Response Letter

--Editor.1– Length of the manuscript --

	Reviewer

Comment
	Your paper is far too long for the genome analysis section-it is about 3500 words (excluding the methods), our papers in the GA section should by <1500 words. The abstract is also too long and should be <100 words.  So-you can cut the paper down and put more material as supplementary material or submit to a more bioinformatics type journal.


	Author

Response
	The editor is absolutely right. We have done exactly what was suggested:
1. The abstract is now only 100 words.

2. The length of the paper is now 1314 words. We cut most of the “introduction” and “discussion” sections, but very little from the “results” section.

3. We reduced the number of figures from 5 to 3.



	Excerpt From

Revised Manuscript
	[Abstract]

We introduce the notion of ‘marginal essentiality’ through quantitatively combining the results from large-scale phenotypic experiments. We find that this quantity relates to many of the topological characteristics of protein-protein interaction networks.  In particular, proteins with a greater degree of marginal essentiality tend to be network hubs (having many interactions) and to have a shorter characteristic path length to others. We extend our network analysis to encompass transcriptional regulatory networks. While transcription factors with many targets tend to be essential, surprisingly, we find that genes regulated by many transcription factors are usually not essential. Further information is available from http://bioinfo.mbb.yale.edu/network/essen.

[Page 3-5]
Introduction

The functional significance of a gene, at its most basic level, is defined by its essentiality. In simple terms, an essential gene is one that, when knocked out, renders the cell unviable. Nevertheless, non-essential genes can be found to be synthetically lethal; i.e., cell death occurs when a pair of non-essential genes is deleted simultaneously. Because essentiality can be determined without knowing the function of a gene (e.g., random transposon mutagenesis1,2, or gene-deletion3), it is a powerful descriptor and starting point for further analysis when no other information is available for a particular gene.
…

Conclusion

In this paper, we comprehensively defined "marginal essentiality" and analyzed the tendency of the more marginally essential genes to behave as hubs. Surprisingly, we also found that hubs in the target subpopulations within the regulatory networks tend not to be essential genes.


--Editor.2– Minor note on language --

	Reviewer

Comment
	On a minor note the "phenotypes of deletion strains" on p3 has become "phenotypic microarray" on p11.


	Author

Response
	We agree with the editor and use the term “phenotypes of deletion strains” in both places.
Just for the record, the two terms (“phenotypes of deletion strains" and “phenotypic microarray”) both have been used in the original paper and have the same meaning (Nature, 402:413-418).

	Excerpt From

Revised Manuscript
	[Page 3]
… These four experiments measure the effect of a particular knock-out on: (i) growth rate5; (ii) phenotype2; (iii) sporulation efficiency6; and (iv) sensitivity to small molecules7…

[Figure 2 caption]

… The marginal essentiality for each non-essential gene is calculated by averaging the data from four datasets: (i) growth rate5; (ii) phenotype2; (iii) sporulation efficiency6; and (iv) sensitivity to small molecules7…


--Editor.3– Explanation of the formula --

	Reviewer

Comment
	When you talk about dataset j on p11 do you mean data set 1-4 (i.e. the four types of experiment) or do you mean (say) for dataset ii each of the 20 conditions (i.e. each individual experiment)?


	Author

Response
	The editor is right that this is confusing. Dataset j means one of the four types of large-scale experiments. We modified the sentences to clarify the confusion:

1. Even though genes in the phenotypic microarray were tested under 20 different conditions, each gene has only one score (P-value) in their original dataset. The score for each gene was calculated by combining its 20 phenotypes using a multinomial distribution. Therefore, the concept of “20 conditions” is irrelevant to our paper. We paraphrased the sentence in the main text such that the concept of “20 conditions” did not appear. 
2. We revised the sentence following the formalism to make it clear that dataset j is one of the four large-scale datasets.

	Excerpt From

Revised Manuscript
	[Page 3]

… These four experiments measure the effect of a particular knock-out on: (i) growth rate5; (ii) phenotype2; (iii) sporulation efficiency6; and (iv) sensitivity to small molecules7…

[Figure 2 caption]
…
where Fi,j is the value for gene i in dataset j. Fmax,j is the maximum value in dataset j. Ji is the number of datasets that have information on gene i in the four datasets…


--Editor.4– Independence of the datasets --

	Reviewer

Comment
	Also is it important that the data is uncorrelated and independent. So for instance it would seem to me that dataset (ii) i.e. the phenotypes (whatever they are) may well be related to fact that they do not grow well (dataset(i)).


