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ABSTRACT

DNA microarrays are widely used in biological
research; by analyzing differential hybridization on
a single microarray slide, one can detect changes in
mRNA expression levels, increases in DNA copy
numbers and the location of transcription factor
binding sites on a genomic scale. Having performed
the experiments, the major challenge is to process
large, noisy datasets in order to identify the specific
array elements that are significantly differentially
hybridized. This normally requires aggregating
different, often incompatible programs into a multi-
step pipeline. Here we present ExpressYourself, a
fully integrated platform for processing microarray
data. In completely automated fashion, it will correct
the background array signal, normalize the Cy5 and
Cy3 signals, score levels of differential hybridiza-
tion, combine the results of replicate experiments,
filter problematic regions of the array and assess
the quality of individual and replicate experiments.
ExpressYourself is designed with a highly modular
architecture so various types of microarray analysis
algorithms can readily be incorporated as they
are developed; for example, the system currently
implements several normalization methods, inclu-
ding those that simultaneously consider signal
intensity and slide location. The processed data
are presented using a web-based graphical inter-
face to facilitate comparison with the original
images of the array slides. In particular, Express
Yourself is able to regenerate images of the original
microarray after applying various steps of proces-
sing, which greatly facilities identification of
position-specific artifacts. The program is freely
available for use at http://bioinfo.mbb.yale.edu/
expressyourself.

INTRODUCTION

Microarrays are widely employed, among other uses, to
compare mRNA expression levels (1–5), DNA copy number
(6–9) and transcription factor binding in biological samples
(10–13). The concept underlying these experiments is
straightforward; fluorescence-labeled nucleic acids in ‘test’
and ‘reference’ samples are probed simultaneously on a
microarray slide, and their relative abundance is derived from
the comparative fluorescence of the probe molecules hybri-
dized to individual array elements. Though the technology is
relatively new, several aspects of data analysis beyond the
experimental stage are now well established; these include
scanning the arrays to measure fluorescence intensity,
quantifying the array images via densitometry algorithms
(14,15), clustering similarly expressed genes (16–20) and
integrating microarray data with genomic information (21–28).
However, a topic still under much discussion is how to treat the
raw numerical data immediately after scanning and quantifying
the array images (27,29).

Data processing aims to fill this gap. In particular it
serves three purposes: (i) to detect and minimize the level of
noise associated with the experiments; (ii) to assess the
quality of the data once the noise has been reduced; and
(iii) to identify the array elements that are actually
differentially hybridized.

Here we present ExpressYourself, an automated platform for
processing microarray data that is freely available over the web
(http://bioinfo.mbb.yale.edu/expressyourself). The software
performs correction of the background array signal, normal-
ization, scoring, combination of replicate experiments, filtering
problematic regions of the array and quality assessment of
hybridizations. We incorporate novel and published algorithms
that are reasonable, understandable and make minimal
assumptions about the data. The program can handle gene
expression, chromatin immunoprecipitated DNA probings
(ChIp-chip) and most comparative genomic hybridization
(CGH) data. The results are clear and easy to understand,
and the graphical interface allows users to compare each
processing step with the original slide images.
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DATA PROCESSING IN ExpressYourself

ExpressYourself processes the data in a sequential manner
using the major steps shown in Figure 1A. The stages can be
broadly grouped into: (i) noise reduction; (ii) quality control;
and (iii) differential hybridization scoring. We demonstrate the
use of ExpressYourself using the data from a ChIp-chip
experiment of the HCM1 transcription factor (30).

Input data

The data input to ExpressYourself comprise text files
generated by image analysis software. Currently, the program
recognizes files from Axon GenePix versions 2.0–4.0 (http://
www.axon.com/GN_GenePixSoftware.html), Scanalyze ver-
sion 2.0 (http://rana.lbl.gov/EisenSoftware.htm) and UCSF
SPOT version 2.0 (15) and produces the best results if input
files are left intact (i.e. no data is deleted). Multiple files are
accepted and may represent information for replicate
experiments. The processing steps to be applied to the data
may be changed by altering the parameters at this stage.

We interpret the Cy5 and Cy3 signals of an array element as
the median foreground minus background intensities for each
dye (S¼ Iforeground7 Ibackground). The foreground intensity is
the fluorescence of a spot within a defined area, usually
described by a circle enclosing the spot, and the background is
that of the immediate area surrounding the spot, usually
described by a bounding box. The level of differential
hybridization at each array element is determined as the
relative signal between the two dyes.

Noise reduction

Individual spot and regional filtering. Technological limita-
tions in array production and experimental techniques mean
that microarray slides are often imperfect. Nearly every
experiment contains individual array elements of poor quality,
comprising spots that are small compared to the rest of the
array, have unusual morphology (i.e. non-round), exhibit
uneven hybridization (i.e. doughnut or crescent-moon patterns)
or have saturated signal intensity. Most image analysis
software permits users to flag such array elements manually.
But with up to 40 000 spots per slide, this is very time-
consuming and difficult to perform in a consistent manner.
ExpressYourself automatically flags and, if necessary, removes
poor quality spots. Manual flagging is therefore unnecessary,
although the program will consider such flags if instructed
by the user. Imperfections on the array can also extend beyond
individual spots. Large dust particles, printing inconsistencies
and scratches sometimes render entire regions of the array
unusable. ExpressYourself detects and removes these flaws
automatically (Fig. 1B).

