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Abstract 

We investigate the relationship of protein-protein interactions with mRNA expression 

levels, by integrating a variety of data sources for yeast.  We focus on known protein 

complexes (from the MIPS catalog) that have clearly defined interactions between their 

subunits.  We find that subunits of the same protein complex show significant co-

expression, both in terms of similarities of absolute mRNA levels and expression profiles 

-- e.g. we can often see subunits of a complex having correlated patterns of expression 

over a time-course.  We classify the yeast protein complexes as either permanent or 

transient, with permanent ones being maintained through most cellular conditions.  We 

find that, generally, permanent complexes, such as the ribosome and proteasome, have a 

particularly strong relationship with expression, while transient ones do not. However, we 

note that several transient complexes, such as the RNA polymerase II holoenzyme and 

the replication complex, can be subdivided into smaller permanent ones, which do have a 

strong relationship to gene expression. We also investigated the interactions in 

aggregated, genome-wide datasets, such as the comprehensive yeast two-hybrid 

experiments, and found them to have an only weak relationship with gene expression, 

similar to that of transient complexes. (Further details on 

genecensus.org/expression/interactions and 

bioinfo.mbb.yale.edu/expression/interactions.) 
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Introduction 

Analysis of gene expression data is currently one of the most exciting areas in genomics. 

Computationally, it involves clustering and grouping individual expression measurements 

and interrelating them to other sources of information, such as phenotypes, functional 

classifications, or cellular responses (Golub et al. 1999; Brown et al. 2000; Califano et al. 

2000; Gaasterland and Bekiranov 2000; Raychaudhuri et al. 2001; Subrahmanyam et al. 

2001).  In particular, functional assignment of uncharacterized genes can take place 

through transferring the annotation from a characterized gene (gathered from databases 

such as MIPS or GO (Ashburner et al. 2000; Mewes et al. 2000)) to an uncharacterized 

gene when their expression profiles are strongly related by a similarity criterion (such as 

the correlation coefficient).  While this procedure is usually not sufficient to 

unambiguously determine the function of an uncharacterized gene, it can be the starting 

point (e.g. in target selection) for further genetic experiments, functional characterization, 

or high-throughput proteomic analysis (Luscombe et al. 1998; Westhead et al. 1999; 

Christendat et al. 2000a; Christendat et al. 2000b; Eisenberg et al. 2000; Emili and 

Cagney 2000; Gerstein and Jansen 2000). 

 

An important component of functional annotation is characterizing protein interactions as 

these often circumscribe (or effectively define) protein function.  Moreover, protein 

interactions can often be described more precisely than protein functions.  Thus, rather 

than directly dealing with the general relationship between protein function and 

expression, we look here at a sub-problem: the relationship between mRNA expression 

and protein-protein interactions, especially those in protein complexes.  A priori it seems 

reasonable that there should be a well-defined relationship between the expression levels 

of the subunits in a complex: since the functionality of many complexes hinges on the 

presence of all the subunits, a haphazard and independent expression of any one subunit 

would be energetically costly.  For instance, the components of the ribosome are 

regulated in a complex way but there is usually agreement that they should be present in 

equimolar amounts, although this has not yet been measured directly (Nomura et al. 

1999; Li et al. 1999; Woolford et al. 1991; Planta et al. 1997). 
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We investigate this relationship for many of the known protein complexes in a 

comprehensive, global fashion by interrelating many of the yeast datasets for protein 

interactions and expression.  The diversity and number of yeast experiments provide 

high-quality data under varied conditions.  Additionally, we investigate the relationship 

between other types of protein-protein interactions (e.g. aggregated physical and genetic 

interactions) and mRNA expression.  Our work follows up on many recent analyses of 

protein-protein interactions (Fellenberg et al. 2000; Hishigaki et al. 2001; Teichmann et 

al. 2001; Walhout and Vidal 2001). 

 

In general, our goal was to integrate and cross-correlate already existing data from 

different sources and find general trends in it.  This is an exploratory study prior to any 

type of prediction.  In a sense, this study can be understood as an exploration of the 

knowledge already implicit in the current data but not yet obvious because, previously, it 

has not yet been integrated and put together in this way. 

Results 

In our survey of existing data, we have used two different approaches to analyze the two 

different types of expression data available: the computation of normalized differences 

for absolute expression levels and a more standard analysis of the correlation of profiles 

of relative expression levels (expression ratios).  We explain these two approaches in 

more detail in the following two sections. 

