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Abstract

Rates of evolution differ widely among proteins, but the causes and consequences of such differences remain under debate.
With the advent of high-throughput functional genomics, it is now possible to rigorously assess the genomic correlates of
protein evolutionary rate. However, dissecting the correlations among evolutionary rate and these genomic features
remains a major challenge. Here, we use an integrated probabilistic modeling approach to study genomic correlates of
protein evolutionary rate in Saccharomyces cerevisiae. We measure and rank degrees of association between (i) an
approximate measure of protein evolutionary rate with high genome coverage, and (ii) a diverse list of protein properties
(sequence, structural, functional, network, and phenotypic). We observe, among many statistically significant correlations,
that slowly evolving proteins tend to be regulated by more transcription factors, deficient in predicted structural disorder,
involved in characteristic biological functions (such as translation), biased in amino acid composition, and are generally
more abundant, more essential, and enriched for interaction partners. Many of these results are in agreement with recent
studies. In addition, we assess information contribution of different subsets of these protein properties in the task of
predicting slowly evolving proteins. We employ a logistic regression model on binned data that is able to account for
intercorrelation, non-linearity, and heterogeneity within features. Our model considers features both individually and in
natural ensembles (‘‘meta-features’’) in order to assess joint information contribution and degree of contribution
independence. Meta-features based on protein abundance and amino acid composition make strong, partially independent
contributions to the task of predicting slowly evolving proteins; other meta-features make additional minor contributions.
The combination of all meta-features yields predictions comparable to those based on paired species comparisons, and
approaching the predictive limit of optimal lineage-insensitive features. Our integrated assessment framework can be
readily extended to other correlational analyses at the genome scale.
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Introduction

Different proteins evolve at drastically different rates [1]. Some

proteins are highly conserved across distantly diverged species,

such as the ribosomal and histone proteins in eukaryotes [2].

Other proteins evolve much more quickly, often to the point

where they occur in one species but cannot be identified in other

closely related species, possibly due to deletion or major sequence

divergence [3]. What are the main driving forces of such

differences in protein evolutionary rate? What percentage of this

variation can be attributed to simple protein properties that we

can quantitatively measure in a genome-wide fashion? The

answers to such questions are critical to achieving a systematic

understanding of molecular evolution.

With the advent of reliable high-throughput functional genomic

measurements, particularly in the model organism Saccharomyces

cerevisiae (baker’s yeast), it is now possible to rigorously assess the

functional genomic correlates of protein evolutionary rate. Many

studies have focused on calculating the correlation between

protein evolutionary rate and a single protein feature that can

be determined for a large fraction of yeast proteins, followed by

statistical hypothesis testing of the observed correlation. This

method has been successful in identifying a number of key

correlates of protein evolutionary rate, such as protein abundance

[4], essentiality [5], and number of interactors [6]. For further

review of individual correlates, see [1,7,8].

Assessing the relative strengths, synergistic effects, and redun-

dancy among such correlations requires more sophisticated

statistical methods. Multivariate techniques have already been

applied in a number of studies aimed at simultaneously dissecting

multiple correlates of evolutionary rate [9–16]. Partial correlation

and principle component regression, two popular techniques in

this area, have been shown to produce discrepant results when

applied to similar data [13,15,17]. Arguments have been made

against both techniques regarding their sensitivity to noise among

protein features and a tendency to over- or under-estimate the

number of independent determinants of evolutionary rate.

Analyses of evolutionary rate correlation have been historically

limited by less-than-complete coverage of the genome—often far

less. Consider the calculation of evolutionary rate itself. A
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commonly used reference dataset was produced by Wall et al.,

where a set of evolutionary rate calculations were meticulously

performed in yeast [12]. In generating these data, they placed

demands on gene orthology and phylogenetic relationships that

substantially reduced genome coverage (to roughly 3,000 genes,

relative to the roughly 6,000 open reading frames in S. cerevisiae).

Moreover, a reduction in genome coverage may be accompanied

by the introduction of specific biases. For example, stringent

demands on gene orthology automatically bias a dataset toward

more slowly evolving proteins. Coverage will tend to be further

limited—and the dataset further biased—as more genomes and

more protein features are added to an analysis.

In this study, we used an integrated probabilistic modeling

approach to assess genomic correlates of protein evolutionary rate

for 5,537 proteins in the yeast genome (94.5% coverage relative to

the 5,861 total yeast ORFs). We assembled a list of diverse protein

sequence, physicochemical, and functional genomic features with

high coverage of the proteins in S. cerevisiae and assessed their

correlations with an approximate, high coverage measure of

protein evolutionary rate. To manage potential outliers, noise, and

non-linear relationships, we employed robust measures of

correlation, such as rank correlation and mutual information. By

considering many protein attributes simultaneously, it was possible

to rank them according to their degrees of association with

evolutionary rate. Our high-coverage framework allows us to re-

assess known genomic correlates of evolutionary rate, while

simultaneously identifying new, statistically significant correlates.

In addition, we employed a logistic regression framework on

binned data to assess the information contribution of sets of

features in the task of predicting slowly evolving proteins. Our

framework is flexible and robust, and is able to account for

intercorrelation, non-linearity, and heterogeneity within features.