Background correction. Although we remove obvious
defects before further processing, it is important, if possible,
to correct minor imperfections confined to small areas so
that we preserve the maximum amount of usable data
(14,15,31,32). As mentioned above, the background signal is
commonly defined as the average intensity of the immediate
area surrounding each array element. Minor imperfections

(very small specks, dust and scratches limited to the vicinity
of a spot) often distort background signals, making them extre-
mely variable even between adjacent spots. Therefore the aim
of background correction is to reduce the local background
distortions that are restricted to single array elements, while
maintaining the overall variability represented by gradual
changes between bright and dark regions across the slide.
We overcome this problem by calculating the average back-
ground signal from a wider area, typically spanning 3� 3 to
5� 5 spots (31). In doing so, we minimize the contribution
of minor flaws to the background signal, and we remove
most of the local distortions. Figure 1C displays the effects
of correcting the Cy5 background intensity. Many regions of
local variability are removed, but overall variation in array
intensity remains.

Cy5/Cy3 normalization. Once the signal intensities have
been calculated using the corrected background, we can com-
pare the relative contributions of the Cy5 and Cy3 signals.
Ideally, the signals of the two dyes should be equal for nucleic
acid probes that have equal concentration in the test and refer-
ence samples (i.e. the ratio, R¼ S1/S2, of the two signals
should approach 1 for probes hybridizing to an equal degree
in both fluorescence channels). In practice, the signals can be
quite different. Dyes have different molecular characteristics,
hybridization to the arrays can be non-specific or incomplete,
and there is spatial heterogeneity in the probing conditions
across the slide. Normalization aims to compensate for these
effects by applying a scale factor such that signals of probes
with unchanged concentration are equal (29,31,33–39). The
signals of the remaining array elements are scaled relative to

Figure 1. (A) Flow chart of data processing. Schematic images of a microarray
slide depicting different stages of data processing: (B) filtering flawed array
regions, (C) the effects of background correction, and (D) outcome of normal-
ization.
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the baseline set for the constant probes. Figure 1D shows a
schematic of the example array before and after it has been
normalized.

A major issue in microarray normalization lies in defining
the set of constant probes and this is reflected in the many
approaches that have been published, including the use of
house-keeping genes, spiked controls and total nucleic acid
concentrations (see 31 for an overview). We prefer to use the
‘constant majority’ method, which assumes that the majority of
probes do not change in concentration. The method is
generally applicable to many experiments as it is valid even
in cases where up to 50% of probes have altered concentra-
tions, does not require prior knowledge of which probes
remain constant and allows for intensity and spatial considera-
tions (see below).

At its simplest the method calculates the scale factor from
the robust mean of all S1/S2 ratios, i.e. the distribution of all
ratios is transformed so that it centers about 1. However, two
particular issues must be addressed: signal intensity and array
position. First, because the two dyes differ in fluorescent
properties, the bias in ratios often depends on the signal
intensity (29,37–40). Therefore, different scale factors must be
used for array elements at different intensities. Second, the
positional issue is due to differences in hybridization
conditions across the slide (31,35,40), and it is common to
observe array images in which hybridization of entire regions
is dominated by one dye. Thus different scale factors must be
used for different regions of the physical slide. To determine
scale factors in each situation we employ local regression to
determine a ‘best fit’ for the data, using the LOWESS and
LOESS packages (41–43). In the former case, we calculate the
local mean intensity ratio as it varies over a range of signals
in two dimensions (Cy5 versus Cy3). In the latter case,
we determine the mean ratio as it varies across the surface of
the microarray slide by fitting a three-dimensional curve to the
data points.

Replicate array scaling. Many array experiments are con-
ducted in replicates; however, differences in sample concentra-
tions, probing conditions and scanner settings mean that the
range of signal intensities can be quite variable. Prior to com-
bining replicate experiments, we calculate the robust standard
deviations of signals in each experiment and scale each so the
widths of signal distributions are equal.

Quality control

It is useful to have an objective measure of data quality
(Fig. 1A) (31,33,39,44,45). Firstly, it allows the user to see
how well the experiment has performed as this is not usually
obvious from visual inspection of the slide images. Secondly,
it assesses the degree to which the noise reduction steps
have improved the data. Finally, by identifying the most
serious problems, the user can modify future experiments to
improve results. Here we introduce some of the data quality
measures that we have incorporated into ExpressYourself
to date.

Percentage of good quality array elements. The simplest
quality metric is a basic calculation of the proportion of array

elements and regions the filtering process has removed; the
larger the proportion, the poorer the quality of experiment.
By breaking down the numbers according to error type (e.g.
spot diameter, homogeneity, saturation), we can determine
the defective properties that are most problematic for a given
array.