Calculation of Normalized Differences between Absolute Expression Levels 

In order to compare absolute mRNA expression levels between subunits of a protein 

complex, we define the normalized difference Dij as follows: 

ji

ji
ij EE

EE
D

+

−
=  [1] 

where Ei and Ej are the mRNA expression levels of subunits i and j.  This quantity 

defines the difference as a fraction of the sum of the expression levels, thus allowing for a 
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comparison of gene pairs of both high and low expression.  Values for the normalized 

difference range from 0 to 1. 

 

For a group of N proteins in a complex we generally compute the normalized difference 

not only for the pairs that are in direct physical contact, but for all (N2 - N)/2 theoretically 

possible pairs, thus arriving at a distribution of normalized differences of these pairs for 

each complex.  We can then investigate this distribution of normalized differences and 

compare it with those among randomly chosen proteins.  In our following discussion we 

often refer to the median of the (N2 - N)/2 protein pairs as a key summarizing statistic. 

 

In general, we assume stoichiometric ratios of 1:1 between subunits, although equation 

[1] could be adjusted to account for other ratios.  But even then, as shown in the Methods 

section below, we would not expect this quantity to always be close to zero due to the 

relationship between mRNA and protein and also the noise in the expression data. 

 

It should also be noted that there are obviously many limitations in treating GeneChip 

and SAGE data as absolute measurements of mRNA expression (Schadt et al. 2000). 

 

In order to judge the statistical significance of normalized differences for particular 

groups of proteins we compare them to the control distribution of randomly chosen 

protein pairs (see figure 1).  An interesting theoretical aspect in this context is that if Ei 

and Ej are random variables with an exponential distribution (which is a close 

approximation to the actual distribution of expression of levels in the reference 

expression set), then Dij is distributed uniformly between 0 and 1 (Pitman 1993).  This 

explains why we can observe a nearly uniform distribution of normalized differences for 

randomly selected pairs of proteins (see figure 1). 

Correlation of Expression Profiles for Relative Expression Levels 

Analysis of expression profiles may be more useful than that of absolute levels for 

characterizing interacting proteins that exist in unequal but stoichiometrically related 

amounts (e.g., 3:1) as it refers to the relative shape of expression profiles.  It can be 
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carried out on data from cDNA microarrays (such as the Rosetta data) because only 

relative rather than absolute expression levels are necessary.  Specifically, we look at the 

distribution of Pearson correlation coefficients for pairs of genes as the measure of 

similarity. (Other measures of similarity are possible as well (D'haeseleer 1997; Wen et 

al. 1998; Heyer et al. 1999; Qian et al. 2001).) 

 

As the input for our procedure we use the expression vectors or profiles of all the 

subunits of a complex and then compute their pair-wise correlations.  Like for the 

normalized difference, we compute the correlation coefficients for all protein pairs in a 

complex, thus gaining a distribution of correlation coefficients.  If the complex consists 

of N subunits, this yields (N2 - N)/2 different combinations of protein pairs and thus 

correlation coefficients.  To summarize these distributions, we calculate the “average 

correlation” (by which we mean the average of all pair-wise correlations within a 

complex).  As a suitable control to assess statistical significance, we use the distributions 

of correlation coefficients for random groups of proteins and their averages (see 

methods).  We would expect correlations of close to 1 for subunits in a tight complex.  

However, as we show in the Methods section this will not be exactly the case due to the 

relationship between mRNA and protein abundances. 

Results 

We first outline some results obtained for specific protein complexes, then we proceed to 

a more general overview of complexes. 

Specific Complexes 

Ribosome 

It has long been known that the mRNA expression levels of the ribosomal proteins are 

strongly correlated with one another (Johannes et al. 1999).  Figure 1 shows the observed 

distribution of normalized differences for protein pairs in the large subunit of the 

cytoplasmic ribosome.  The median of this distribution is 0.23, much lower than the 

median of 0.5 for randomly selected protein pairs.  While there is a wide range of 

normalized differences (which may partially result from the fact that many proteins in the 
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ribosome are known not to be expressed in a 1:1 ratio (Kruiswijk et al. 1978)), the 

ribosomal distribution is clearly skewed towards zero.  Distributions of the correlation 

coefficients for protein pairs within the large ribosomal subunit are shown in figure 2.  

For both the cell cycle and the Rosetta data the correlations tend to be much higher than 

the random control. 

 

Similar observations can be made for the proteins in the small cytoplasmic ribosome.  

Key statistics are summarized in figure 3 in comparison to those for other protein 

complexes.  Furthermore, the two separate ribosome particles are strongly co-regulated.  

In fact, the large and the small ribosomal particles cannot be differentiated by our 

measures of expression similarity. 