Using this framework, we were able to group overlapping and

interrelated features into natural ensembles (‘‘meta-features’’), and

quantitatively assess their combined predictive power. Next,

natural ensembles were evaluated in progressively larger groups

to measure the independent significance of their contributions.

Finally, we show that our optimal predictions of S. cerevisiae protein

evolutionary rate are comparable to those based on paired species

comparisons, and approaching those based on the lineage-

independent component of evolutionary rate.

Results

An Approximate, High Coverage Measure of Evolutionary
Rate

We employed an approximate, high coverage method for

calculating yeast protein evolutionary rate based on multiple

paired species comparisons. Figure 1 illustrates this procedure,

which we outline here briefly (see the Methods section for further

details). We selected five closely related yeasts for evolutionary

comparison. 5,537 proteins in S. cerevisiae possessed an annotated

ortholog in at least one of these species. Evolutionary rates were

calculated for pairs of orthologous sequences following previously

established procedures (e.g., codon alignment followed by dN/dS

calculation). These rates were then ranked and normalized within

a given paired species comparison. The evolutionary rate of a

given protein is the average of its ranked, normalized rates across

all paired species comparisons in which an ortholog was present.

We operate under the initial assumption that the ranked

evolutionary rate of a protein is constant over time, and should

therefore be approximately equal when estimated using different

yeast species pairs. Averaging over multiple paired species

Author Summary

Proteins encoded within a given genome are known to
evolve at drastically different rates. Through recent large-
scale studies, researchers have measured a wide variety of
properties for all proteins in yeast. We are interested to
know how these properties relate to one another and to
what extent they explain evolutionary rate variation.
Protein properties are a heterogeneous mix, a factor which
complicates research in this area. For example, some
properties (e.g., protein abundance) are numerical, while
others (e.g., protein function) are descriptive; protein
properties may also suffer from noise and hidden
redundancies. We have addressed these issues within a
flexible and robust statistical framework. We first ranked a
large list of protein properties by the strength of their
relationships with evolutionary rate; this confirms many
known evolutionary relationships and also highlights
several new ones. Similar protein properties were then
grouped and applied to predict slowly evolving proteins.
Some of these groups were as effective as paired species
comparison in making correct predictions, although in
both cases a great deal of evolutionary rate variation
remained to be explained. Our work has helped to refine
the set of protein properties that researchers should
consider as they investigate the mechanisms underlying
protein evolution.

  

 

Figure 1. Calculating evolutionary rate. (A) We first performed conventional evolutionary rate calculation via sequence comparison between S.
cerevisiae proteins and their annotated orthologs in five other yeasts (3 yeasts, 2 with orthologs, are depicted here for simplicity). (B) Proteins were
ranked according to evolutionary rate within each paired species comparison. (C) Ranks were then normalized to account for differences in the
number of orthology relationships between species. (D) A protein’s normalized ranks were then averaged across all paired comparisons in which an
ortholog was present. (E) Finally, average ranks of evolutionary rate were divided into five equally populated bins.
doi:10.1371/journal.pcbi.1000413.g001
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comparisons involving S. cerevisiae serves to enhance the signal-to-

noise ratio for evolutionary rate along the S. cerevisiae lineage. As

our measure of evolutionary rate is approximate, we rely on

relative rankings and binning to limit the influence of error. Our

rankings were tested in comparison with the well established Wall

et al. dataset of yeast dN/dS values [12]. Where the datasets

overlap, the correlation between our ranks of evolutionary rate

and those inferred from Wall et al. is high at 0.938 (i.e., 88.0% of

the variation in the Wall et al. rankings can be explained by our

approximate method). The advantage of our method is a

substantial increase in genome coverage: Wall et al. assigned

evolutionary rates to 3,038 proteins (51.8% genome coverage),

while we assign ranks to 5,537 proteins (94.5% genome coverage).

Ranking Genomic Correlates of Protein Evolutionary Rate
We collected a list of 42 high coverage protein sequence,

structure, and functional genomic attributes that potentially

correlate with evolutionary rate (Table 1). We ranked these

features according to their absolute rank correlation coefficients

with evolutionary rate. The top twenty correlates are listed in

Table 2. Three categorical variables (GO slim biological process,

molecular function, and cellular compartment) were excluded

from this analysis as correlation coefficients cannot be computed

for categorical variables. The most dominant genomic correlates

of evolutionary rate are those associated with protein abundance

(e.g., codon bias and absolute mRNA expression, both correlating

negatively) and a subset of amino acid composition (serine and

asparagine content correlating positively, and glycine, alanine, and

valine content correlating negatively). Other significant correlates

include: native disorder, GC content, number of interactors,

degree of gene duplication, essentiality, and—reported here for the

first time—number of transcriptional regulators.

In addition, to deal with categorical variables and potential non-

linear relationships between genomic features and evolutionary

rate, we converted continuous variables into discrete variables

through binning and then ranked genomic features according to

their mutual information with evolutionary rate. The top twenty

correlates under this scheme are listed in Table 3. The resulting

order is similar to that produced by the rank correlation analysis,

except that broad functional assignment (GO slim molecular

function, biological process, and cellular compartment) joins

protein abundance and amino acid composition as a dominant

genomic correlate of evolutionary rate.