	Author

Response
	The editor made a very insightful comment. In the revision, we examined the independence of the datasets by two methods:
1. We plotted all the data points for any two datasets (see supplementary figures 9-14). There is no correlation between any dataset pair.
2. We calculated the correlation coefficients for all dataset pairs (see supplementary table 2). None of them is significant.

Therefore, the four datasets are mutually independent and really examine different aspects of the protein’s marginal essentiality.

	Excerpt From

Revised Manuscript
	[Figure 2 caption]
… Before calculating the marginal essentiality, we verified that the four datasets were mutually independent…

[Supplementary materials]

Independence of different large-scale datasets

In order to combine the results of the four large-scale datasets, we have to make sure that the four datasets are mutually independent with each other. We plotted the values for each gene in different datasets as scatter plots and did not observe any correlation. Furthermore, we calculated the correlation coefficient between any two datasets (6 pairs in total), none of which is significant (please refer to supplementary table 2).


--Editor.5– Weights of the datasets --

	Reviewer

Comment
	You then essentially average the datasets giving each an equal weight. What is the justification for this?


	Author

Response
	We understand the editor’s concerns. The only reason we average the datasets with an equal weight is that the four datasets really examine different aspects of the protein’s importance to the cell (see Response to Editor.4). Therefore, it does not make much sense to consider that one dataset is more important (i.e. has a higher weight) than others. However, there could be different ways to combine these datasets. We have tried almost all possible methods to combine these four datasets to calculate “marginal essentiality (M)” and the results remain the same, namely: 
1. M is defined as the maximum value among the four datasets. In this manner, the datasets actually have different weights. For each gene, the set containing the largest value has a weight of 1, while others have a weight of 0. 

2. M is defined as the minimum value among the four datasets.
3. M is normalized as the corresponding percentile rank in each dataset

4. M is normalized as the corresponding z-score in each dataset.
These four methods are the most commonly used integration methods. The results of all the methods are exactly the same (supplementary figures 4-7). This shows that the results are very robust, as long as we take into consideration the protein’s effect on cell fitness in all aspects, i.e., as long as we combine these four datasets in a meaningful way, the definition of “marginal essential” should have very little effect on the analysis.


	Excerpt From

Revised Manuscript
	[Figure 2 caption]
… Although other methods could also be used to define marginal essentiality, we determined that different definitions have little effect…

[Supplementary materials]

Different definitions of marginal essentiality

In the main text, we discussed the definition of “marginal essentiality” as the average of the normalized the values in the four datasets. Here, we introduce four new methods to define “marginal essentiality”:

1. Marginal essentiality as the maximum value among the four datasets

The marginal essentiality (Mi) for gene i is calculated by the formula:
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where Fi,j is the value for gene i in dataset j. Fmax,j is the maximum value in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 4 shows that all results remain the same. Specifically, there is a positive relationship in panels A, B, and D, while there is a negative relationship in panel C.

2. Marginal essentiality as the minimum value among the four datasets

The marginal essentiality (Mi) for gene i is calculated by the formula:
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where Fi,j is the value for gene i in dataset j. Fmax,j is the maximum value in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 5 shows that all results remain the same.

3. Marginal essentiality is normalized as the percentile rank in each dataset

In the previous three methods, the data in each dataset are all normalized through dividing by the largest value in the dataset. We could also normalize the data by taking their corresponding percentile ranks in the whole set. Thus, the marginal essentiality (Mi) for gene i is calculated by the formula:
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where Pi,j is the percentile rank for gene i in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 6 shows that all results remain the same.

4.  Marginal essentiality is normalized as the z-score in each dataset

We could also normalize the data in each dataset in a “z-score” fashion. Thus, the marginal essentiality (Mi) for gene i is calculated by the formula:
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where Zi,j is the z-score for gene i in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 7 shows that all results remain the same.