Proteasome 

A second example of a complex whose individual subunits are strongly co-regulated is 

the proteasome, which is involved in protein degradation and responsible for the rapid 

breakdown of ubiquitinated proteins.  Like the ribosome, the 26S proteasome can be 

divided into two sub-particles: the 20S and the 19S (or 19S/22S regulatory particle).  The 

20S particle is present as a dimer in the center of the complex structure and contains the 

catalytic core, whereas two 19S particles are attached to both ends of the 20S particle 

dimer (Coux et al. 1996; Wilkinson et al. 1999). 

 

The distribution of the normalized differences for all possible protein pairs in the 20S 

proteasome is shown in figure 1.  Like the ribosome, it is clearly skewed towards zero, 

compared to the control, with a median of 0.29.  Figure 2 shows the distribution of 

correlation coefficients, which is strongly shifted to the right of the control, though to a 

lesser extent than that for the ribosome.  An investigation of the crystal structure of 20S 

particle (Whitby et al. 2000) did not reveal any relationship with the gene expression 

differences (e.g. proteins with slightly more random correlations tending to be more on 

the surface of the particle). 
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Similar results can be observed for the 19S particle of the proteasome (figure 3A).  Also, 

in terms of both measures of co-expression (normalized differences and correlation of 

expression profiles) the 19S and the 20S particles of the proteasome form a single unit 

that is difficult to separate by gene expression analysis.  Part of the reason for this may be 

that the common classification into 19S and 20S particles is based on the purification 

procedure for the proteasome (Hochstrasser 2001) and thus does not necessarily reflect 

functional or biochemical properties in a direct way. 

 

One subunit, Doa4p, exhibits a very low average correlation (-0.02).  Biochemical studies 

have previously shown that not all proteasomes have Doa4p bound and that the Doa4p-

proteasome interaction is more likely to be transitory (Papa and Hochstrasser 1993; Papa 

et al. 1999). 

RNA Polymerase II Holoenzyme 

We have seen above that the ribosome and proteasome can be regarded as strongly 

associated and co-regulated multi-particle complexes.  However, in some cases a 

complex contains more loosely associated components.  An example is the RNA 

polymerase II holoenzyme, which contains the core RNA polymerase II together with the 

more loosely associated SRB complex (Kornberg's mediator) and other smaller 

components (such as the SWIF/SNF complex and the TAFIIs). 

 

It is known that, unlike the RNA polymerase II core enzyme, the SRB complex and the 

other holoenzyme components are only needed for the transcription of a fraction of genes 

(Holstege et al. 1998).  In other words, the holoenzyme is an example of a complex of 

transitory nature with a permanent core.  This permanent-and-transitory structure is 

clearly evident in the gene expression analysis.  For the core enzyme, the average 

correlation in both the cell cycle and Rosetta data sets are significantly higher than for the 

random control (Figure 3).  However, for the SRB complex and a variety of other, 

smaller components (e.g. the TAFIIs) the average correlations are virtually 

indistinguishable from the random control. 

Replication Complex 
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Another example of a transient complex is the replication complex, which binds to DNA 

and is needed for the initiation of replication.  The replication complex can be subdivided 

into a number of sub-components: the MCM proteins, the origin recognition complex and 

the DNA polymerases δ and ε (Aparicio et al. 1997). 

 

As a whole, the replication complex exhibits a low average correlation not significantly 

different from that of the random control (figures 3 and 4).  However, figure 4 shows how 

the entire complex breaks into subcomponents in terms of correlations in the cell-cycle 

experiment.  The individual correlations for each of the subcomponents are much higher 

than that of the complex as a whole.  This indicates that the replication complex is 

composed of independent units in terms of expression regulation.  Using the permanent-

transient terminology, each subcomponent behaves similarly to an independent 

permanent complex, whereas the replication complex as a whole can be characterized as 

transient. The permanent sub-components can be seen to come together to form a 

transient functional entity.  (Note, this effect is more evident in the cell cycle experiment 

than the Rosetta data, as it should only be observable in a synchronized population of 

cells, not those averaged across the cell cycle.) 

