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Abstract

Functional RNA structures play an important role both in thecontext of non-coding RNA
transcripts as well as regulatory elements in mRNAs. Here wepresent a computational
study to detect functional RNA structures within the ENCODEselected regions of the
human genome. Since structural RNAs in general lack characteristic signals in their primary
sequence, comparative approaches that evaluate the evolutionary conservation of structures
are most promising. The deeply sequenced ENCODE regions therefore provide an ideal
data set for these methods.

We have used three recently introduced programs based on either phylogenetic stochas-
tic context free grammar (EvoFold) or energy directed folding (RNAz andAlifoldZ)
yielding several thousand candidate structures (corresponding to about 2.7% of the EN-
CODE regions).EvoFold has its highest sensitivity in highly conserved and relatively
AU-rich regions whileRNAz favors slightly GC-rich regions, resulting in a relativelysmall
overlap between methods. In comparison with the GENCODE annotation our data points
to new functional structural RNAs in all genomic contexts, with a slightly increased density
of predictions in 3’UTRs.

While we estimate a significant false discovery rate of about50–70% in this screen, many
of the predictions can be further substantiated by additional criteria: 248 loci are predicted
by bothRNAz andEvoFold, an additional 239RNAz or EvoFold predictions are sup-
ported by the (more stringent)AlifoldZ algorithm. 570RNAz structure predictions fall
into regions that show signs of selection pressure also on the sequence level (i.e. conserved
elements). Over 700 predictions overlap with non-protein coding transcripts detected by
oligonucleotide tiling arrays.

175 selected candidates were tested by RT-PCR in 6 tissues and expression could be
verified in 43 cases (24.6%).

Key words: Functional RNA; conserved RNA secondary structure; comparative genomics

1 Introduction

The goal of the ENCODE (“ENCyclopedia Of DNA Elements”) project is the
comprehensive analysis of functional elements in the humangenome. One of its
main goals is the thorough annotation of transcripts in terms of structure and func-
tion. Both genome-wide studies (Carninci et al., 2005; Cheng et al., 2005; Bertone
et al., 2004) and the far more detailed studies targeted to the ENCODE regions
(ENCODE Consortium, 2007) show a much more extensive and complex tran-
scriptional map than previously anticipated, comprising amosaic of overlapping
transcription, antisense-transcripts, abundant alternative splicing, and a plethora of
novel transcribed elements. Using a series of sensitive methods it was demonstrated
that 93% of the ENCODE regions exist in primary nuclear transcripts in at least one
of the tested tissues.

An as yet not satisfactorily resolved question is whether novel transcripts lacking
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protein coding capacity (non-coding transcripts) have biological function as such,
or whether they rather represent “biological noise” (i.e. selectively neutral tran-
scription). Analogous to the analysis of protein coding genes, a combination of
both experimental and computational techniques seems necessary to address this
question.

On the experimental side, we can draw upon the evidence from large scale oligonu-
cleotide tiling array studies performed on the ENCODE regions as well as a small
set of verification experiments (ENCODE Consortium, 2007).Unfortunately, there
is at present no general way to predict non-coding transcripts in eukaryotic genomes.
A few methods exploit weak statistical signals like mutational strand bias, strand
specific selection against polyadenylation signals, or exclusion of repeat elements
to predict transcribed regions in the genome (Semon and Duret, 2004; Glusman
et al., 2006). Such approaches are limited to very large transcripts and cannot de-
fine functional elements within a transcript, as for exampleprotein gene finders do
by predicting coding exons. A subclass of noncoding transcripts, however, appears
to function in the context of ribonucleoprotein complexes that require specific RNA
secondary structures. This is the case in particular for many of the “classical” non-
coding RNAs (ncRNAs) including snoRNAs, snRNAs, or the signal recognition
particle RNA. Other sources of structural constraints may derive from particular
processing pathways, such as the hairpin-shaped precursors of microRNAs, spe-
cific steric requirements as in the case of tRNAs, or from structural requirements
for the catalytic function of the RNA itself, as in the case ofrRNAs, RNaseP RNA,
and group I and II introns (Bompfünewerer et al., 2005).

RNA secondary structures are known to play an important functional role not only
in noncoding transcripts, but also in the context of proteincoding mRNAs. Struc-
tural motifs serve regulatory functions in untranslated regions (Mignone et al.,
2002), lead to genetic reprogramming of coding regions (Namy et al., 2004; Hubert
et al., 1996) and can influence splicing of pre-mRNAs (Buratti and Baralle, 2004).

The comprehensive knowledge of encoded secondary structures in the genome is
important to determine at which level DNA is actually functional and without it, an
“encyclopedia” of functional elements would be incomplete.

In this article we use different comparative approaches to predict functional RNA
secondary structures and provide a detailed comparison with the results of other
ENCODE sub-projects, in particular experimental data fromoligonucleotide tiling
array studies. The computational approach is based on predicting consensus struc-
tures and the observation that structural constraints imply specific mutational pat-
terns visible at the sequence level.EvoFold (Pedersen et al., 2006) analyzes
substitution patterns and models RNA structures directly in the framework of a
phylogenetic-stochastic context free grammar (phylo-SCFG) (Knudsen and Hein,
1999, 2003), whileRNAz (Washietl et al., 2005b) andAlifoldZ (Washietl and
Hofacker, 2004) consider structural conservation and stability of the putative struc-
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tures in terms of predicted folding energies (Hofacker et al., 2002). BothEvoFold
andRNAz have been used in genome-wide computational screens for structured
RNAs (Pedersen et al., 2006; Washietl et al., 2005a), limited, however, on a pre-
selected set of sequence constrained elements (Siepel et al., 2005), and also based
on a much smaller number of genomes. In the ENCODE regions, wenot only have
access to alignments of up to 28 species, which greatly enhances the power of such
comparative approaches, but more importantly there is alsoa dense set of additional
data to compare to.