Intra-array hybridization quality. Many microarrays are
designed with spots printed in duplicate, side-by-side. We gauge
the consistency of hybridizations within the array by measuring
the difference in signals between these duplicates [e.g.
D¼ (Rdup17Rdup2)/(Rdup1 þ Rdup2)]. The mean of D2, hD2

i,
then summarizes the consistency of hybridization within the
array. Since we expect hDi ¼ 0 then Var(D)¼

P
(Di7 0)2/

N¼hD2
i so the consistency of hybridization can also be

visualized as the width of the distribution of D.

Replicate array hybridization quality. We extend this mea-
sure to determine the consistency of replicate experiments,
by calculating the difference in signals between equivalent
spots across multiple slides. We construct an analogous qual-
ity score Di

0 ¼ (Ra,i7Rb,i)/(Ra,i þ Rb,i) for spot i on slides a
and b. Again, the width of the distribution of D0 measures the
quality of an experiment with respect to others and allows
users to decide whether the entire experiment should be
removed from the dataset. Values for D0 can also be used
to identify regions of a slide that are of particularly poor
quality.

Scoring differentially hybridized array elements

The final step is to identify array elements that exhibit
differential hybridization (Fig. 1A). These ultimately corres-
pond to those genes that have altered expression levels,
chromosomal regions that have changed copy number or the
locations of transcription factor binding sites, depending on the
nature of the experiment. The major issue is to single out spots
whose relative Cy5-Cy3 signals stand out from the experi-
mental noise at sufficient statistical significance.

ExpressYourself currently incorporates three scoring meth-
ods. The most simplistic and widely used approach is to
define a ratio cut-off and identify the probes that exhibit
fold changes greater than this threshold (3,46–48). Another
popular approach is to use variations of Student’s paired
t-test to compare all signals from the test and reference
samples (49–51). Differentially hybridized spots are identi-
fied as those exhibiting a p-value less than a user-specified
cut-off. We also include a novel method for scoring
differential hybridization (Fig. 2B; manuscript in prepara-
tion). We standardize each spot’s ratio by dividing it with a
local standard deviation; this deviation is determined as a
function of the spot’s total intensity (S1 þ S2). The
standardized ratios are fit to a distribution and outliers at
a user-defined p-value are identified as being differentially
hybridized. The outliers are removed from the dataset and
the entire process is repeated with the new, smaller set of
spots. The iteration continues until no new outliers are
detected.
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THE USER INTERFACE FOR ExpressYourself

ExpressYourself is accessed using a web browser and Figure 2
displays elements of the user interface. The toolbar allows
users to view the data at different stages of processing and the
corresponding output is presented in the main area of the web
page (Fig. 2A). In the centre of the display, we recreate the
slide image using values from the input file, and it is updated
through each processing step. Specific regions of the slide can
be viewed in detail by clicking on the area of interest. Selecting
individual spots can access data associated with each array
element (e.g. name of array element, diameter, signal
intensities and data quality flagging). Distributions of the
Cy5 and Cy3 signals are displayed at the right side of the page.
The scoring page lists the differentially hybridized spots that
are considered statistically significant and also displays them as
graphical plots (Fig. 2B). The user can download the results in
a text file for further analysis. The aim of the graphical
interface is to enable users to visualize the data in the context
of a microarray slide and statistical distributions. It facilitates
comparisons of the processed data with the original slide
images and allows them to track changes to spots of interest. In
additional data quality pages, the schematics are particularly
useful for uncovering position specific artifacts on the
microarray slide.

DATA DOWNLOAD

Processed data can be downloaded by the user as text files;
these include array signal intensities after each processing step,
a list of array elements that are differentially hybridized along
with significance scores, and the results of data quality
analyses including flagging (�50 for poor quality array
elements and 0 for good quality elements).

CONCLUSIONS

Summary

Here we presented ExpressYourself, a web-based program for
processing microarray data. We have incorporated novel and
published algorithms to reduce the experimental noise, assess
the quality of the data and identify differentially hybridized
array elements. The program can process data from most gene
expression, ChIp-chip and CGH experiments. The results are
clear and the graphical interface allows immediate identifica-
tion of the most important features of the experiment.

Future improvements

ExpressYourself is continually updated as better processing
methods are developed both within and outside our laboratory.
Immediate plans include addition of alternative normalization
methods, clustering and a visual tool linking array images to
genomic features, given a corresponding microarray designed
to map chromosomal loci. We also have future plans for
improved scoring schemes and more advanced methods for
combining the data from replicate experiments.

AVAILABILITY

ExpressYourself is freely accessible for use at http://bioinfo.
mbb.yale.edu/expressyourself. The program is written in C and
Perl and may be installed on any web server for local use.
Enquiries can be made to nicholas.luscombe@yale.edu.

ExpressYourself currently accepts input files in GenePix Pro
versions 2.0–4.0, Scanalyze version 2.0, or UCSF SPOT
version 2.0 format. The processing steps to be applied to the
data may be changed by altering the parameters at the input
stage. The program and its outputs are accessible using any
modern web browser (Explorer 6.0, Netscape 7.0 or Mozilla
1.3) and text-based results can be downloaded for further
analysis.

Figure 2. Screenshot of: (A) the main, and (B) scoring pages of
ExpressYourself.
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