Complexes in General: Permanent vs. Transient 

In discussing the specific examples above, we have found the permanent or transient 

nature of the association to be an important feature.  This distinction is, in fact, valuable 

in a more general context.  As shown in figure 3, we have a priori formalized a division 

between "permanent" complexes, which are maintained throughout the cell cycle and 

most cellular conditions, and "transient" ones, which we define here as a group of 

proteins that do not consistently maintain their interactions.  That is, the existence of a 

transient complex is temporal and specific to a part of the cell cycle or a subset of cellular 

states.  We are aware that the division into the two absolute categories "permanent" and 

"transient" is perhaps somewhat oversimplifying as there can be varying degrees and 

combinations of these attributes (see Discussion). 
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In figure 3, we show a general classification of the large MIPS complexes into permanent 

and transient classes, together with key statistics (details of the classification method are 

given in the caption).  We list all complexes with more than 10 subunits (which together 

account for ~80% of all the protein-protein interactions in the MIPS complexes), with 

smaller complexes listed on our website.  Figure 3B shows a graphical representation of 

the complex list, synthesizing the correlations for both the Rosetta and cell-cycle 

experiments with the normalized differences.  It clearly shows that there is a greater 

tendency for permanent complexes to have higher average correlations than for transient 

ones. 

 

Comparing the average correlations in Figure 3A against random controls allows us to 

derive P-values for the statistical significance of the correlation.  As shown in the figure, 

these are less then 10-4 for most of the permanent complexes.  On the other hand, they are 

considerably higher, and thus less significant, for transient complexes.  The separation 

between permanent and transient complexes is also evident in terms of the normalized 

difference statistics, although not as strongly. 

Aggregated Protein-Protein Interaction Sets 

From our analysis above it seems reasonable to conclude that there is indeed a strong 

relationship between mRNA expression and the protein-protein interactions in 

“permanent” complexes.  This raises the question whether similar observations can be 

made for other types of protein-protein interactions.  We briefly summarize here the 

degree to which the interactions in the aggregated interaction datasets, such as the yeast 

two-hybrid, are related to expression. 

 

Figure 1 shows the distribution of normalized differences and figure 2 the distributions of 

correlation coefficients between interacting proteins in the aggregated data sets.  The 

distributions of normalized differences are relatively similar to those of the transient 

protein complexes.  The physical interactions show the smallest median normalized 

difference while the yeast two-hybrid interactions have a median normalized difference 

closest to the random control (~0.5).  Figure 2 shows that the correlation distributions for 
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the aggregated data sets are fairly similar among themselves and only slightly shifted 

towards the right of the distribution curve for random protein pairs.  This, again, is very 

similar to the behavior of transient protein complexes. 

 

Thus, overall, it seems fair to conclude that the aggregated protein-protein interactions 

are related to mRNA expression in a similar fashion as the transient protein complexes. 

Discussion and Conclusion 

We have investigated the relationship of protein-protein interactions and mRNA 

expression levels, integrating and surveying a variety of data sources for yeast.  We have 

focused our investigation on the protein interactions within specific complexes.  While 

we have demonstrated a strong relationship between expression data and most permanent 

protein complexes, this relationship is much weaker for transient protein complexes as 

well as for the aggregated sets of protein-protein interactions (i.e. physical, genetic and 

yeast-two hybrid interactions). 

Issues with Permanent-Transient Classification 

Our complex classification scheme -- separating most complexes into either permanent or 

transient -- while useful cannot account for all complexes in the MIPS database.  Some 

complexes may not clearly fit into the permanent-transient classification.  We list a few 

of these as "other" in figure 3.  Moreover, the complexes list is a compilation of current 

biochemical knowledge and therefore reflects its inherent limitations (sometimes not all 

subunits are known or some proteins are mistakenly assigned to a complex). 

 

Of course, even for the complexes that we do classify, the terms "transient" and 

"permanent" are somewhat of an over-simplification.  In particular, our detailed 

discussions of the RNA polymerase II holoenzyme and the replication complex above are 

precisely two examples where our simplified terminology fails to completely explain the 

situation since these complexes are somewhere between fully "transient" and 

"permanent".   

 



Jansen et al. - 12 - 12

One can think about the distinction between permanent and transient in terms of the 

mathematical model introduced in the Methods section.  Whenever a complex is formed, 

its subunits tend to be expressed at equimolar protein concentrations: ji PP ≈  

and dtdPdtdP ji ≈  (where Pi and Pj are the protein concentrations of two subunits i and 

j).  If the complex is "permanent", then these conditions should be approximately or 

vaguely met.  If the complex is "transient", then these conditions can be relaxed in those 

situations where the complex is not formed.  There are some complexes, that are always 

formed ("permanent") whereas the "transient" complexes are only formed under 

particular conditions.  There can be different degrees of being transient: for instance, 

complexes that are formed under 80% of conditions or those that are formed under 20% 

of conditions.  The transient complex formed under 80% of conditions behaves almost 

like "permanent" (i.e., 100% of conditions), whereas the transient complex formed only 

20% of the time would be expected to show less significant normalized differences and 

correlations. 