--Editor.6– Confidence limit of the interaction data --

	Reviewer

Comment
	p4. The datasets. The Y2H data is very poor, there is not even much agreement between the datasets, and not much with the pull down experiments. Your data is heavily weighted to the large scale datasets which are really not much better than random. You need to incorporate some sort of confidence limit. There are a number of ways of improving the confidence-for instance the incorporation of microarray data-to make sure the proteins are at least co-expressed as well as data from interaction data of orthologous genes in other organisms. Ref.2 point 2 makes a similar point.


	Author

Response
	The editor, again, made a good comment. In order to define a confidence limit for the interaction data, we use the “likelihood ratio” for each interaction calculated by a Bayesian approach using many genomic features. The method was developed by Jansen et al. (Science, 302:449-453). In their paper, Jansen et al. used a likelihood ratio of 300 as a good confidence level, above which the interactions are believed to be true.
Our whole interaction network consists of two parts:

1. Interactions from the large-scale interaction datasets. These interactions are known to be noisy and error-prone. Therefore, we only took 11, 295 “good” interacting pairs, whose likelihood ratios are all greater than 300.

2. Interactions from small-scale experiments in MIPS, BIND, and DIP. These interactions, 14, 837 in total, are generally believed to be the most reliable interactions (Nature, 417:399-403; Science, 302:449-453). 

Therefore, in the revision, we combined the small-scale interactions with the “good” large-scale interactions to create the interaction network. The whole network contains 23,294 reliable interactions among 4,743 proteins.


	Excerpt From

Revised Manuscript
	[Page 3]
Results

Comparison between essential and non-essential proteins within interaction network

We constructed a comprehensive and reliable yeast interaction network containing 23,294 unique interactions among 4,743 proteins16, 17, 22…

[Supplementary materials]

Construction of the yeast interaction network

Using the same methodology as previous analyses, we constructed a large interconnecting network of most proteins in the yeast genome, drawing from a large body of yeast protein-protein interactions determined through a variety of high-throughput experiments, most notably two yeast two-hybrid datasets4,5 and two in vivo pull-down datasets6,7.  However, large-scale interaction datasets are known to be error prone8,9. In order to introduce a confidence limit, Jansen et al calculated a likelihood ratio (L) for each pair of proteins within the four datasets9. Simply put, the higher the likelihood ratio the more likely the interaction is true. In their paper, L≥300 was used as an appropriate cutoff for choosing reliable interactions. 

Many databases such as MIPS10, BIND11, and DIP12 also record the interactions from small-scale experiments, together with the results of the high-throughput methods, these databases were also included in the makeup of the interaction network. These small-scale interaction datasets are generally believed to be the most-reliable datasets8,9,13,14. 

Therefore, we constructed a comprehensive and reliable yeast interaction networks by taking the union of the three small-scale datasets and the interacting pairs within the four large-scale datasets with L ≥ 300. The network consists of 23,294 unique interactions among 4,743 proteins.


--Ref1.1– Integration of the datasets --

	Reviewer

Comment
	Page 4 and 5: How did they integrate the interaction datasets? Union, intersection, or other method? More details please.


	Author

Response
	In the original draft, we took the union of all the interaction datasets. In the revision, we took the union of all the small-scale interactions and the “good” large-scale interactions, whose likelihood ratios are greater than 300. Please refer to Response to Editor.6.

	Excerpt From

Revised Manuscript
	Please refer to Response to Editor.6.


--Ref1.2– Definition of hubs --

	Reviewer

Comment
	The definition of hub (Figure 3 inset) is a little bit awkward. In my opinion, this arbitary definition is avoidable. Instead of grouping the genes into hub and non-hub, why not just calculate the fraction of essential genes in function of connectivity (degree k)? Of course, they need to choose proper bin size first.


	Author

Response
	The referee made a good suggestion. We performed the calculation as suggested. The result (see supplementary figure 2) shows that there is a good correlation between a gene’s degree (K) and its likelihood of being essential. This further supports our conclusions.
However, hubs have been shown to be important for the networks (Nature, 411:41-42; Nature, 406, 378-382). In this paper, we defined a new quantity “marginal essentiality”. We would like to determine the biological relevance of this concept. Essentiality cannot be used, because marginal essentiality only applies to non-essential genes. Given the correlation between essentiality and hubs, hubs are used to show that genes with higher marginal essentiality are on average more important to the cell (see figure 2D). Therefore, we kept the definition of “hubs” in the revision. However, we have changed the associated text to make the definition more concise.