2 Results

2.1 Three approaches

Almost all RNA molecules form secondary structures. The challenge is thus to rec-
ognize those sections of the genome in which the structure ismore conserved than
one would expect from primary sequence conservation alone.We employ here three
fairly different methods that are designed to recognize evolutionarily conserved
secondary structures. All three are based on given multiplesequence alignments
and attempt to (i) predict a consensus secondary structure for aligned sequences
and then (ii) apply a test of whether the found consensus structure is unusual or
not.

Consensus structures can be inferred either by means of energy directed folding
or using a phylogenetic stochastic context-free grammar (phylo-SCFG) model.
TheRNAalifold algorithm computes the most stable secondary structure that is
compatible with the input alignment (Hofacker et al., 2002). Pfold uses a phylo-
SCFG to predict the most likely common secondary structure based on a model
of secondary structure formation combined with a phylogenetic analysis of the ob-
served substitution pattern (Knudsen and Hein, 1999, 2003). Both approaches yield
comparable accuracies for consensus secondary structure prediction (Gardner and
Giegerich, 2004). Recently, these algorithms have been used for ncRNA prediction
by augmenting them with significance measures.

AlifoldZ uses a random shuffle approach to estimate the expected background
distribution (Washietl and Hofacker, 2004). It expresses the significance of a hit in
terms of a normalizedz-score. Negativez-scores indicate that an observed fold is
more stable and conserved than expected by chance.AlifoldZ is relatively slow
and non-deterministic, and fairly sensitive to alignment errors since it depends on
a strictly conserved fold.

These limitations are overcome byRNAz (Washietl et al., 2005b) which uses a dif-
ferent approach to evaluate theRNAalifold prediction. Structure conservation is
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measured here directly as the ratio of the unconstrained folding energies relative to
the folding energies under the constraint that all aligned sequences are forced to fold
into a common structure. If no common structure can be found,this results in a low
conservation score. Thermodynamic stability is measured independently for each
sequence and then averaged over the alignment. Both measures are interpreted by a
support vector machine (SVM) classification algorithm. Since the thermodynamic
component is completely independent of the alignment, thismethod is relatively
robust against alignment errors. In its current implementation, it is however limited
to six sequences.

EvoFold is based on two competing phylo-SCFG models of RNA sequence evo-
lution: a structural model, similar to thePfold model, and a non-structural model
(Pedersen et al., 2006).1 Structure is only predicted when a segment of the align-
ment is better described by the structural model than the non-structural model.
The two models describe alignments with identical properties, except that the non-
structural model assumes a higher substitution rate and does not include corre-
lated base-pair changes, as found in RNA helices. Each structure prediction is as-
signed a score based on the relative likelihood of the alignment under the combined
structural/non-structural model and a purely non-structural model. For the purpose
of this paper, the structure predictions are ranked according to their score.

2.2 Screening multi species alignments of the ENCODE regions

We usedTBA/MULTIZ (Blanchette et al., 2004) multiple sequence alignments
with up to 28 species as prepared by the ENCODE alignment group (Margulies
et al., 2006). The non-repeat regions were scanned using thethree algorithms as
described in detail inMethods. We predict local secondary structures, performing
the analysis in overlapping windows of size 120 and slide 40.

ForAlifoldZ we used a sample of a maximum of 10 sequences from the align-
ments. The consensus minimum free energy (MFE) quantifyingthe stability of the
consensus fold predicted byRNAalifold of all scanned windows are shown in
Fig. 1. This shows that some sort of consensus fold can be found in almost all
alignments. It is not possible to discriminate on the basis of this score, therefore
thez-score is calculated to assess its significance. We only consideredz-scores for
alignments with consensus MFE<−15, sincez-scores can be unstable for low lev-
els of consensus MFE. This filter is the most stringent one andleaves us with 660
and 348 hits, respectively, for the two significance cut-offs z< −3.5 andz< −4,
which have been used in (Washietl and Hofacker, 2004).

1 This approach is also similar in spirit toQRNA, a program that detects conserved RNA
structures in pairwise alignments by comparing a SCFG basedRNA model to a background
model (Rivas and Eddy, 2001).
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In the case of theRNAz screen we selected up to six sequences and if there were
more than 10 sequences in the alignment we selected three different samples of six.
These were classified using the SVM. The SVM score distributions can be seen in
Fig. 1. For convenience, the SVM scores are converted to “RNAclass probabilities”
and we used two cutoffs 0.5 and 0.9 as introduced in (Washietlet al., 2005b). This
results in 7,093 and 3,707 predictions, respectively.

All sequences of the alignments were used forEvoFold. First the regions were
screened in fixed sized windows, then the predicted substructures were re-scored
and filtered for spurious predictions (short predictions with less than 10 base-pairs
were discarded). Based on theEvoFold score, we defined two sets: one with all
predicted structures and one with the top 50% high scoring structures, consisting
of 9,953 and 4,986 predictions, respectively.

From the score distributions in Fig.1 and the results in Tab.1 one can see that all
three methods apply a relatively stringent filter on the data: On the high significance
level,RNAz andEvoFold predict 1.4% and 1.3% of the ENCODE regions to form
structural RNAs, which is in both cases less than 5% of the scored input alignments.
Note that the input varies betweenRNAz andEvoFold because specific schemes
were used to filter the raw alignments (seeMethodsfor details).

