sequence identity with the 

target protein (67). As discussed above, our structure coverage analysis shows that significant 

experimental efforts in X-ray crystallography and/or NMR spectroscopy are still needed to 

complete the structure coverage of the HCPIN network at this high-accuracy modeling level. 

Accordingly, these “structurally-uncovered” regions (defined at this high-accuracy level) of 

HCPIN proteins have been selected for sample production and structure analysis efforts by the 

Northeast Structural Genomics Consortium. 

 

Are HCPIN proteins suitable for structural genomics efforts?  

Due to limitations of current protein structure production technologies, it is generally more 

challenging to determine 3D structures of eukaryotic proteins, or of secreted, integral membrane, 

or one-pass transmembrane proteins, compared with intracellular proteins. Integral membrane 
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proteins are particularly challenging to produce for 3D structure analysis. About 10% of HCPIN 

intracellular proteins have 100% residue coverage at high-accuracy level, while only ~2% of 

HCPIN proteins predicted to be secreted and/or membrane-associated have such complete 

coverage (Fig. 5A). However, considering the HCPIN proteins with only partial structural 

coverage, our analysis shows that pathway proteins predicted to be secreted, and/or membrane-

associated (e.g.  soluble domains of one-pass transmembrane proteins), have similar single-

domain and residue coverage compared with intracellular proteins (Table 2). These statistics 

suggest that structural genomics should not only target domains from intracellular proteins, but 

also the domain families of extracellular secreted and/or extracellular domains of one-pass trans-

membrane human proteins of the HCPIN. 

 

Size limitations are a concern for structural genomics that require large-scale protein 

sample production, and are particularly relevant for structural NMR studies. Protein sample 

production is generally more successful for proteins of < 600 residues. NMR studies usually 

require samples with < 180 residues. For this reason, we also analyzed size distributions of 

Swiss-Prot validated HCPIN protein chains (Fig. 5).  The average full-length HCPIN protein is 

about 600 residues.  The size distribution of predicted intracellular proteins is similar to the size 

distributions of predicted secreted and membrane-associated proteins (Fig. 5B).  Size 

distributions are also similar for proteins with and without structural single-domain coverage 

(Fig. 5B).   Even very large proteins contain domains with some structural coverage, which in 

most cases have been studied by expressing segments of the protein sequence constituting one or 

a few structural domains.  Residue structural coverage distributions (Fig. 5C) are also similar for 

predicted intracellular, secreted and/or membrane-associated HCPIN proteins, with an average 
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coverage of ~110 residues. These size statistics are within the size limitation ranges that are 

currently addressed well by structural genomics efforts, supporting the feasibility of including 

these HCPIN network proteins as targets of the Northeast Structural Genomics Consortium.  

 

Target selection process 

 Fig. 6 shows details of our target selection process.  HCPIN v1.0 consists of 664 pathway 

proteins identified from KEGG, together with additional 2313 interaction proteins from HPRD. 

2328 of these 2977 HCPIN proteins are validated by SwissProt (IPI v3.12)(30).  For each amino 

acid sequence of those validated proteins, we filtered out regions that are not suitable for high-

throughput structural genomics efforts, including regions with low complexity, those predicted to 

be coiled-coils, or those predicted to be largely disordered (38). We have identified 1160 

intracellular proteins that have regions/domains suitable for such high-throughput structural 

genomics efforts. Domains from secreted or membrane proteins have also been targeted as part 

of technology-development projects, but with lower priorities.  

 

 Fig. 5D shows the size distribution of these targeted intracellular proteins. Although the 

size of the full-length targeted proteins varies, about 75% of targeted regions/domains have less 

than 300 residues.  These protein targets are publicly accessible at 

http://nmr.cabm.rutgres.edu:9090/PLIMS. Efforts have begun to clone, express, purify and 

characterize these 1160 human proteins and protein domains. We have prioritized these targets 

mainly based on high-throughput feasibility, rather than other factors such as molecular and 

cellular functions.  In addition, we prioritize for sample production and structure analysis hub 

and bottleneck proteins, with high network degree and/or betweenness measures.  The network 
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annotations in the HCPIN database also provide biological and bioinformatics information is also 

being used on a case-by-case basis to prioritize particular protein targets. 