	Excerpt From

Revised Manuscript
	[Page 4]
Given that essential proteins, on average, tend to have more interactions than non-essential ones, we determined the fraction of hubs that are essential. Here, we define hubs as the top quartile of proteins with respect to number of interactions17, giving 1061 proteins as hubs within the yeast network. We found ~43% of hubs in yeast are essential (figure 3a), significantly higher than random expectation (20%).
[Supplementary figure 1 caption]

Determination of the cut-off for protein hubs. Given the continuous distribution of degrees for all nodes, it is difficult to provide an exact cut-off point where a node with a specific number of degrees or greater can be called a hub. Here, the cutoff is chosen at the point, where the distribution begins to straighten out (≥10) and the number of the defined hubs (1061) is comparable to the number of essential proteins (977). Therefore, hubs are roughly the top 25% of the proteins with the highest degrees.


--Ref1.3– Unique font --

	Reviewer

Comment
	“Network Definitions” (Page 5) has a unique font. Is it on the same level as “Introduction” and “Results”?


	Author

Response
	This part has been moved to the supplementary materials as an independent section in the revision.

	Excerpt From

Revised Manuscript
	[Supplementary materials]
Network Definitions 

1.  Topological characteristics

Network parameters allow for a simple yet powerful analysis of a global protein interaction network; every network has specific defining and descriptive characteristics. We chose to look at four characteristics for both the essential and non-essential genes in the network of interacting proteins1-3 (see figure 1a):  

…

3.  Directed networks, in degree and out degree

Regulatory networks are directed networks: the edges of the network have a defined direction. For example in a regulator network, regulators regulate their targets, not the other way around. A node in the directed network may have an in-degree and an out-degree (see figure 1c), which are completely independent. For directed networks, it is impossible to determine clustering coefficients2. Therefore, we focus on the analysis on the average degree.


--Ref1.4– Definition of “complex degree” --

	Reviewer

Comment
	The definition of “Complex degree” is not readable (page 6). Please use simple English.


	Author

Response
	The concept of “complex degree” has been removed from the revision.


--Ref1.5– Bins in regulatory network analysis --

	Reviewer

Comment
	In the analysis of the regulatory network, why divide regulators into TWO groups and target genes into THREE groups? Is it possible to also use continuous value of degree k?


	Author

Response
	Because there are only 188 regulators, while 3416 targets in the regulatory networks, the bin size will be too small if we divide regulators into 3 groups. 
We produced semi-continuous plots (we call these plots “semi-continuous” because we still have to use proper bins) for regulators and targets as suggested by the referee. The results are the same as the original plots, which further confirms the robustness of the results. However, there are some problems with this method:

1. Although the regulators are divided into many bins (14 in total), the size of each bin is very small because there are only 188 regulators. Therefore the statistics are not good.
2. Because there are only 188 regulators, most of the targets have only 1 regulator (therefore, a degree of 1). Only very few of them have degrees larger than 1. Therefore, there are only 9 bins for all targets and the size of each bin is highly inhomogeneous. Statistically, it is not fair to compare these inhomogeneous bins.

3. Technically, it is hard to calculate a P-value for the continuous plot.

On the other hand, in the original figure, we divided all the regulators and targets into relatively comparable bins and calculated the P-values between different bins using the cumulative binomial distribution. Therefore, we decide to keep the original figure and put the new figure into the supplementary materials.

	Excerpt From

Revised Manuscript
	[Supplementary figure 8 caption]
A. Percentage of essential genes increase as the percentile rank of gene’s degree increases in the regulator networks (outward networks). B. Percentage of essential genes decreases as the percentile rank of gene’s degree increases in the target networks (inward networks).  Genes are ranked by their degrees within the corresponding sub-networks. Percentile rank reflects the relative standing of a specific degree value in the networks. The percentile ranks of the genes are binned roughly at a unit of 10%. Because many genes have the same degree (especially in the target networks), the bin of both plot is not uniform.