2.3 Estimating background signal

An important issue in any genome wide screen, be it experimental or computa-
tional, is the estimation of the false discovery rate. To this end, we repeated the
analysis with randomly shuffled alignments (seeMethods). This procedure is de-
signed to remove correlations arising from secondary structures while leaving other
characteristics of the aligned sequences untouched. Scoredistributions for the ran-
domized data are shown in Fig. 1, the results of the randomized screens are sum-
marized in Tab. 1.

An important aspect in the context of randomizing RNA secondary structures is di-
nucleotide content (Workman and Krogh, 1999). Since energy-directed folding is
based on stacking interactions of neighboring base-pairs,di-nucleotide content can
affect stability scores considerably.RNAz uses a mononucleotide shuffling model
to compute the energyz-scores which are used as stability measure for the single
sequences in the alignment. Indeed, we observe that the randomized alignments
on average lead to slightly negativez-scores rather than being centered around
zero. This signal disappears when using di-nucleotide shuffling. It is interesting
to ask why the natural di-nucleotide content of the genome results in more sta-
ble secondary structures and whether this has a biological meaning given that a
large fraction of the genome is transcribed. However, conservatively, we have to
consider this effect as a bias. Randomization procedures for entire alignments that

7



Table 1. Statistics of predictions

Input regions Low significance levela High significance levelb

MB % ENCODE No. hits MB % input % ENCODE No. hits MB % input % ENCODE

AlifoldZ native 9.76 32.6 660 0.070 0.7 0.2 348 0.036 0.3 0.1
random 9.36 31.3 148 0.015 0.2 0.0 69 0.007 0.1 0.0

RNAz native 9.76 32.6 7,093 0.748 7.7 2.5 3,707 0.413 4.2 1.4
random 9.36 31.3 1,349 0.117 1.25 0.4 536 0.0466 0.50 0.2
randomc 9.36 31.3 4018 1852

EvoFold native 14.44 48.14 9,953 0.800 5.5 2.7 4,986 0.378 2.5 1.3
random 14.44 48.14 7,390 0.603 4.4 2.0 3,535 0.274 1.9 0.9

aAlifoldZ: z< −3.5; RNAz: P > 0.5; EvoFold: all predictions
bAlifoldZ: z< −4; RNAz: P > 0.9; EvoFold: top 50% predictions
c z-scores corrected to compensate for the genomic backgroundsignal
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Fig. 1. Score distribution of AlifoldZ, RNAz and EvoFold computed for all in-
put alignments. (a) Minimum free energies of the consensus structures as com-
puted by RNAalifold. Note that more negative scores correspond to more sta-
ble/conserved consensus structures. (b) The significance of the consensus MFEs
are estimated by AlifoldZ for all consensus structures with MFE< −15 result-
ing in normalized z-scores. Also here negative values mean more stable and con-
served structures. The two significance cutoffs used throughout this work are indi-
cated. (c) RNAz classifies alignments using a support vector machine. The distri-
bution of SVM decision variables are shown as well as the two significance cutoffs,
which are expressed as “classification probabilities” P. (d) Enlarged tail of (c). (e)
raw EvoFold scores on the original input alignments. (f) EvoFold scores after
extracting the predicted substructure, filtering weak structures (see Methods) and
re-scoring. The histogram shows all predictions of which the top-scoring 50% were
chosen as the high significance prediction set.

respect di-nucleotide content do not seem feasible, hence we cannot correct for
the di-nucleotide frequency effect in the case ofAlifoldZ. ForRNAz, however,
the energyz-score is independent of the alignment. We can compensate for the di-
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Table 2. False discovery rates estimated on shuffled alignments (in %)

Method Low significance level High significance level

AlifoldZ 22.4 19.8
RNAz 19.0 14.5
RNAz (corrected) 56.6 50.0
EvoFold 74.2 70.9

nucleotide bias in the random control by shifting allz-scores by the observed back-
groundz-score of 0.5 and re-evaluating the adjusted values by the SVM. EvoFold
is not directly affected by di-nucleotide content since theSCFG does not explicitly
model stacking base-pairs.

We observe a relatively high false discovery rate for bothRNAz andEvofold
(Tab. 2). On the highly significant set, the false discovery rate (after di-nucleotide
correction) is 50.0% forRNAz and 70.9% forEvoFold, respectively. Since the
shuffling approach comes with uncertainties (Pedersen et al., 2006; Washietl et al.,
2005a; Washietl and Hofacker, 2004), the real false positive rate could conceivably
be even higher.

2.4 Comparison of different predictions

Fig. 2 shows the overlap between different methods. 70.9% oftheAlifoldZ hits
overlap with theRNAz predictions. Since false positives are estimated to be at least
20% inAlifoldZ and false positives forRNAz andAlifoldZ arise for different
reasons, this overlap is what can be expected. The 247 overlapping hits thus can be
regarded as predictions with very high confidence. On the other hand, due to the
very restrictive consensus MFE andz-score cutoff used forAlifoldZ, many true
RNAz hits will not yield anAlifoldZ signal.