Statistical significance was determined from the distribution of

correlation measures resulting from 100 randomizations of the

feature data annotations. All correlations discussed here and listed

in Tables 2 and 3 are highly statistically significant (rank

correlation z-scores.6, mutual information z-scores.40; all p-

values%0.001).

Genomic Correlates of Slowly Evolving Proteins
We selected the slowest evolving 20% of the proteins and asked

which features best distinguish them from the remainder of the

genome using a fold enrichment analysis (Figure 2). In agreement

Table 1. Protein attributes tested for potential correlation with evolutionary rate.

Meta-features Features # of Bins*

Amino Acid Composition Amino Acid Content (20 total attributes) 5

Structure (Physicochemical Properties) Predicted helix content 5

Predicted sheet content 5

Predicted coil content 5

Predicted native disorder 5

Predicted transmembrane helix content 4

Charge (pI) 5

Hydrophobicity (Kyte-Doolittle) 5

Aromaticity 5

Size 5

Function Biological process (GO slim) 33{

Molecular function (GO slim) 22{

Cellular compartment (GO slim) 24{

Abundance Absolute mRNA expression 5

Protein expression 5

Codon Adaptation Index (CAI) 5

Codon bias 5

Phenotype Essentiality 2

Marginal essentiality 5

Network Number of interactors 5

Number of transcriptional regulators 5

Genome Degree of gene duplication 4

GC content 5

*Continuous variables were made discrete by binning. The protein attribute we are trying to predict, evolutionary rate, was divided into 5 bins.
{Number of categories within the categorical feature.
doi:10.1371/journal.pcbi.1000413.t001
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with previous studies [4–6,13,18–22], we found that slowly

evolving proteins tend to be more abundant, be essential, have

many gene duplications, and have more interaction partners. In

addition, slowly evolving proteins are overrepresented in certain

biological processes (such as translation) and depleted in others

(such as protein modification). Similar arguments can be made for

molecular function: slowly evolving proteins are common among

structural molecules, but rare among transcriptional regulators.

Slowly evolving proteins also tend to have low predicted native

disorder [23], and have characteristic amino acid compositions

[24]. We again observe a new, significant correlation between

evolutionary rate and transcriptional regulation: slowly evolving

proteins tend to have more transcriptional regulators. The

correlation between protein evolutionary rate and number of

predicted transmembrane helices is low, as are the correlations

with predicted secondary structure features (not depicted). This

may be in keeping with recent findings at the interface of protein

structure and evolution: while structural characteristics impose

clear constraints at the residue level, these constraints do not

always scale to the level of whole proteins in a straightforward

manner [14,25].

Logistic Regression as a Tool to Analyze Feature
Correlation

The methods described so far have helped us to overcome some

of the difficulties inherent to analyzing the relationships between

protein feature data and evolutionary rate. We have been able to

rank the importance of the various features in a robust statistical

framework with full genome coverage, while compensating for

non-linear relationships, mixed data types, and to some extent

noise. We next sought to address two additional issues—joint

information contribution and contribution independence—with-

out losing the gains that our approach had already made. In order

to accomplish this, we applied a logistic regression model to study

the information contribution of features (and sets of features) in the

task of predicting slowly evolving proteins. Logistic regression has

been used in the past for predicting protein-protein interactions

[26,27]. It is capable of integrating discrete and continuous data to

model non-linear relationships (through binning), and is robust

against redundancy among features. This last advantage makes

logistic regression particularly powerful for simultaneously mod-

eling groups of features, a prerequisite for our next objectives.

We constructed a positive dataset consisting of the slowest

evolving 20% of the proteins, and a negative dataset of the same

size consisting of a random sampling of the remaining 80% of the

proteins. The positive and negative datasets were then divided into

five partitions. Using five-fold cross validation, we trained a logistic

regression classifier using four of the five partitions, and then

evaluated our model using the remaining partition as a test set.

Results take the form of correct classification rates—i.e., when

evaluating the model using the test data, the percentage of the

proteins that were correctly assigned to their respective classes

(slowly evolving versus not slowly evolving). Since all datasets were

balanced prior to training and testing, a random classifier would

produce correct predictions 50% of the time. This is a lower

bound to which the feature-based classifications can be compared.

Mathematical details of the logistic regression procedure can be

found in the Methods section.

The top panel of Figure 3 reports the correct classification rates

for a sampling of single protein features. As with the previous

methods, we are able to rank features according to the strength of

their relationships with evolutionary rate. Note that while some

features are closely related (under the umbrella of ‘‘amino acid

Table 2. Top twenty protein features ranked by absolute rank
correlation with evolutionary rate.

Feature Description
Rank Correlation with
Evolutionary Rate

Codon bias 20.578

Codon adaptation index 20.557

Protein expression 20.486

Absolute mRNA expression 20.467

Gly content 20.401

Ala content 20.390

Ser content 0.366

Asn content 0.317

Val content 20.293

Native disorder 0.251

GC content 20.242

Degree of gene duplication 20.206

Sheet content 20.191

Number of interactors 20.160

Essentiality 20.147

Marginal essentiality 20.146

# of transcriptional regulators 20.142

Hydrophobicity 20.141

Leu content 0.105

Gln content 0.081

doi:10.1371/journal.pcbi.1000413.t002

Table 3. Top twenty protein features ranked by mutual
information with evolutionary rate.