--Ref1.6– Exclusiveness of marginal essentiality --

	Reviewer

Comment
	Figure 1a. Are non-essential protein and marginally essential protein exclusive? I though marginally essential proteins are equivalent to non-essential proteins.


	Author

Response
	The referee is right that marginally essential genes are all non-essential genes. However, some non-essential genes have no effect on cell fitness in all four experiments. In figure 1a, the term “non-essential genes” refers to these completely insignificant genes. We clarified this in the revised figure caption.

	Excerpt From

Revised Manuscript
	[Figure 1 caption]
… In this panel, non-essential genes represent those that have no detected effects on cell fitness. The traditional concept of “non-essential genes” includes both non-essential and marginally essential genes in this panel…


--Ref1.7– Diameter --

	Reviewer

Comment
	Figure 1a. Why isn’t the most upper left node included in the blue line for diameter of non-essential protein network?


	Author

Response
	The referee is completely right. We revised the figure accordingly.


--Ref1.8– Size of nodes --

	Reviewer

Comment
	Figure 1a and b. Are the sizes of nodes indicating something?


	Author

Response
	In the original figure, the size of a node indicates its degree, i.e., the bigger the node size the more interaction partners it has. We agree with the referee that this is very confusing. In the revised figure, all nodes have the same size.


--Ref1.9– Schematic for clustering coefficient --

	Reviewer

Comment
	I don’t understand the schematic for clustering coefficient in figure 1b. Where are the numbers of 2 and 6 from?


	Author

Response
	We agree with the referee that the figure is confusing and have removed it in the revision.
Just for the record, we would like to clarify the referee’s concern. The quantity “clustering coefficient” is the ratio of the number of present connections over the number of total possible connections between all the neighbors of a certain protein. In the original figure 1b, protein B has 4 neighbors. There could be (4*3/2 =) 6 possible links between these 4 neighbors. However, there are only 2 connections. 


--Ref1.10– Correlation between the number of paralogs and the essentiality --

	Reviewer

Comment
	If the following questions don’t fit the paper well, the authors can just ignore it. Old genes tend to be a hub and thus essential genes. They also have time to duplicate themselves in the genome. But if a gene have numerous paralogs, this gene should not be essential. Maybe it’s worthy to calculate the correlation between number of paralog and the essentiality.


	Author

Response
	The referee made a good suggestion. We performed the calculation and found that genes without any paralogs indeed have higher chance to be essential than those with at least one paralog (see supplementary figure 15).  But we also found that genes with more paralogs are more likely to be essential than those with only one paralog. Because the editor is very concerned with the length of the paper, we decided to put this result in the supplementary materials. 

	Excerpt From

Revised Manuscript
	[Supplementary materials]
3. Relationship between number of paralogs and essentiality

Essential genes are those that are very important to cell fitness. When an essential gene is deleted, the cell can not survive. Therefore, a gene with many paralogs in the genome can not be essential, even if it is extremely important to the cell fitness. Because, when this gene is deleted, its paralogs can perform its function instead, the cell should be able to survive. We, thus, performed an analysis on the relationship between the number of a gene’s paralogs and its essentiality and found that genes without paralogs are indeed much more likely to be essential. However, supplementary figure 15 also shows that genes with less paralogs are not more likely to be essential.


--Ref1.11– Correlation between the number of functions and the essentiality --

	Reviewer

Comment
	In the discussion, the authors talked about “the fitness of a node also plays an important part in its selection to become a hub”. As far as I know, Gerstein group has already studied the number of functions associate with yeast genes. So why not just test the correlation between the number function and essentiality? Again, this is a paper of survey, not about mechanism. Maybe it doesn’t fit in this paper.


	Author

Response
	The referee made a very insightful comment. We performed the analysis and found that there is a good correlation between the number of a gene’s functions and its likelihood of being essential (see figure 3d). We added a new section to discuss this result in the revision.

	Excerpt From

Revised Manuscript
	[Page 5]
Relationship between essentiality and function

Having discussed thoroughly that the essentiality of a gene is directly related to its importance to the cell fitness in both interaction and regulatory networks, we now examine the relationship between the number of a gene’s functions and its tendency to be essential, using the MIPS functional classification28. Figure 3d shows that genes with more functions are more likely to be essential. More importantly, the likelihood of a gene being essential has a monotonic relationship with the number of its functions.