The overlap betweenRNAz andEvoFold is extremely low. Only 7.2% of the
RNAz hits overlap withEvoFold predictions. While this constitutes a 1.6-fold
enrichment over the randomly expected overlap, and although the high estimated
false discovery rates limits the best possible overlap to about 1/3, this small over-
lap came unexpected. Close inspection of the data, however,revealed the interesting
fact thatRNAz andEvoFold essentially detect complementary RNA structures:
While RNAz is sensitive on alignments with moderate and high GC contentand
relatively low sequence similarity,EvoFold has its peak sensitivities for low GC
content and high sequence similarity (Fig. 3). Both methodswere trained on struc-
turally diverse subsets of the Rfam database with average GCcontents of around
50%. However, the parametrization ofEvoFold’s non-structural submodel creates
a bias in its structural predictions toward AT-rich regions. The human genome has
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Fig. 2. Overlap of predictions from different methods (high significance level). The
sets are drawn to scale for overlap in terms of nucleotides, numbers indicate over-
lapping predictions. In addition we give the total number of items outside the re-
spective sets. Left: all predictions. Right: Predictions without coding exons and
UTRs according to GENCODE annotation.

an overall GC content of about 42%. Many of the known structured RNAs, such
as microRNAs and H/ACA box snoRNAs have an average GC contentclose to
50%, however, some have a relatively low GC content, such as tRNAs that have an
average GC content of 34%.

The second clear difference is that a large fraction ofEvoFold predictions are
within highly conserved alignments, whileRNAz predictions essentially follow
the conservation distribution found in the input regions.EvoFold, as opposed
toRNAz, explicitly models the rate of substitution and was trainedto detect slowly
evolving RNA structures. Since many known ncRNAs are highlyconserved not
only in structure but also in sequence, this part of the conservation spectrum is of
particular interest. However, due to the lack of sequence variation in these align-
ments, discriminating between true and false positive predictions is difficult.EvoFold
is more sensitive for highly conserved alignments thanRNAz, at the expense of a
higher rate of false positives.

2.5 Detection of known ncRNAs

The ENCODE regions are surprisingly poor in annotated ncRNAs. Of 74 loci with
sequence similarity to ncRNAs in the Rfam database (Griffiths-Jones et al., 2005),
60 are repeat-masked and hence excluded from this study and 7are annotated
as “ncRNA-related” (i.e. putative pseudogenes). Thus, there are only eight well-
characterized ncRNAs within the ENCODE regions: 3 H/ACA snoRNAs, 4 mi-
croRNAs, and H19, an imprinted developmentally regulated mRNA-like noncod-
ing transcript in human and mouse which is not contained in Rfam (Gabory et al.,
2006), see Tab. 3. There is, for example, not a single tRNA or C/D box snoRNA
in any of the ENCODE selected regions. The eight well-characterized examples
are generally detectable by all three methods with high significance (AlifoldZ
z< −4.7,RNAz P > 0.95 andEvoFold top 25%). For the few examples missed,
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Fig. 3. Densities of EvoFold and RNAz predictions (high significance level) as
function of GC content and sequence conservation measured by the PhastCons
program (Siepel et al., 2005). While most RNAz predictions have elevated GC con-
tent and moderate sequence conservation, EvoFold is most sensitive at low GC
contents and high sequence conservation.

Table 3. Known ncRNAs in ENCODE regions

AlifoldZ

RNAz P MFE z-score EvoFold Rank (%) Comment

U70 0.96 −27.1 −4.7 88
ACA36 (0.99) (−20.5) (−6.6) 98 not in RNAz input set (repeat-

masked in rodents)
ACA56 0.95 −17.0 −4.9 84
mir-192 0.97 −36.5 −5.4 81
mir-194-2 (1.00) (−46.9) (−6.9) 97 not in RNAz input set (RNA

split in two TBA blocks)
mir-196 0.99 −24.2 −7.3 98
mir-483 1.00 −27.7 −5.6 (75) not in EvoFold input set
H19 1.00 −51.8 −7.1 90 3 and 8 independent hits with

RNAz and EvoFold, resp., one
overlapping

Scores for RNAs that have been missed in this screen due to problems in the input align-
ments or the pre-screening process are shown in brackets.

the reason is always because the ncRNAs is not represented inthe input alignment
and simple manual editing of the alignment would have resulted in positive predic-
tions. This shows the importance of the underlying genomic alignments.

An interesting example is H19 which shows that long spliced transcripts can have
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structural “domains” and that structural ncRNAs are not necessarily small RNAs
with a global structure as seen for tRNAs or snoRNAs. In addition to these well
described examples we found seven overlappingEvoFold/RNAz hits with signif-
icant sequence similarity (Blast E < 10−6) to the set of putative ncRNAs from
the mouse Fantom2 project (Okazaki et al., 2002) supportingthe role of these tran-
scripts as functional ncRNAs.

2.6 Comparison with other ENCODE data

Sites of transcription can be empirically determined usingoligonucleotide tiling
array techniques resulting in maps of “TARs” (transcriptionally active regions,
(Bertone et al., 2004)) or “Transfrags” (transcribed fragments, (Cheng et al., 2005)).
We compared predicted RNA structures with a union of TARs/Transfrags generated
in the course of the ENCODE project using 11 human tissues (ENCODE Consor-
tium, 2007). One has to keep in mind that these maps were derived from RNA frac-
tions longer than 200 nucleotides and, therefore, a large fraction of small structured
ncRNAs should be missed. However, many ncRNAs like miRNAs and snoRNAs
are processed from longer precursor transcripts and are very well detectable by
these methods (see below).