Feature Description
Mutual Information with
Evolutionary Rate

Codon bias 0.285

Codon adaptation index 0.261

Protein expression 0.189

Absolute mRNA expression 0.183

GO Slim Biological Process 0.173

GO Slim Molecular Function 0.164

Ala content 0.126

Gly content 0.115

GO Slim Cellular Component 0.109

Ser content 0.101

Asn content 0.086

Val content 0.066

GC content 0.058

Degree of gene duplication 0.055

Native disorder 0.055

Sheet content 0.040

Turn content 0.034

Essentiality 0.032

Hydrophobicity 0.030

Leu content 0.026

doi:10.1371/journal.pcbi.1000413.t003
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composition,’’ for example), they may differ in their degrees of

predictive power. We now turn to the major advantage of the

logistic regression approach: the ability to consider sets of features

simultaneously.

Assessing Information Contribution of Feature
Ensembles

In some cases, the protein features that we consider serve as

proxies to some well-defined (but difficult-to-measure) property of

a protein. If there are multiple proxies for a general protein

property, then we expect them to be highly redundant. Other

features are important in their own right, but are more tractable

when considered together (e.g., amino acid composition). Features

like these may also possess hidden interdependencies that we

would like to model. We address these issues by grouping related

features into natural ensembles, which we call meta-features. The

logistic regression classifier can be trained and tested based on a

meta-feature in order to assess the joint information contribution

of its constituent features. Working with meta-features has several

advantages: (i) it compensates for redundancy and interrelations

among features, (ii) it averages out noise present in individual

features, and (iii) it summarizes the many individual features into a

handful of highly relevant general protein properties. Note that in

all analyses based on subsets of features (including meta-feature
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Figure 2. Fold enrichment plots for slowly evolving proteins (selected features). For each categorical value of a given genomic feature, we
computed the fold enrichment for slowly evolving proteins, i.e. the frequency at which it occurs for the slowest evolving 20% of proteins, divided by
the frequency at which it occurs over all proteins. For biological process and molecular function, only the eight most populated categories are shown.
All correlations are statistically significant. Dotted lines represent the random expectation (fold enrichment = 1).
doi:10.1371/journal.pcbi.1000413.g002
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analyses), we rely on prior expert knowledge to form the subsets, as

there are too many possible subsets to exhaustively enumerate.

We pooled our 42 individual features into seven natural meta-

features and then evaluated the information contribution of each

using the logistic regression model (see Figure 3, bottom panel,

light green bars). The meta-feature groupings are detailed in

Table 1. The phenotype meta-feature is the poorest predictor of

slowly evolving proteins, producing correct classifications only

58.5% of the time; this is likely due in part to the difficulty and

noise associated with measuring phenotypic information. The

network meta-feature provides a reasonably improved 63.1%

correct classification rate; it too is likely to suffer from

experimental noise. Genomic properties, structural properties,

and functional annotations yield progressively improved rates of

64.0%, 68.0%, and 68.9%, respectively. Abundance, previously

implicated as the single dominant factor in determining a protein’s

evolutionary rate [13], produces the best correct classification rate

of any single meta-feature, 78.8%. Amino acid composition falls in

second place with 74.8% correct classifications. Note how the

individual features of the top panel compare to their related meta-

features below. The meta-feature scores are always better than

those of their constituent features. Some meta-features, such as

abundance, have only one dominant dimension. In these cases, the

component features make similar and largely overlapping

 

      

       

Figure 3. Information contribution of protein features and ‘‘meta-features’’ in the task of predicting slowly evolving proteins. The
top frame shows the information contribution of several individual features. The bottom frame shows the information contribution of meta-features
and groups of meta-features (as defined in Table 1). The blue dotted line represents predictions of S. cerevisiae protein evolutionary rate made using
the conserved component of evolutionary rate across all yeasts. The red dotted line represents predictions based on paired species comparisons (S.
cerevisiae versus another single yeast species, averaged over five comparisons).
doi:10.1371/journal.pcbi.1000413.g003
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contributions to predictive power, and the integration produces a

minor increase in correct classification rate mainly due to noise

reduction. Other meta-features, such as structure, have multiple

intrinsic dimensions. In these cases, the component features make

partially independent contributions to predictive power, and the

integration produces a larger increase in correct classification rate.

Meta-features can be further grouped in order to test the

independence of their contributions (see Figure 3, bottom panel,

dark bars). When amino acid composition and abundance are

grouped, we achieve a slight gain in predictive power relative to

the individual meta-features (80.6% correct classifications). One

explanation is that the meta-features are highly correlated, and

combining them boosts predictive power through noise reduction.

An alternative explanation is that each meta-feature makes a

partially independent contribution to evolutionary rate prediction.