 

If one goes as far as to accept the premise that the subunits in a complex should be 

present at equimolar amounts, then it is perhaps circular reasoning to say that they should 

also be co-expressed.   

Complexes versus the Aggregated Interactions: the Need for Structures 

We found it difficult to discern expression-based relationships in the aggregated data sets.  

This may be due to the generalized and heterogeneous nature of the aggregated data sets, 

(e.g. inconsistent physiological conditions, false positives and false negatives).  

Moreover, both the aggregated sets and the transient complexes suffer partially from the 

limited amount of mRNA expression data as their interactions may occur under particular 

physiological conditions that may not be sampled by mRNA expression data.  Our 

results, thus, illustrate the difficulty in drawing general conclusions for the pair-wise 

interaction sets and highlight the important role clearly resolved crystal structures of 

complexes, detailing protein interactions between subunits, have in studying protein-

protein interactions. 
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Noise in the expression and interaction data 
In general, the interactions in the aggregated datasets exhibited surprisingly little 

deviation from randomness in terms of the co-expression of interaction pairs.  This was 

most strongly observed for the yeast two-hybrid data.  It is true that, overall, this 

deviation from randomness is statistically significant.  All the same, the gene expression 

data and the aggregated protein interaction data do not reinforce each other strongly and 

it seems that the prediction of these type of interactions from expression data would be of 

little benefit. 

 

Perhaps the most optimistic view of this situation is that the strong degree of 

independence of the two types of data makes both of them suitable for use in machine-

learning approaches to characterize genes of unknown function: if they were strongly 

correlated, then one type of data could perhaps well replace the other since it represents 

very similar information.  A negative view would be that the reason for the surprisingly 

weak relationship between the aggregated interactions and mRNA expression are to be 

found in the problems with the either the expression or the interaction data. 

 

We feel confident that our results are robust to the noise in the expression data for the 

following reasons.  With respect to the correlation analysis of expression profiles 

roughly the same results (in terms of statistical significances) can be obtained for two 

independent data sets (the cell-cycle timecourse and the Rosetta knockout series).  The 

normalized difference analysis is perhaps more sensitive to problems with the data, in 

particular, considering that the measurement of absolute expression levels with gene 

chips is problematic to start with.  However, we have looked at an integrated dataset from 

various chip experiments and the SAGE data, thus averaging out errors to some degree 

(see Methods).  In addition, for both the correlation and the normalized difference 

analysis, we have concentrated on the statistical significance of distributions rather than 

relying on the error-prone data for individual protein pairs, thus observing more robust, 

aggregate trends for whole complexes and groups of proteins. 
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Part of the aggregated data, in particular the yeast two-hybrid data, represent a relatively 

new approach to studying protein-protein interactions and it is interesting to note that it, 

obviously, includes some interactions implied by the complexes.  However, the degree of 

intersection with possible complexes interactions ranges from 35% for the physical 

interactions to only approximately 6% for the yeast two-hybrid data (as a fraction of the 

number of interactions in the aggregated datasets).  This is surprisingly low, given that 

the yeast two-hybrid data is from experiments that covered the complete genome (Uetz et 

al. 2000; Ito et al. 2001).  Independently, Ito et al. (2001) have reported that only a small 

fraction of the previous yeast two-hybrid data (Uetz et al. 2000) overlapped with their 

own yeast two-hybrid results.  (Although Ito and colleagues assumed that their core data 

was similar in quality as the Uetz data, the fraction of interactions present in both datasets 

was only 16.8% for the Ito core and 20.4% for the Uetz data). 

mRNA vs. Protein Expression 

The co-regulation of subunits in a protein complex should be primarily observable in 

terms of protein abundance and only indirectly in terms of mRNA expression.  Several 

recent studies have attempted to investigate the relationship between mRNA and protein 

expression levels in yeast cells and found them to be correlated to various degrees 

(Anderson and Seilhamer 1997; Futcher et al. 1999; Gygi et al. 1999; Greenbaum et al. 

2001; Lian et al. 2001).  Generally, post-transcriptional regulation is more difficult to 

investigate given the sparse data resources currently available for protein abundance 

levels.  It is possible that in some situations co-regulation occurs mostly on the protein 

level, almost independent of cellular mRNA levels.  Particularly, those permanent 

complexes that do not have high levels of correlation in our analysis may be indicative of 

translational or post-translational control and could be a starting point for further 

experimental investigation.  See also the Methods section for further discussion. 