22.3% of the high significanceRNAz hits overlap with experimentally detected
sites of transcription. This includes UTR elements and the predictions in coding
regions (see below). Without these regions (i.e. counting only intergenic and in-
tronic), 15.7% of theRNAz hits overlap with TARs/Transfrags. This corresponds
to a significant enrichment of approximately 2-fold. However, this must be inter-
preted with caution since TARs/Transfrags are very GC-rich(unannotated Trans-
frags: 56%). It is unclear to what extent this bias has biological reasons or is the
result of the hybridization technique, and consequently, it is difficult to interpret
the significance of these enriched overlaps. GC content seems to be an important
issue since we do not see any enrichment but in fact a small negative correlation
of EvoFold hits and TARs/Transfrags (only 5.8% of the intergenic and intronic
EvoFold hits overlap TARs/Transfrags). The sensitivity of tiling arrays on AU
rich sequences may be lower than for GC rich sequences.

Another important issue in this context is that it is unclearhow secondary structure
affects detection performance on tiling arrays. Similar toprevious studies (Clote
et al., 2005), which reported that functional RNAs are more stable than other se-
quences, we systematically comparedz-scores of folding stability of single seque-
ces while taking di-nucleotide content into account. We compared different anno-
tation groups (introns, intergenic, CDS, UTRs, TARs/no TARs) to see if there are
any general trends. Somewhat surprisingly, we found only a single statistically sig-
nificant signal, which we interpret to be a technical rather than a biological effect:
Regions detected by TARs/Transfrags are on average less stable than regions not
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Fig. 4. Overlap of predicted structured RNAs (high significance level) with the union
of TARs/Transfrags and the “moderate” set of sequence constrained elements. Hits
in coding exons and UTRs are excluded.

detected by TARs (WilcoxP = 2.5 · 10−7). In addition, we previously observed
several examples where highly stable ncRNAs (both predicted ones and known
microRNAs) result in a negative signal (“holes”) in tiling array data (Cheng et al.,
2005). These results suggest that tiling arrays have a reduced sensitivity for strongly
structured ncRNAs.

While much of the ENCODE regions is alignable at least with the genomic DNA
of closely related species, and hence used as input in the computational screens
detailed above, only a subset of these sequences are under stabilizing selection at
the sequence level. We therefore compared the structured RNA candidates with the
multiple species analysis for sequence constrained elements. We used the “moder-
ate” set of constrained elements which comprises regions detected by at least two
of three conservation programs in at least two of three alignments prepared by dif-
ferent methods (Margulies et al., 2006). These conserved elements cover 4.9% of
the ENCODE regions.

841RNAz hits (22.69%) overlap with conserved regions, 570 (17.2%) without hits
in UTRs and coding regions. ForEvoFold predictions the overlap is much higher,
3579 (71.78%) including exons, 2130 (60.41%) without exons, in line with the pro-
gram’s general tendency to predict structures in highly conserved regions. The fact
that a large fraction of predicted conserved RNA structuresdoes not correlate with
high sequence conservation does not come as a surprise. Indeed, Torarinsson and
colleagues reported expressed noncoding RNAs in regions that are not alignable
between human and mouse and nevertheless have conserved secondary structures
(Torarinsson et al., 2006). It is interesting, furthermore, that structured RNA ac-
counts for less than 10% of the sequence-constrained parts of the human genome
(based onRNAz which is relatively unbiased with respect to sequence conserva-
tion).
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It seems noteworthy that all but one2 of the few known ncRNAs in the ENCODE
regions overlap with constrained elements and TARs/Transfrags. This might be
special for this set of snoRNAs and miRNAs which are presumably abundantly
expressed as a kind of “housekeeping ncRNAs” and have well known reasons for
sequence constraints.

The 114 and 142 intergenic/intronicRNAz andEvoFold hits, respectively, that
overlap both conserved elements and TARs/Transfrags are ofspecial interest. 21
of these are detected by bothEvoFold and RNAz, while 12 of these have a
AlifoldZ z-score< −3.5. These numbers demonstrate that there is only a rel-
atively small, but non-negligible, number of structured ncRNAs that are similar
to the “classical” ncRNA families in terms of high sequence conservation, highly
stabilized and well-conserved secondary structures, and high expression levels.

2.7 Overlap with GENCODE annotations

The goal of the GENCODE project (Harrow et al., 2006) is the delineation of one
complete mRNA sequence for at least one splice isoform of each protein coding
gene in the ENCODE regions, and often, but not systematically, the inference of
a number of additional alternative splice forms of these genes. We mapped the
predicted structured RNAs in comparison to all scored inputregions to this set
of annotations (Fig. 5). Extrapolating from our knowledge of described functional
RNAs we have to expect signals in all fractions (intergenic,introns, UTRs, coding
sequences) and forRNAz we can observe only moderate trends of relative enrich-
ment. We see the strongest enrichment forRNAz in 3’-UTRs. This is remarkable
given that 3’-UTRs are generally very AU rich (GC-content only 44%) and that
RNAz has limited sensitivity in AU rich regions. In contrast, there is no enrichment
in 5’-UTR which is again interesting given that 5’-UTRs are the fraction with the
highest GC content (60%). This result is consistent not onlywith theEvoFold
predictions which have higher enrichment in 3’-UTR than 5’-UTRs but also with
previous results from Siepel et al. (2005) who found that highly conserved region in
3’-UTRs of vertebrates have significantly increased propensity to form secondary
structures while in 5’-UTR this effect is not that pronounced.