As the meta-features are already noise-reduced from the

combination of individual features, we conclude that independent

contributions are at least partially responsible (see Figure S1 for

further support). A much larger gain is made when the other five

meta-features are combined (77.5%, up 8.6% compared to

function alone). The combination of all seven meta-features

produces further improvement (82.0%), suggesting that abundance

and amino acid composition are the dominant predictors, and that

other meta-features make small, individual contributions.

Probing the Limits of Feature-Based Prediction of
Evolutionary Rate

Our best feature-based predictions of slowly evolving proteins

reach 82.0% correct classification rate, which is slightly beyond the

midpoint of random (50%) and perfect (100%) classification. Here,

we evaluate the significance of this performance in comparison

with predictions based on other methods of estimating evolution-

ary rate.

Paired species comparison is a traditional method for estimating

evolutionary rate that requires minimal genomic information. We

used ranked evolutionary rates derived from a single paired species

comparison (S. cerevisiae versus one of the other five yeasts) to predict

the slowest evolving 20% of the proteins among the average

rankings of the four remaining paired species comparisons (see

Figure 1 and the Methods section for details of the general ranking

procedure used in all analyses). This procedure was repeated five

times, once for each isolated paired species comparison. On

average, paired species comparison correctly identified slowly

evolving proteins 83.0% of the time, which is strikingly similar to

our optimal feature-based predictions. This can be interpreted

either as a testament to the power of our feature-based predictions,

or as a warning regarding the limitations of paired species

comparison for evolutionary rate estimation.

The suboptimal performance of paired species comparison in

the task of predicting slowly evolving proteins points to the

existence of considerable rate heterogeneity among yeasts. In

general, protein evolutionary rate can be decomposed into two

components: a conserved component that is common to all yeast

species, and a lineage-specific component that is unique to a

particular yeast species (reflecting common and lineage-specific

selection pressures, respectively). The magnitude of the conserved

component of protein evolutionary rate is an important quantity,

as it defines the upper limit for evolutionary rate prediction using

only broad, lineage-insensitive genomic features. The intuition

here is simple: genomic features that do not vary across lineages

cannot distinguish the fine details of lineage-specific evolutionary

rate variation. We directly estimated the conserved component of

evolutionary rate that is common to all yeasts by averaging over all

paired species comparisons that do not involve S. cerevisiae. The

predictive power of this common component in the classification

of slowly evolving S. cerevisiae proteins is reasonably high,

producing 92.8% correct classifications (Figure 3); this is also the

upper limit for correct classification based on lineage-insensitive

(meta-)features. Our optimal feature-based predictions are able to

explain three quarters of this upper limit.

The value of 92.8% is the predictive upper limit only when the

integration is restricted to lineage-insensitive genomic features.

How conserved are the genomic features that we consider here?

Gross structural properties and broad functional assignments are

likely to be conserved for homologous proteins [28,29]. This

makes biological sense: although subtle details may change in

recent evolution, an all-alpha helix enzyme in the cytosol of one

yeast is unlikely to become an all-beta sheet transcription factor in

the nucleus of a second yeast. As a result, such features cannot

predict lineage-specific evolutionary rate variation, and their

predictive power is therefore bounded by the upper limit. For

amino acid composition, we assessed conservation using the

orthology mappings from our evolutionary rate calculation: for

each yeast protein, we calculated the average ranked amino acid

composition across its orthologs in the other yeast species, and

correlated this average with the ranked amino acid composition in

S. cerevisiae. The average correlation coefficient is high at 0.917,

suggesting that amino acid composition is generally well conserved

among yeasts, yet still subject to some degree of lineage-specific

variation. As for abundance, experimental expression data for

other yeast species are limited, condition-specific, and susceptible

to noise. Here, we use codon bias as a proxy for expression level,

and compare S. cerevisiae-specific values to values averaged over the

other yeast species. Here the correlation coefficient is high at

0.886, again indicative of general conservation with elements of

lineage-specific variation. The genomic features most likely to be

variable among yeasts are network-based features, since transcrip-

tional regulation and protein-protein interaction are known to

vary between yeasts [30,31]. The predictive limit of lineage-

insensitive features is always bounded by 92.8%; as a feature’s

lineage specificity increases, its predictive limit can in principle

approach 100%.

Discussion

Why Predict Evolutionary Rate?
This study focused on identifying genomic features which

contribute to the task of predicting evolutionary rate. While the

purpose and relevance of many prediction tasks is immediately

clear—for example, predicting gene essentiality in order to avoid

the difficulty and expense of experimental determination [32]—one

may question the need for predicting evolutionary rate. Simple

methods for evaluating evolutionary rate based on species

comparisons exist (e.g., the dN/dS ratio) and can be evaluated

with relative ease at the genomic scale. In the absence of such

comparisons, we would have few means by which to test the validity

of our predictions, given the timescale over which natural evolution

operates. Why then do we wish to predict evolutionary rate?