 

(Additional information can be found at genecensus.org/expression/interactions and 

bioinfo.mbb.yale.edu/expression/interactions.) 
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Methods 

Interactions Data Sources 

The primary focus of this paper are the interactions occurring within specific complexes. 

These were obtained from the MIPS complexes catalog (Fellenberg et al. 2000), which 

represents a carefully annotated, comprehensive dataset of protein complexes culled from 

the scientific literature.  In addition, we looked at other types of protein-protein 

interactions from large "aggregated" datasets collecting many heterogeneous pair-wise 

interactions.  We collected these from the MIPS catalogs of physical and genetic 

interactions(Fellenberg et al. 2000), databases of interacting proteins (DIP and BIND) 

(Bader and Hogue 2000; Xenarios 2000), and a comprehensive collection of yeast 2-

hybrid experiments (Y2H) (Cagney et al. 2000; Ito et al. 2000; Schwikowski et al. 2000; 

Uetz et al. 2000; Uetz and Hughes 2000; Ito et al. 2001).  These interactions are 

subdivided into groups based on their method of discovery.  They include physical 

interactions (e.g., collected through co-immunoprecipitation and co-purification), genetic 

interactions (e.g., determined through genetic means such as synthetic lethality or 

suppression experiments), and yeast two-hybrid pairs. 

Expression Data Sources 

We included two different types of expression measurements in our analysis: absolute 

expression levels in vegetative yeast cells as determined by SAGE or gene chip 

experiments, and profiles of ratio-type expression data from microarray experiments.  For 

the first type, we use a comprehensive reference set, which we merged and scaled 

together from a variety of Affymetrix GeneChip and SAGE datasets (Velculescu VE 

1997; Holstege FC 1998; Roth et al. 1998; Jelinsky and Samson 1999) into a single 

representative data source (scaling details on our website; Greenbaum et al. 2001).  For 

the expression profiles, we focused on two different datasets: a cell cycle experiment 

(Cho et al. 1998) and the Rosetta yeast compendium (Hughes et al. 2000). The two 

datasets provide a fairly good sampling of the possible cellular states of yeast and 

represent different experimental methodologies.   The cell-cycle data contains expression 

profiles obtained from synchronized cells over the course of two cell cycles, whereas the 
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Rosetta data contains genome-wide expression ratios for 300 stationary cell states, which 

are derived from 280 gene deletions and the 20 drug interaction experiments. 

Efficient Calculation of the Average Correlations 

For two expression ratio profiles Xi and Xj (transformed to average 0 and standard 

deviation 1), the Pearson correlation coefficient ρij is given by the dot product: 

ji XX •
−

=
1

1
Mijρ , 

where M is the number of elements in the profiles Xi and Xj.  The profile X can be 

computed as a ‘Z-score’ from the measured expression ratio profile x, through the 

relation 
x

k
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= , where x denotes the average and σx the standard deviation of 

values in x, and Xk and xk are the kth components of their respective profiles. 

 

Given a group of N genes we can compute the correlation coefficient matrix R, where 

each element ρij of the matrix denotes the Pearson correlation coefficient between genes i 

and j.  We can then compute the average correlation coefficient ρ  by averaging the 

matrix elements (excluding the main diagonal).  This statistic gives an idea of the overall 

similarity of the expression profiles in a group of genes.  Although there are O(N2) 

elements in R, the computation time for ρ  can be kept proportional to O(N) by using the 

linearity of the correlation to calculate ρ  as follows: 
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N
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n

1
XXT  is the sum of all expression profiles in the group of N genes. 

Kinetic Model of the Relationship between Protein and mRNA 
Concentration 
For a protein complex that is perfectly co-regulated we can assume that its components 

are present at equimolar amounts and change similarly over time.  So for the protein 

concentrations Pi and Pj of two different subunits i and j we would get: ji PP ≈  and 
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dtdPdtdP ji ≈ .  Using a simple model for the relationship between mRNA and protein 

concentrations, we can see how even under these ideal conditions similarity measures 

based on the mRNA concentrations would deviate from perfect results.  For instance, a 

linear kinetic model for the protein concentration Pi and the mRNA concentration Ri of a 

subunit i in a complex is given by: 

iPiiRi
i PkRk

dt
dP

−=  

where kRi is an mRNA translation rate constant and kPi is a protein degradation constant. 