 

Discussion 

Protein sample production concerns  

 Protein sample production is challenging for the HCPIN proteins for several reasons. 

Cloning and expression of certain human proteins in E. coli can be difficult or impossible.  Many 

of these signaling proteins have multiple domains, evolved to convey biological signals from 

different inputs, and require reliable techniques for domain parsing.  In addition, these cancer-

associated signaling networks include significant numbers of proteins with extensive disordered 

regions, which are inherently challenging for expression, purification, and structure 

determination (70,71).  Large macromolecular complexes not only require larger amounts of 

material, but also a precise and coordinated assembly of the different subunits, conditions that 

are often not easy to reproduce in vitro (28).  

 

 Despite the challenges, there are certain technical advantages of targeting an extensive 

protein interaction network like the HCPIN.  Many proteins that fail expression when produced 

alone can be expressed, purified and crystallized by co-expressing and co-purifying them with 

their interacting partner proteins (29). We are taking advantage of this approach with HCPIN 

targets, as potential partners for co-expression and co-purification are indicated from the network. 

While cancer-associated signaling networks are likely to include significant numbers of proteins 

with extensive disordered regions (70,71), such disordered regions may become ordered upon 
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binding to their protein partners, making the corresponding complexes suitable for high-

throughput structural genomics (72-75).  

 

General Strategy for Targeting Proteins from Pathway-based Interaction Networks  

We propose a general strategy to select targets from pathway-based interaction networks.  This 

target selection strategy can be applied to any biochemical pathway of interest.  Previously 

reported target selection strategies for structural genomics have focused on family (76,77), whole 

genome (78-80), pathways (67,25), and complexes (28,29).  The target selection strategy we 

present here combines the selection strategies that have been proposed for structural genomics of 

biochemical pathways (67,25) and of protein-protein complexes (28,29). 

 

First, lists of proteins involved in a specific biological pathway are collected. These 

proteins are called pathway proteins.  Interaction proteins are then identified, including those that 

potentially interact directly with any pathway proteins, or contribute to multiprotein complexes 

formed with pathway proteins. Interactions can be derived from the literature, curated peer-

reviewed databases (13,12,58,11,14), high-throughput protein interaction experiments (53-56), 

and/or from integrated prediction methods (81,82).  Gene models for both pathway and 

interaction proteins are then validated using SwissProt (83).  Protein sequences not verified by 

SwissProt will require further analysis to confirm their authenticity.  Regions of proteins with 

known 3D structure information from PDB are identified. Regions of proteins not covered with 

3D structure information and also suitable for high-throughput structural determination are then 

selected as structural genomics targets, with emphasis on hub and bottleneck proteins. This 

BioNet target selection strategy not only provides a systematic approach for complete structure 
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coverage for disease-associated pathways (67,25), but also provides a framework for studying 

protein interactions and complexes (28,29).    

 

Community Outreach 

Since the era of genome sequencing, biologists now use protein sequence information 

extensively.  However, the general biological community uses much less structural information . 

The HCPIN website (http://nmr.cabm.rutgers.edu/hcpin/, Fig. 1) is built to make structural 

information about cancer-related proteins easily accessible to cancer biologists. Our future plan 

for HCPIN includes mapping SNP/mutation information, protein-protein interactions, and 

various structural bioinformatics predictions onto the 3D structures, adding gene ontology and 

structure-based functional annotation, and incorporating microarray and protein expression data. 

We envision HCPIN as an evolving, curated resource of structure-function information for the 

human cancer protein interactome. 

 

 Many intermediate results, such as expression constructs and biochemical reagents, 

generated in these ongoing structural genomics efforts are feely available to the biology 

community. Our structure-function database can be leveraged by many other related initiatives.  