The answer is that we are not interested so much in the

predictions themselves, but rather the features which provide

them. Biologists have long been interested in understanding the

forces that drive evolution at various scales of life. However, our

knowledge of the causal forces which underlie evolution at the

molecular scale remains limited. By ranking the degree of

correlation between various protein features and evolutionary

rate, we hope to highlight those features which best dictate the

selective constraint on a given protein. From the careful dissection

of these individual correlations, one stands to gain a deeper

Genomic Correlates of Protein Evolutionary Rate
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understanding of their underlying biological significance. For

example, the observed correlation between protein abundance and

evolutionary rate led to biological insights regarding the evolution

of translational robustness [33]. In a similar spirit, the correlation

between evolutionary rate and number of transcriptional regula-

tors that we discovered here leads to biological insights regarding

the evolution of transcriptional regulation: target hubs in the

transcriptional regulatory network are evolutionarily more con-

strained than non-hubs.

Dominant Predictors of Protein Evolutionary Rate
Protein abundance, biological function, and amino acid

composition consistently appeared in our analyses as dominant

correlates of evolutionary rate. As we have mentioned before, the

significance (if not dominance) of abundance is generally accepted;

the significance of function has also been previously described

[34]. However, the significance of amino acid composition in

determining evolutionary rate has been a subject of some debate

[24,35]. The information contribution analysis indicated that the

predictive power of amino acid composition is high (relative to

other meta-features) in the task of classifying slowly evolving

proteins. We are able to partially explain the correlation between

amino acid composition and evolutionary rate by revealing a

hidden correlation with protein expression (see Table 4). For

example, the top three amino acids that are negatively correlated

with evolutionary rate, glycine, alanine, and valine, are also the

most enriched in highly expressed proteins (perhaps reflecting a

preference for metabolically inexpensive building blocks). On the

other hand, the correct classification rate improved when we

combined abundance and amino acid composition, suggesting that

amino acid composition makes at least a partially independent

contribution. This additional contribution can be partially

attributed to differences in amino acid mutability, as defined by

Jones et al. [36] (see Table 4). For example, the top two amino

acids that are positively correlated with evolutionary rate, serine

and asparagine, are among the top three in terms of mutability. It

is interesting to note that something as simple as amino acid

composition can be highly predictive for both protein abundance

and evolutionary rate.

Dissecting Correlations between Protein Features
The previous section highlighted the importance of understand-

ing within-feature correlation, specifically that between protein

abundance and amino acid composition, in the search for

determinants of evolutionary rate. Figure 4 explores the network

of within-feature correlations for the twenty numerical features

that best correlate with evolutionary rate, as listed in Table 2

(glutamine content, the weakest of these correlates, has no strong

within-feature correlations and is not depicted). We notice that

related features can occur in tightly correlated clusters (for

example, the cluster of Codon Adaption Index, codon bias,

protein expression, and absolute mRNA expression). This

observation reinforces the value of considering such features

together as meta-features, as we have done here. In general, the

network exhibits clique-like behavior, characterized by dense

connections among the feature nodes. This is not entirely

surprising, as many features are known to be related to one

another, and they all share a common correlation with

evolutionary rate. However, this rampant intercorrelation is a

significant hindrance to the task of isolating specific features as

evolutionary determinants using traditional multivariate statistical

techniques. By taking an integrated probabilistic approach

Table 4. Genomic properties of the twenty amino acids.

Amino
Acid

Genomic
Frequency

Relative Mutability
by Jones et al.

Rank Corr. w/Evolutionary
Rate

Rank Corr. w/Protein
Expression

Ala 5.5% (10) 0.815 (5) 20.390 (19) 0.365 (1)

Arg 4.4% (12) 0.630 (11) 20.048 (16) 20.092 (15)

Asn 6.2% (6) 0.859 (3) 0.317 (2) 20.266 (19)

Asp 5.9% (7) 0.663 (9) 20.026 (14) 0.041 (5)

Cys 1.3% (19) 0.207 (19) 0.060 (6) 20.106 (17)

Gln 4.0% (15) 0.641 (10) 0.081 (4) 20.078 (13)

Glu 6.6% (4) 0.565 (12) 0.008 (10) 0.097 (4)

Gly 5.0% (11) 0.272 (17) 20.401 (20) 0.251 (3)

His 2.2% (17) 0.717 (8) 0.044 (7) 20.113 (18)

Ile 6.5% (5) 0.848 (4) 0.030 (8) 20.055 (11)

Leu 9.5% (1) 0.315 (15) 0.105 (3) 20.092 (16)

Lys 7.3% (3) 0.511 (13) 0.001 (11) 0.038 (6)

Met 2.1% (18) 0.739 (7) 20.068 (17) 20.084 (14)

Phe 4.4% (13) 0.283 (16) 0.010 (9) 20.050 (9)

Pro 4.4% (14) 0.359 (14) 20.028 (15) 20.069 (12)

Ser 9.0% (2) 1.000 (1) 0.366 (1) 20.295 (20)

Thr 5.9% (8) 0.891 (2) 0.066 (5) 20.051 (10)

Trp 1.0% (20) 0.000 (20) 20.010 (13) 20.035 (8)

Tyr 3.4% (16) 0.272 (18) 20.002 (12) 20.029 (7)

Val 5.6% (9) 0.793 (6) 20.293 (18) 0.272 (2)

Relative rankings are shown in parentheses.
doi:10.1371/journal.pcbi.1000413.t004
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(considering all features together), we have been able to largely

circumvent this issue.