[Figure 3 caption]

… D. Genes with more functions are more likely to be essential. The P value measures the difference between genes with only one function and those with more than 4 functions…


--Ref2.1– pair-wise interactions in protein complexes--

	Reviewer

Comment
	The constructed yeast PPI network includes several datasets, resulting in a PPI network with 69, 592 unique interactions between 4957 proteins. The interaction data are derived from systematic two-hybrid and pull-down experiments, respectively.
My main problem is as follows: if I understand it correctly, within protein complexes the authors consider a protein to be connected with all other proteins. This assumption is highly problematic. First, there is no experimental evidence that would support this assumption. Second, due to this assumption within large complexes all proteins will automatically have large number of connections. This will obviously skew the identity of hub proteins and all their subsequent analysis.


	Author

Response
	We understand the referee’s concern. However, for the revised manuscript, this comment becomes irrelevant because our new interaction network consists of two parts:
1. Small-scale interactions from MIPS, BIND, and DIP. These small-scale interactions were produced by a variety of individual experiments. They, therefore, do not have the problem of breaking down the complexes.

2. “Good” large-scale interactions with likelihood ratio larger than 300. This number is from the results of Jansen et al (Science, 302:449-453. Please refer to Response to Editor.6). Because we introduce a confidence limit (likelihood ratio) and only choose the interactions above the limit, proteins do not connect with all other proteins within the same complex. Therefore, the problem that “within large complexes all proteins will automatically have large number of connections” does not exist any more (please refer to Response to Editor.6).
Just for the record, even in the original manuscript, we noticed this problem and tried to control it by introducing the concept of “complex degree”. The proteins within the same complex of a protein are excluded from the calculation of its complex degree, which is an underestimate of the real degree of the protein because a protein may physically interact with more than more proteins within the same complex. Even using this underestimated degree, we still found similar results (see the original figure 2), which proves the robustness of our analysis.



	Excerpt From

Revised Manuscript
	[Page 3]

Results

Comparison between essential and non-essential proteins within interaction network

We constructed a comprehensive and reliable yeast interaction network containing 23,294 unique interactions among 4,743 proteins16, 17, 22…

[Supplementary materials]

Construction of the yeast interaction network

Using the same methodology as previous analyses, we constructed a large interconnecting network of most proteins in the yeast genome, drawing from a large body of yeast protein-protein interactions determined through a variety of high-throughput experiments, most notably two yeast two-hybrid datasets4,5 and two in vivo pull-down datasets6,7.  However, large-scale interaction datasets are known to be error prone8,9. In order to introduce a confidence limit, Jansen et al calculated a likelihood ratio (L) for each pair of proteins within the four datasets9. Simply put, the higher the likelihood ratio the more likely the interaction is true. In their paper, L≥300 was used as an appropriate cutoff for choosing reliable interactions. 

Many databases such as MIPS10, BIND11, and DIP12 also record the interactions from small-scale experiments, together with the results of the high-throughput methods, these databases were also included in the makeup of the interaction network. These small-scale interaction datasets are generally believed to be the most-reliable datasets8,9,13,14. 

Therefore, we constructed a comprehensive and reliable yeast interaction networks by taking the union of the three small-scale datasets and the interacting pairs within the four large-scale datasets with L ≥ 300. The network consists of 23,294 unique interactions among 4,743 proteins.


--Ref2.2– Quality of interaction data --

	Reviewer

Comment
	Regarding direct physical interactions provided by the two-hybrid experiments no confidence levels for the interactions are considered, for which by now published protocols are available (see e.g., Goldberg and Roth, PNAS 2003).


	Author

Response
	Please refer to Response to Editor.6


--Ref2.3.1– Two scenarios of marginal essentiality --

	Reviewer

Comment
	A gene product is considered marginally essential if the corresponding yeast strain is showing a deleterious phenotype compared to wild type cells, based on the average of observations in four experimental datasets. However, at least two scenarios possible: even effect in all four conditions, or severe effect in one condition but not in the others. It looks to me that this distinction has not been considered. 