For example, the National Cancer Institutes (NCI) Initiative for Chemical Genetics (ICG) aims to 

systematically identify perturbational small molecules for each cancer-related protein coded in 

the human genome (84). Our structural genomics efforts on HCPIN will provide biochemical and 

structural information, as well as key reagents, organized at a single web site, beneficial for such 

chemical genetics studies (85).   
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Figure Legends  
 
Figure 1.  The Human Cancer Protein Interaction Network (HCPIN) is a web-accessible 
database. It is designed for use by cancer biologists interested in assessing 3D protein structural 
information in the context of the protein interaction network. (A) HCPIN home page 
(http://nmr.cabm.rutgers.edu/hcpin). (B) A snapshot of Networks view, visualizing protein-
protein interactions with structure annotations. The outside ring represents the percentage of 
structural coverage. Green ring – experimental model is available with >99% sequence identities, 
Yellow ring - homology model is available with  >80% sequence identities. The web site 
provides tools for interactive analysis of the HCPIN network.  (C) A snapshot of Proteins view, 
listing sequence information and PDB blast hits, summarizing all structural information available 
for the human HCPIN protein and its homologues, and providing links to the corresponding PDB 
entries and other structure-function annotation information, (D) A snapshot of Icon gallery, a 
collection of ribbon diagrams for each of the known structures and the structural models in the 
HCPIN. 
 
Figure 2. Scatter plot of degree and betweenness measures for HCPIN proteins. Black – HCPIN 
proteins. Red – proteins also listed in Cancer Gene Census Database (1).  
 
Figure 3. Crosstalk between pathways. (A) Frequency of observing one protein in one or more 
of the 7 KEGG signaling pathways.  ~20%  of HCPIN pathway proteins are associated with two 
or more pathways. (B) Frequency of observing one HCPIN protein in one or more of seven 
pathway interaction subnets. > 50% of HCPIN proteins are associated with two or more 
interaction subnets. (C) Frequency of observing one pathway protein in one or more pathway 
interaction subnets. The frequencies (1-7) are also labeled on the side of these pie charts.  
 
Figure 4. Ribbon diagram of some HCPIN proteins/domains solved by NESG. At the bottom of 
each reprehensive ribbon diagram, we listed Swissprot (SW) name, NESG target id, PDB id, 
residue coverage and method used for structure determination.      
 
Figure 5. (A) Percent residue coverage distributions for HCPIN proteins, intracellular – proteins 
inside the cell. s/m – proteins predicted to be secreted or having at least a segment that is integral 
or trans-membrane. (B) Size distributions of HCPIN proteins and HCPIN proteins with single-
domain coverage. intracellular – proteins inside the cell, s/m – as defined above, intracellular-SD 
– intracellular proteins with single-domain coverage, s/m-SD – proteins predicted to be secreted 
or having at least a segment that is trans-membrane with single-domain coverage. (C) Size 
distributions of HCPIN proteins with residue coverage.  Intracelluar / s/m-residue - residue 
coverage of intracellular proteins and predicted secreted/membrane-associated proteins. Single-
domain and residue coverages are shown at high-accuracy level. A similar distribution is 
observed at medium-accuracy level. (D) Boxplots of size distributions of full length and targeted 
sub-regions of proteins selected by the NESG structural genomics project. 
 
Figure 6. HCPIN target selection process. SEG region: low complexity regions predicted by 
program SEG (37).  SignalP region: signaling peptide predicted by SignalP (32). TM region: 
transmembrane region predicted by TMHMM (33). C/U-region: structure covered or uncovered 
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region. T-region: targeted region. Disordered regions are predicted based on mean 
hydrophobicity and net charge (38) . 
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Table 1.  HCPIN Network Statistics       

 
  HCPIN   HCPIN – pairwise protein- 

   protein interaction onlya

Proteins/Nodes  2977 proteins  
 (664 pathway proteins) 
 240 multi-protein complexes 

 2819 proteins  

Interactions  9784b  9544 
Edges  10583b (292 self-interaction loops)  9544 (70 self-interaction loops)
Diameterc (longest distance)  11  11 
Average distance  4.143  4.086 
 

a One multi-protein complex is counted as one interaction, However, it is counted as multiple 

edges in the HCPIN graph.  

b Proteins from multi-protein complexes and pseudonodes are excluded for calculation 

c Measured for the largest connected component 
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Table 2.  Structural Coverage of SwissProt-Validated Proteins from the Seven KEGG Signaling 
Pathways of the HCPIN  
 