RNAz predictions are depleted in coding regions despite thehigh GC content
(53%). This is in keeping with the expectation that functional ncRNAs in coding
regions should be rare. However, functional RNA structuresdo occur within coding
regions, and thus these predictions are also of interest. Asmentioned in the intro-
duction there are a few well known functions assigned to hairpin structures within
coding regions. In addition, there is recent evidence that secondary structures are
much more widespread in coding regions of both prokaryotes (Katz and Burge,

2 mir-483 does not overlap with TARs/Transfrags. It might be specific in fetal liver tissue
which is not among the 11 tissues tested.
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Fig. 5. Genomic location of predicted RNAs (high significance level) relative to the
GENCODE protein gene annotation. For comparison the annotation of the input
alignments are shown for both RNAz and EvoFold (they differ slightly because
of the different filtering steps used for both programs, see Methods). “Distal” and
“Proximal” refer to a distance boundary of 5kb away from the next gene (intergenic
fraction) or coding exon (intronic fraction). Some hits fall within more than one
annotation category, so the sums of the fractions are slightly above 100%.

2003) and eukaryotes (Meyer and Miklós, 2005; Chamary and Hurst, 2005) than
previously thought.EvoFold predictions are highly enriched in coding regions.
However, the method has previously been shown to have above average rates of
false positives in coding regions (Pedersen et al., 2006), presumably because of the
high level of sequence conservation. The interpretation ofthese coding predictions
are thus challenging and often requires additional evidence, such as, conservation
of synonymous codon positions (Pedersen et al., 2004a,b), or overlapping predic-
tions from several methods. There are 41 overlappingRNAz/EvoFold hits from
the high significance sets in coding exons, 18 of which particularly stable with
AlifoldZ scoresz< −3.5.

In general, we do not see any trend of noncoding structures favoring intronic over
intergenic fractions. ForRNAz, however, one can observe that “proximal” inter-
genic and intronic fractions are slightly enriched while distal fractions are depleted,
i.e. we see more structures near genes and exons. ForEvoFold both intergenic
and intronic fractions are depleted in favor of the more conserved UTR and coding
regions.
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An interesting result of the GENCODE annotation project is the transcriptional
complexity of protein coding gene loci. For the 487 loci in the ENCODE regions,
2608 different transcripts were identified, 1511 of them non-coding. 229 and 940
RNAz and EvoFold hits, respectively, overlap with a non-coding GENCODE
transcript. Some of these transcripts are extensively structured (see below and Fig. 7
F and G).

2.8 Experimental verification of selected predictions

The high false discovery rates clearly show the limitationsof the methods used here,
indicating that reliable and fully automatic annotation isstill out of reach. However,
to demonstrate that selection of high-scoring predictionsaided by visual inspection
(seeMethods) can result in high quality predictions, we have performed verification
experiments on selected candidates. We performed 245 RT-PCR experiments on
total RNA of six tissues (175 ncRNA predictions, 16 positivecontrols, 38 negative
controls, and 16 non-spliced ESTs clusters (Harrow et al., 2006)). The latter were
named TEC (To be Experiementally Confirmed) by the GENCODE annotation.
They have poly-A features and are potentially protein coding (Harrow et al., 2006).
Only one (U70) of the 8 known ncRNAs (12%, Fig. 6), but 5 of the TECs (31%)
were recovered by RT-PCR, indicating that this protocol (seeMethods) is probably
not optimal for small, highly structured RNAs. Overall we recovered 43 of the
175 predictions (25%). Thus the fraction of verified ncRNA predictions exceeds te
amplification rate of randomly selected sequences by a factor of 2–3. Furthermore,
we find that predictions that are supported by TARs or Transfrags are more likely to
yield positive RT-PCR results (29% compared to 19% without support from tiling
arrays).

2.9 Examples of selected predictions

Fig. 7 shows some examples of predicted RNAs in different genomic context. A
series of criteria support the prediction of these regions as functional RNA: (i)
Several independentRNAz and/orEvoFold hits in close vicinity (ii) overlapping
hits ofEvoFold/RNAz (iii) additional support fromAlifoldZ (iv) support from
compensatory/consistent mutations in the predicted structures (v) overlap with pre-
dictions of sequence constrained elements. Evidence for transcription of these re-
gions comes from TARs/Transfrags, ESTs or GENCODE transcripts (Harrow et al.,
2006). In addition we have performed 5’-RACE/microarray experiments (seeMeth-
ods).

Examples A, B and C are located within intergenic regions, all of them more than 50
kB away from any GENCODE annotation. There are also no “putative” or “pseu-
dogene” GENCODE annotations or any predicted protein coding genes close by.
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Nevertheless, we observe sequence constrained elements. In all cases the sequences
are conserved across eutherian mammals, B is also conservedin chicken, in C there
is a sequence from opossum. We observe severalRNAz andEvoFold hits in these
regions. In A, for example, we have two independentRNAz hits, one overlapping
with anEvoFold hit. This example illustrates the different “sweet-spots”of the
two programs. The significantRNAz hit is in the region of moderate conservation
while the overlapping hit withEvoFold within the highly conserved region is
only of borderline significance. In all three examples thereis additional support
from AlifoldZ, which is in particularly impressive for B and C withz-scores of
−9.5 and−7.0. We want to recall that thisz-score means standard deviations from
the expected random background score for a given alignment.The transcription of
these RNAs were confirmed by 5’-RACE/array analysis.

Examples D and E show two sequence constrained “islands” in introns of well
known protein-coding genes. They do not overlap with any predicted coding ex-
ons, but show clear signs of conserved RNA structures detected by bothRNAz and
EvoFoldwith additional support ofAlifoldZ. The structure models show a se-
ries of consistent/compensatory mutations and the RNA was detected by the RACE
experiments. In the case of example D, further support for the intronic region to
be part of a stable ncRNA comes from TARs/Transfrags as well as a short EST
mapping nearby and overlapping with two additionalRNAz andEvoFold hits.
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Examples F and G show alternative splicing products of two protein loci detected
and confirmed by the GENCODE annotation project. In F, we observe an internal
transcription start (further supported by a CpG island) which gives rise to a tran-
script without clear coding potential but which is highly structured: There are five
independentRNAz hits, two of which overlap withEvoFold hits and two with sig-
nificantAlifoldZ scores (−5.0 and−6.4). A similar situation can be observed
in G, where high densities ofRNAz hits and overlappingEvoFold hits coincide
with noncoding transcripts which arise from an alternatively spliced protein-gene
locus.