	Author

Response
	The referee’s concern is valid. In the revision, we discuss using four different strategies to calculate “marginal essentiality”. Specifically, the method of using the maximum values distinguishes the two scenarios the referee mentioned: If a gene has even and mild effect in all four conditions, it will have a moderate marginal essentiality. If a gene has severe effect in one condition but not in the others, it will have a high marginal essentiality. However, based on our calculations, different definitions of “marginal essentiality” have the same results and have little effect on our conclusions (please refer to Response to Editor.5).

	Excerpt From

Revised Manuscript
	[Figure 2 caption]

… Although other methods could also be used to define marginal essentiality, we determined that different definitions have little effect…

[Supplementary materials]

Different definitions of marginal essentiality

In the main text, we discussed the definition of “marginal essentiality” as the average of the normalized the values in the four datasets. Here, we introduce four new methods to define “marginal essentiality”:

1. Marginal essentiality as the maximum value among the four datasets

The marginal essentiality (Mi) for gene i is calculated by the formula:
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where Fi,j is the value for gene i in dataset j. Fmax,j is the maximum value in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 4 shows that all results remain the same. Specifically, there is a positive relationship in panels A, B, and D, while there is a negative relationship in panel C.

…


--Ref2.3.2– Quantitative definition of marginal essentiality --

	Reviewer

Comment
	Also, the quantitative definition of marginal essentiality is unclear.


	Author

Response
	The referee’s concern is understandable. “Marginal essentiality” is a biological concept, which measures a gene’s importance to cell fitness. In the manuscript, “marginal essentiality” is quantitatively defined as the average of the four independent large-scale experiments examining different aspects of cell fitness. We have tried to make this definition clear and more concise. We have changed the associated text, which is now in the caption to figure 2. 
However, in the revision, we also discuss that other quantitative definitions could also be used and the results remain the same. Therefore, the particulars of the quantitative definition are not important, as long as they take into account the protein’s effect on cell fitness in all aspects. (In the context of the manuscript, this means one has to combine the four datasets in a meaningful way.) Please refer to Response to Editor.5.
We added the discussion of other quantitative definitions in the revision to make this point clear.

	Excerpt From

Revised Manuscript
	[Figure 2 caption]

… Although other methods could also be used to define marginal essentiality, we determined that different definitions have little effect…

[Supplementary materials]

Different definitions of marginal essentiality

In the main text, we discussed the definition of “marginal essentiality” as the average of the normalized the values in the four datasets. Here, we introduce four new methods to define “marginal essentiality”:

1. Marginal essentiality as the maximum value among the four datasets

The marginal essentiality (Mi) for gene i is calculated by the formula:
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where Fi,j is the value for gene i in dataset j. Fmax,j is the maximum value in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 4 shows that all results remain the same. Specifically, there is a positive relationship in panels A, B, and D, while there is a negative relationship in panel C.

2. Marginal essentiality as the minimum value among the four datasets

The marginal essentiality (Mi) for gene i is calculated by the formula:
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where Fi,j is the value for gene i in dataset j. Fmax,j is the maximum value in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 5 shows that all results remain the same.

3. Marginal essentiality is normalized as the percentile rank in each dataset

In the previous three methods, the data in each dataset are all normalized through dividing by the largest value in the dataset. We could also normalize the data by taking their corresponding percentile ranks in the whole set. Thus, the marginal essentiality (Mi) for gene i is calculated by the formula:
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where Pi,j is the percentile rank for gene i in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 6 shows that all results remain the same.

4.  Marginal essentiality is normalized as the z-score in each dataset

We could also normalize the data in each dataset in a “z-score” fashion. Thus, the marginal essentiality (Mi) for gene i is calculated by the formula:
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where Zi,j is the z-score for gene i in dataset j. Ji is the number of datasets that gene i have been tested in the four datasets. All the calculations in figure 2 were repeated using this new definition of “marginal essentiality”. Supplementary figure 7 shows that all results remain the same.



--Ref2.4– Concept of “complex degree” --

	Reviewer

Comment
	The concept of “complex degree” does not seem to have a clear mathematical definition. What is a minimal size of a complex? How is it defined?


	Author

Response
	The concept of “complex degree” has been removed in the revision.
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