Medium-accuracy homology modeling level  
(Blast E_value < 10-6) 

Total Structural 
Coverage 

 

Secreted / Membrane 
Protein Structural  

Coverage

Intracellular Protein 
Structural  Coverage 

 
 No. %SDa %Res.b %No.c %SD %Res. %No. %SD %Res. 
Apoptosis 72 94 72 19 100 78 81 93 71 
TGF 79 90 56 52 90 59 48 89 54 
PI3K 81 85 51 12 70 28 88 87 56 
Cell-cycle 82 76 36 4 100 31 96 75 36 
TLR 88 93 71 45 95 77 55 92 69 
JAK-STAT 139 78 54 59 76 49 41 81 58 
MAPK 216 94 64 25 98 70 75 92 63 
HCPIN 
      Pathway proteins 600 86 55 33 85 56 67 86 55 
      Interaction proteins 1728 76 42 26 75 47 74 76 41 
      Total 2328 78 45 28 78 49 72 78 44 

 
 
High-accuracy homology modeling level  
(Blast E_value < 10-6  and > 80% sequence identity)  

Total Structural 
Coverage 

 

Secreted /Membrane 
Protein Structural  

Coverage

Intracellular Protein 
Structural  Coverage 

 
 No. %SD %Res. %No. %SD %Res. %No. %SD %Res. 
Apoptosis 72 68 36 19 64 32 81 69 36 
TGF 79 62 29 52 59 26 48 66 32 
PI3K 81 36 13 12 10 5 88 39 15 
Cell-cycle 82 46 20 4 100 30 96 44 20 
TLR 88 68 36 45 75 38 55 63 35 
JAK-STAT 139 55 32 59 59 32 41 51 32 
MAPK 216 60 33 25 60 36 75 60 32 
HCPIN 
       Pathway proteins  600 52 25 33 54 26 67 51 25 
       Interaction protein 1728 44 18 26 39 16 74 46 19 
       Total 2328 46 20 28 44 18 72 47 20 

aThe percentage of pathway proteins with single-domain structural coverage.  
bThe number of residues covered by PDB hit, divided by total length of proteins in the 

pathways. Residues predicted to be low complexity or coiled-coil are not counted in 
the denominator.   

cThe percentage of proteins in the pathways that are predicted to be secreted or have integral or 
one-pass transmembrane domains.  
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Table 3. Most Frequently Occurring HCPIN Domains  
 
Pfam Domain 
Name 

Frq 
 

Modeling_coverage a
(E < 10-6 and > 80% seq id)

Molecular Function 

Collagen 265 0.01 extracellular structural proteins 
Pkinase 184 0.31 protein kinase  
zf-C2H2 176 0.17 nucleic acid-binding 
WD40 173 0.23 multi-protein complex assemblies 
LRR_1 148  0.22  leucine rich repeat, protein-

protein interaction 
Ank 145 0.40 protein-protein interaction motif 
fn3 134 0.18 cell surface binding, signaling 
EGF 122 0.12 EGF-like domain 
SH3_1 104 0.46 signal transduction related to 

cytoskeletal organization 
Ldl_recept_b 101 0.05 low-density lipoprotein receptor 

repeakt class B 
TPR_1 99 0.32 protein-protein interaction 
EGF_CA 94 0.10 calcium binding EGF domain 
IQ 81 0.00 calmodulin-binding motif 
efhand 79 0.47 calcium-binding domain  
ig 77 0.27 immunoglobulin domain 
Ldl_recept_a 77 0.13 low-density lipoprotein receptor 

repeakt class A 
SH2 74 0.58 intracellular signaling 
Pkinase_Tyr 73 0.41 protein tyrosine kinase  
Filamin 72 0.03 actin cross-linking protein 
PH 65 0.26 cytoskeleton, intracellular 

signaling 
Spectrin 64 0.08 cytoskeletal structure 

 
a. the percentage of domain members that can be modeled at Blast E-val < 10-6 and > 80% 
sequence identity   
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4
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Figure 5 
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s/m intracellular % residue coverage 
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C                                                                                 D 
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Figure 6 
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