3 Discussion

RNA secondary structures can provide important clues that agiven locus is proba-
bly transcribed and that this transcript is functional at the RNA level. Here we at-
tempted to comprehensively detect functional structures.Due to the lack of generic
sequence signals that would imply RNA function, at present the only way towards
this goal (apart from functional studies of individual transcripts) is comparative
analysis. As the ENCODE regions are deeply sequenced they provide an ideal prov-
ing ground for such an endeavor.

In contrast to previous genome-wide screens for structuredRNA, which were re-
stricted to very well-conserved regions of the genome, herewe screenedall alignable
sequences. Indeed, high sequence conservation is not necessarily needed for func-
tion (Pang et al., 2006; Bentwich et al., 2005). In fact, mostknown ncRNAs that
were missed in the previousRNAz screen of the human genome (Washietl et al.,
2005a), were not detectable because they were not present inthe highly conserved
input set. Here we want to extend the spectrum and screen medium conserved as
well as highly conserved regions. There is even a non-negligible part of ncRNAs
which are not alignable at all. For such cases, other methods(Hull Havgaard et al.,
2005; Torarinsson et al., 2006; Uzilov et al., 2006) would benecessary, which we
do not cover here.

Using our highest threshold level and considering our estimates of false positives
on shuffled alignments, we estimate approximately 1800 and 1500 local RNA sec-
ondary structure elements usingRNAz andEvoFold, respectively, in the EN-
CODE regions. We observed a fairly small overlap of predicted structures between
RNAz andEvoFold. While surprising and at first sight discouraging, this dis-
crepancy is explained by the fact that both methods are sensitive for dramatically
different GC contents and levels of sequence conservation.Since known functional
RNAs exist and are detected in the sensitivity ranges of bothprograms, the methods
in fact yield complementary results, indicating that the number of structured RNAs
is larger than predicted by any one of the programs alone. Furthermore, one should
keep in mind, that comparative approaches are by construction limited to evolu-
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consensus structure models generated by RNAalifold are shown for selected
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refer to the text. This figure is continued on page 21.

tionarily relatively old sequences: they are bound to miss recent lineage-specific
innovations as there is no conserved sequence to compare to.It is thus likely that
the number of functional RNAs in the human genome is even higher than the esti-
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Fig. 7. Continued.

mates arising fromEvofold andRNAz.

Despite the rich comparative sequence data in the ENCODE regions bothRNAz and
EvoFold exhibit fairly high false discovery rates of 50–70% as estimated from
randomized input data and correction for di-nucleotide frequencies. Also this high
noise level reduces the observed overlap. The overlap for previous screens restricted
toPhastCons conserved regions, for example, resulted in a two-fold higher over-
lap. Substantial noise levels, however, also plague the experimental approaches. For
example, tiling arrays, CAGE, DiTags techniques show excellent recovery rates and
overlap on annotated coding transcripts but, elsewhere, result in large number of
other signals with moderate overlap and of uncertain relevance. The same is true
for protein coding gene prediction, which yields excellentresults on known pro-

21



tein coding exons but also predict thousands of additional exons incorrectly (Guigo
et al., 2006). Despite such limitations inherent to all high-throughput methods, the
output of such methods can be of high value if sensibly interpreted.

About 25% of a manual selection of ncRNA candidates were verified by means of
RT-PCR indicating that our computational approach detectsa significant number
of verifiable transcripts. Small and highly structured known ncRNAs are poorly re-
covered, indicating that the RT-PCR data most likely underestimate the true extent
of transcription. In line with the observation from the ENCODE Pilot project (EN-
CODE Consortium, 2007), we furthermore expect that most non-coding transcripts
have a specific spatio-temporal expression pattern; our screen of 6 tissues is thusa
priori expected to have only limited sensitivity.

One can consider various modes of function for non-coding transcripts like tran-
scriptional interference (Martens et al., 2004), or antisense interactions (Katayama
et al., 2005). Since we successfully predict ncRNA transcripts based on evolution-
ary conservation of RNA secondary structure in the presenceof sequence variation,
our data strongly suggests that a large number of non-codingRNAs require specific
well-defined secondary structure or structured regions fortheir biological function.
Current methods are not capable to distinguish whether these structures are required
for autonomous actions of the RNAs or whether they are part ofbinding motifs for
specific interaction partners.

We found evidence for functional RNA structures in all regions of the genome.
A fraction of these signals is likely to correspond to small ncRNAs in the classical
sense, which are processed from introns or transcribed fromintergenic regions with
dedicated promoters, as is known for snoRNAs or miRNAs. We also found many
signals in UTRs (particularly enriched in 3’UTRs) of well known protein-coding
genes, suggesting regulatory functions of these signals atthe mRNA level.