Why expression profile correlations have to be less than one 
For two subunits in a complex with PPP ji ≡=  and dtdPdtdP ji = , we can deduce: 

( ) )()()( tPkktRktRk PjPijRjiRi −+=  

It is clear that only under the strong assumption that the two protein degradation 

constants are equal (kPi = kPj) 

const
k
k

tR
tR

Ri

Rj

j

i ==
)(
)(  

from which would follow corr(Ri, Rj) = 1.  Otherwise, corr(Ri,Rj) < 1. 

Why normalized differences are greater than zero 
Furthermore, assuming steady-state (that is, 0== dtdPdtdP ji ), we can deduce the 

following relationship for the relationship between the mRNA levels of two complex 

subunits: 

j
Ri

Pi

Pj

Rj
i R

k
k

k
k

R =  

Thus, the two mRNA expression levels are only expected to be equal if the ratios of the 

rate constants for translation and degradation are the same for both proteins.  This is not 

necessarily the case for the subunits of a complex and therefore normalized differences 

should not be expected to be zero. 
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It is clear that the arguments above are based on a variety of simplifying assumptions.  In 

reality, there are additional factors (such as the noise in the expression data, the stochastic 

nature of gene expression) that add even more difficulty to the analysis of mRNA levels. 
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Figure Captions 

Figure 1 

Distributions of normalized differences for various groups of proteins in boxplot 

representation.  The normalized difference Dij is a measure of the relative similarity of 

two absolute gene expression levels Ei and Ej.  The middle panel shows the distribution 

for two protein complexes (the large ribosomal subunit and the 20S proteasome).  Note 

that we considered all theoretically possible protein pairs within the protein complex (as 

indicated in the schematic drawing above the panel).  The right panel shows the 

distribution for the aggregated datasets of protein-protein interactions (Y2H is yeast two-

hybrid) (Bader and Hogue 2000; Cagney et al. 2000; Fellenberg et al. 2000; Ito et al. 

2000; Schwikowski et al. 2000; Uetz et al. 2000; Uetz and Hughes 2000; Xenarios 2000; 

Ito et al. 2001).  Unlike in the complexes, where we consider interactions among a whole 

group of proteins, the interactions in the aggregated datasets are specific to individual 

protein pairs (see schematic drawing).  The left panel shows two control distributions of 

the normalized difference, on the left for pairs of nuclear and cytoplasmic proteins -- 

which presumably, because of spatial separation, do not interact -- and on the right for 

any random protein pair ("all transcripts") in yeast.  The distribution of nuclear versus 

cytoplasmic proteins is strongly skewed towards one (the maximum value of the 

normalized difference), which is partially explained by the fact that cytoplasmic proteins 

tend to have higher expression levels than cytoplasmic ones (Drawid 2000; Drawid and 

Gerstein 2000).  The distribution of all transcripts is nearly uniform (with a median of 

0.5) -- see Methods.  The complexes distributions are clearly skewed towards zero with 

medians between 0.2 and 0.3.  The medians of the distributions of the aggregated datasets 

are still somewhat smaller than the control median, most notably for the physical 

interactions dataset; on the other hand, there is virtually no difference between the control 

and the distribution of the yeast two-hybrid dataset. 

 

The aggregated data, obviously, includes some interactions implied by the complexes, 

with the degree of intersection ranging from 35% for the physical interactions to 

approximately 6% for Y2H. 



Jansen et al. - 20 - 20

Figure 2 

Distributions of correlation coefficients between expression profiles. In part A we show 

distributions of the average correlation Nρ  of N genes for the cell cycle experiments.  

The gray curve in the background represents the case N = 2 (i.e., simply the distribution 

of pair-wise correlations).  In the case of N > 2, Nρ  is defined as the average of all 

possible (N2-N)/2 pairwise correlations among the N genes.  We show here, as examples, 

the distributions for N = 3 and N = 5.  The distributions obviously become narrower, 

reflecting the fact that it becomes more unlikely to find large groups of strongly 

correlated genes at random as N increases. 

 

These distributions provide a suitable control for the observed correlations between pairs 

of genes (N = 2) or for the average correlations among the subunits of a complex (N > 2). 

 

We have developed a method to efficiently sample the distribution curves f( Nρ ) (see 

Methods).  Based on the distribution function of f( Nρ ) we can calculate a one-sided P-

value: 

∫=
1

)()(
N

NNN dfP
ρ

ρρρ  

This P-value then represents the chance that a group of N randomly selected genes could 

exhibit an average correlation greater than or equal to that of a complex with N proteins 

(see figure 3). 