Figure 4 further reveals that the vast majority of correlations

between pairs of features and evolutionary rate are transitive: if

features A and B both positively (or both negatively) correlate with

feature C, then feature A usually correlates positively with feature

B. For example, increased GC content and increased codon bias

are both associated with decreased evolutionary rates. At the same

time, GC content and codon bias are positively correlated with

one another. These transitive correlations are easy to understand.

Interestingly, we also observed non-transitive correlations, for

example between evolutionary rate, number of transcriptional

regulators, and marginal essentiality. Both number of transcrip-

tional regulators and marginal essentiality are negative correlates

of evolutionary rate (rs = 20.142 and 20.146, respectively;

p%0.001 in both cases). However, as previously noted [37],

number of transcriptional regulators and marginal essentiality

correlate in a negative manner with one another (rs = 20.104,

p%0.001). The observed non-transitive correlations are statistically

significant (p%0.001), although we note that the correlations are

rather weak and account for 1.1% to 2.1% of the variance. This

seemingly counter-intuitive observation can be explained in the

following way. Slowly evolving proteins can be divided into two

largely non-overlapping groups: (i) those that are important under

all conditions, meaning that they are essential, but not necessarily

highly regulated, and (ii) those that are important only under

specific conditions, which may experience sophisticated regulation,

but are not necessarily annotated as essential. Proteins in the first

group drive the negative correlation between essentiality and

evolutionary rate, while proteins in the second group drive the

negative correlation between number of regulators and evolution-

ary rate. This explains the observed non-transitive correlations

Figure 4. The network of correlations among top correlates of evolutionary rate. Genomic features are represented by nodes; node color
corresponds to the sign of the feature’s correlation with evolutionary rate (green = positive, red = negative). Edges between nodes represent a highly
significant rank correlation coefficient between the two corresponding features (rs.0.1). Edge thickness corresponds to the magnitude of the
correlation coefficient; edge color corresponds to the sign of the correlation coefficient (green = positive, red = negative).
doi:10.1371/journal.pcbi.1000413.g004
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among evolutionary rate, number of transcriptional regulators,

and marginal essentiality.

The patterns of correlation among features in Figure 4 provide

further insights into our observed correlation between evolutionary

rate and number of transcriptional regulators. Number of

regulators is correlated with many other genomic features, most

significantly with codon bias and Codon Adaption Index. Highly

regulated proteins, though not necessarily essential or even

expressed under laboratory conditions, may be strongly selected

in the real world for their roles in stress response. Take, for

example, HSP26—a player in the yeast response to heat shock,

and the most highly regulated protein in our dataset. This protein

is neither expressed nor essential under laboratory conditions.

However, its coding sequence contains high codon bias, consistent

with selection for efficient translation under stress. We therefore

expect that translational selection and selection for the protein’s

stress-induced function have constrained its evolution in the wild.

Strengths and Limitations of the Methodology
The integrated probabilistic approach we have taken in this study

has both drawbacks and advantages. Like other correlational

approaches, our approach is not able to distinguish correlation from

causation, nor is it able to isolate cause from effect. We do not

explicitly model the noise within the feature data as some other

methods do [15], which will tend to underestimate the predictive

power of single features. On the other hand, the effect of noise is

minimized by the binning of single features and introduction of

meta-features. Our approach is flexible and robust, and is able to

distinguish between dominant correlations and marginal ones. We

are able to consider any features we choose, including those that are

categorical (rather than continuous) or correlated with evolution in a

non-linear manner. Furthermore, our approach compensates for

redundancy among features, which, as with noise, we expect to be

significant. Most importantly, our analyses feature high coverage of

the yeast genome, thus making our results highly general.

Accomplishing this requires the introduction of several approxima-

tions (a relaxed definition of evolutionary rate, collecting feature

data from a single species, and modeling missing data), though none

of these are found to have a major effect on accuracy.

Closing Remarks
To our surprise, we found that integrating a diverse collection of

single-genome features was roughly equivalent to paired species

comparison for identifying slowly evolving proteins, but still worse

than what lineage-insensitive features can in principle predict. Our

conclusion from this finding is that the dominant, independent

correlates of evolutionary rate are likely known, even though other

significant and interesting correlates may remain to be found (see

[38] for one recent example). Further dissection of individual

correlations between protein features and evolutionary rate will be

needed in order to gain a deeper understanding of their biological

significance. As we have demonstrated in the cases of amino acid

composition, protein abundance, essentiality, and number of

transcriptional regulators, there is also great insight to be had by

exploring the relationships between protein features.

Methods

Calculating Protein Evolutionary Rate in Yeast
We based our measure of protein evolutionary rate on

comparisons between Saccharomyces cerevisiae and five related yeast

species: S. paradoxus, S. mikatae, S. bayanus, S. castellii, and S. kluyveri.

Of the 5,861 open reading frames (ORFs) in the S. cerevisiae

genome, 324 had no annotated orthologs [39] among these

species, and were therefore discarded. The remaining 5,537 ORFs

(94.5% genome coverage) each have at least one ortholog [39] in

at least one of the five related yeasts; this group forms the basis of

our evolutionary rates dataset. We first performed local alignment

[40] between each ORF and its annotated orthologs across the five

species. If an ORF had multiple orthologs in a given species, only

the most significant alignment with the highest score was saved.