 

Part B and C show the distribution of pair-wise correlations for both the cell cycle and 

the Rosetta experiments in two protein complexes (the ribosome and the proteasome) as 

well as for the aggregated datasets (genetic, physical and Y2H).  The gray curves in the 

background are the control distributions for N = 2 as explained above.  The distributions 

for the ribosome and the proteasome are strongly shifted to the right of the control; this 

effect is much weaker for the datasets of aggregated interactions. 
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Figure 3 

Part A consolidates various key statistics shown in figures 1 and 2 for the ribosome and 

proteasome as well as for a large number of protein complexes.  We list all protein 

complexes from the MIPS catalog having at least 10 ORFs.  The complexes are divided 

into three classes: permanent, transient or "other" (see below).  Some complexes can be 

divided into smaller sub-complexes (e.g., the ribosomes) as indicated.  The table lists 

(from left to right) the average expression level of the complex, the median normalized 

difference (see figure 1A), the average correlation for the cell cycle and Rosetta 

experiments (see figure 2), the negative logarithm of the P-value of the average 

correlations in both experiments (see figure 2), and the size of the complex in terms of 

the number of ORFs. 

 

In general, the P-values for the average correlations are very low for most of the 

permanent protein complexes (accordingly, -log10(P) is very high), indicating that these 

averages are significantly greater than for random groups of proteins of the same size.  

The same cannot be observed for the transient protein complexes, for which the 

correlation averages are usually much smaller. 

 

The section "other" at the bottom of part A contains complexes that are either difficult to 

classify as permanent/transient or for which, due to very small turnover rates, down-

regulations of mRNA levels take a very long time to affect protein abundance.  The H+-

transporting ATPase can be thought of as containing a mixture of permanent and 

transient components at the same time(Kane 2001).  The nuclear pore complex (NPC) 

and the TRAPP complex are known to have low turnover rates (Bucci and Wente 1997; 

Winey et al. 1997; Sacher et al. 1998; Barrowman et al. 2000).  The NPC has relatively 

small average correlations, but this still yields P-values of 10-3 (cell cycle) and <10-4 

(Rosetta) because the nuclear pore complex is a relatively large aggregation of proteins, 

and even these weak average correlations are very unlikely to occur for random groups of 

proteins of this size.  The TRAPP protein complex, while existing throughout the cell 

cycle, has a low turnover rate and as such its mRNA expression data would not be 

sufficient for our analysis. 
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The RNA polymerase holoenzyme is composed of both permanent and transient 

components.  Note that the MIPS complexes catalog does not include the SWI/SNF 

chromatin-remodeling complex and a subset of basal transcription factors (Wilson et al. 

1996) as part of the holoenzyme, thus we list them separately here. 

 

The list does not include those categories from the MIPS complexes catalog that do not 

really represent protein complexes per se but rather aggregations of disparate proteins 

that are involved in similar types of complex interactions, such as the "actin-associated" 

and "tubulin-associated" protein groups. 

 

Part B shows a graphical representation of part of the protein complex statistics from part 

A.  The abscissa and ordinate represent the average correlations in the cell cycle and the 

Rosetta data, while the bubble sizes are a function of the normalized differences (larger 

bubbles represent larger normalized differences).  In general, the permanent complexes 

tend to be located in the upper right region of the plot, whereas transient complexes are 

closer to the random control in the lower left. 

Figure 4 

Part A of the figure shows a representation of the replication complex and its components 

on the same coordinates as the protein complexes in figure 3B.  The transient replication 

complex can be decomposed into smaller complexes: the origin recognition complex, the 

MCM proteins, and the DNA polymerases δ and ε.  Whereas the whole replication 

complex exhibits an average correlation close to zero (in both the cell cycle and the 

Rosetta data), the four smaller complexes show greater correlations in the cell cycle 

experiment.  The four sub-complexes behave more like permanent complexes than the 

replication complex as a whole. 

 

Part B shows the correlation coefficient matrix for the subunits of the replication 

complex derived from the cell cycle data.  The upper triangle of the correlation matrix 

shows the individual correlation coefficients for particular gene pairs (with darker colors 
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indicating higher correlations).  The lower triangle shows the average correlations for 

subgroups of proteins (representing the MCM proteins, the two DNA polymerases, and 

the origin of the replication complex) within the complex as a whole.  The table on the 

right side shows which genes belong to which subgroups in different colors.  The genes 

were ordered with unsupervised clustering (average linkage) without regard to their 

classification according to the three subgroups.  It can be seen that this order reflects the 

separation according to the subgroups very well (only the proteins in the two DNA 

polymerase cannot be separated into two groups).  An exception is the CDC45 protein 

that belongs to the MCM proteins but tends to cluster with the DNA polymerases. 
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