These protein alignments (having 95% ORF coverage, on average)

were used to generate corresponding DNA codon alignments,

which were then piped into PAML [41] to calculate dN/dS [42].

All dN/dS values resulting from a given paired species comparison

(i.e., S. cerevisiae versus one other yeast) were then treated as follows:

(i) dN/dS was first adjusted according to the method of [43] to

compensate for selection at synonymous sites; (ii) adjusted dN/dS

values were next sorted and converted to ranks; and (3) ranks were

normalized relative to the total number of alignments considered

in the paired species comparison. Finally, a single evolutionary

rate was generated for a given ORF by averaging over its

normalized ranks from all paired species comparisons in which an

ortholog was present and dN/dS was successfully calculated. The

values were then re-ranked and divided into five equally populated

bins corresponding to low, medium low, medium, medium high, and high

evolutionary rate. This procedure is summarized in Figure 1. We

provide the average ranks and bins of yeast protein evolutionary

rate in Table S1. Sequence data for S. kluyveri were obtained from

[44]; all other sequence data were obtained from [45].

Collecting Protein Features
Basic protein information about each ORF was downloaded

from the Saccharomyces Genome Database [45]. Protein GO

annotations were downloaded from the Gene Ontology project

website [46]. Protein-protein interaction data were downloaded

from BioGRID [47]. Transcriptional regulatory data were obtained

as described in (Wang, Zhang, and Xia, submitted). Protein native

disorder was predicted from sequence using DISOPRED [48].

Transmembrane helix content was predicted from sequence using

TMHMM [49]. All other feature data were assembled following the

procedures outlined previously [50]. Note that the majority of our

features are derived or predicted from sequence alone, and

therefore have high coverage of the yeast genome. At the same

time, some features that we considered contain missing data. In the

mutual information and subsequent analyses, missing data are

treated as a separate feature bin. For example, the mRNA

expression feature now has six categorical values: high, medium high,

medium, medium low, low, and missing. These ‘‘completed’’ features are

then correlated with evolutionary rate. Here, we assume that

missing data bins such as ‘‘unknown biological process’’ or ‘‘missing

mRNA expression’’ can be correlated with evolutionary rate just as

we would correlate regular feature bins, such as ‘‘constituent of the

ribosome,’’ or ‘‘high mRNA expression level.’’ This approach

involves fewer assumptions about the nature of missing data than

alternative strategies, such as listwise deletion, mean substitution,

and imputation.

Rank Correlation Coefficient and Mutual Information
Given N pairs of quantities (xi, yi), i = 1,…,N, the Spearman rank

correlation coefficient rs is computed in the following way:

rs~

PN
i~1

Ri{R
� �

Si{S
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

Ri{R
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

Si{S
� �2

s
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where Ri is the rank of xi among the other x’s, Si is the rank of yi

among the other y’s.

The mutual information I between two discrete random

variables X and Y is computed in the following way:

I X ; Yð Þ~
X
y[Y

X
x[X

p x, yð Þlog
p x, yð Þ

p xð Þp yð Þ

Logistic Regression Classifier
For a given protein, we want to predict the class label yi (1 if the

protein evolves slowly, and 0 otherwise) by integrating genomic

features F. There are m categorical features, F1, …, Fm, where each

feature Fj can take on rj different values, fj1, fj2, …, fjrj
. The training

set, {(F(i), y(i)); i = 1,…,n}, contains n samples. Logistic regression

can be expressed as the following weighted voting scheme:

log
p y~1jFð Þ
p y~0jFð Þ~w0z

Xm

j~1

Xrj

k~1

wjkI Fj~fjk

� �

Where I is the indicator function—I(X) is 1 when statement X is

true, and 0 otherwise. wjk are weights associated with each piece of

evidence. p(y = 1|F) is the probability that the protein evolves

slowly given the features. The protein is predicted to evolve slowly

if and only if p(y = 1|F) is larger than 0.5.

All weights are chosen to optimize the following log-likelihood

function for the training set, i.e. the log-probability of observing

the data given the weights:

log L w0, w11, . . . , wmrm
ð Þ~

Xn

i~1

I y ið Þ~1
� �

log p y ið Þ~1
��F ið Þ

� �
zI y ið Þ~0
� �

log p y ið Þ~0jF ið Þ
� �� �

The right-hand side of the above equation measures the

agreement between the actual class labels y and the predictions

p(y|F).

Supporting Information

Figure S1 Noise reduction and independent contribution during

feature integration. When integrating abundance features in

various meta-feature combinations, predictive power increases

and gradually levels off due to noise reduction. Addition of the

amino acid composition meta-feature results in a marked jump in

predictive power, indicating an independent effect.

Found at: doi:10.1371/journal.pcbi.1000413.s001 (0.42 MB PDF)

Table S1 Rankings and associated bins for yeast protein

evolutionary rate.

Found at: doi:10.1371/journal.pcbi.1000413.s002 (0.44 MB XLS)
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