Our computational data, as well as the results from high throughput experiments
and the evidence from individual experimental results strongly suggests that the
functional spectrum of ncRNAs is much broader than previously expected. For ex-
ample we have convincing evidence for functional RNA structures in a few dozen
of coding exons. These might have regulatory roles for the mRNA, but it is also
conceivable that they serve a double role as mRNA and ncRNA. Indeed, there is
one example with such a dual role described in the literature, the Steroid Receptor
Activator (SRA) (Lanz et al., 2002; Chooniedass-Kothari etal., 2004). We also ob-
served that alternative transcripts derived from protein loci give rise to transcripts
with compelling evidence for functional RNA structures butlittle coding potential.
This further blurs the difference of coding and noncoding genes. There is also a
recent example of an enhancer element which is transcribed and forms a spliced
and polyadenylated ncRNA (Evf-2) which binds to the transcription factor as co-
activator which in turn binds to the enhancer element (Feng et al., 2006). This
shows that functional RNAs can overlap with various other functional elements.
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In general, the abundance of predicted functional RNA structures associated with
protein genes supports the notion of a “hidden regulatory layer” which exists on the
RNA level in complex organisms (Mattick, 2004, 2003).

Our data in combination with other ENCODE data and aided by visualization meth-
ods (Kent et al., 2002) allows a new way of seeing things and helps directing ra-
tionally devised experiments. It opens a perspective on thegenome which we hope
will help to better understand the “modern RNA world”.

4 Methods

4.1 Multiple Sequence Alignments

We used 28-wayTBA/MULTIZ alignments with human (hg17) as reference se-
quence, which were provided by the ENCODE alignment group (Margulies et al.,
2006). We chose theTBA/MULTIZ method alignments mainly because all previ-
ous applications of the programs used were done onTBA/MULTIZ alignments or
other alignments constructed fromblastz based local comparisons. None of the
three programs used for our analysis can handle unprocessedgenome-wide align-
ments as presented byTBA/MULTIZ. A series of pre-processing and filtering steps
were necessary. The analysis pipeline varies in detail to meet the specific require-
ments of the three programs.

4.2 RNAz predictions

For theRNAz screen alignments were sliced in overlapping windows of size 120
and slide 40. Each series of windows was started at the beginning of aTBA block.
For windows reaching over the end of a block we tried to appendthe adjacent block
to the current one. Two blocks were only merged if all sequences were exactly or
almost consecutive (up to 10 bases were allowed to be missing). Furthermore, se-
quences with more than 25% gaps with respect to the human sequence were dis-
carded. Only alignments with more than four sequences, a minimum size of 50
columns and at most 1% repeat masked letters were considered. RNAz can only
handle alignments with up to six sequences. From alignmentswith more than six
sequences we chose a subset of six: We used a greedy algorithmand iteratively
selected sequences optimizing the set for a mean pairwise identity of around 80%.
In cases of alignments with more than 10 sequences we sampledthree different
of such subsets. The windows were finally scored withRNAz version 0.1.1 in the
forward and reverse complement direction. Overlapping hits with at least one sam-
pled alignment withP> 0.5 were combined to a single genomic region (“cluster”).
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Clusters were assigned two significance levels: “P > 0.5” means that there is at
least one window in the cluster with a meanP of at least 0.5. “P > 0.9” means that
there is at least one window in the cluster with meanP of all samples> 0.5 and at
least one hit withP > 0.9.

4.3 AlifoldZ predictions

The pre-processing steps were the same as forRNAz. However, we only scored
one sample per window. If there were less than 10 sequences inthe alignment all
sequences were used. If there were more than 10 sequences a sample of 10 se-
quences optimized for a mean pairwise identity of 80% was chosen. It does not
seem reasonable to score alignments with too many sequencesusingAlifoldZ
because the efficiency of alignment shuffling and alignment errors become limit-
ing. In fact, the larger number of sequences per alignment may have contributed to
the low number of hits produced byAlifoldZ in comparison toRNAz. We only
scored alignments with a RNAalifold consensus MFE better than−15, using the
same version ofAlifoldZ that was originally published with the paper (Washietl
and Hofacker, 2004). A sample size of N=100 was chosen to estimate thez-scores
for both the forward and reverse complement direction. Overlapping hits were clus-
tered as descibed above forRNAz predictions and assigned two significance levels
usingz< −3.5 andz< −4 as cutoffs.

4.4 EvoFold predictions

For theEvoFold analysis, sequences with more than 20% gaps relative to human
were first removed. Second, alignments with sequence from less than six species
were eliminated. Third,TBA alignment blocks consecutive relative to human were
concatenated. Fourth, non-syntenic sequences that include segments from disparate
genomic regions (more than twice the length of the human reference sequence
apart) were removed; however, if the resulting alignment had less than six se-
quences, none were removed.EvoFold 1.1 was then applied to the concatenated
alignments, and their reverse complements, in 120 long overlapping windows each
offset by 40. Weak predictions (less than ten pairing bases or an average stem-
length of less than three) as well as predictions overlapping repeats or retro-genes
(as defined by tracks of the UCSC browser) were eliminated. Finally, the set was
reduced to single coverage, by removing the lowest scoring candidates if overlap
occurred, and ranked according to score. Two prediction sets were defined based
on the final score: all predictions and the top-50%.
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4.5 Randomization of alignments

All three screens were repeated on randomizedTBA alignments. The alignments
were shuffled as described previously (Washietl and Hofacker, 2004) resulting in
random alignments of the same base composition, sequence conservation and gap-
patterns. We could not exactly preserve local conservationpatterns, since this would
have been limiting in the case of large alignments. However,the adapted shuffling
method we used retains a coarse grained pattern of conservation (only columns with
mean pairwise identity> 0.5 and< 0.5 were shuffled with each other, respectively).

4.6 Comparison with other ENCODE data

We used the ENCODE data from December 2005 provided at the Galaxy2ENCODE
website (Nekrutenko and et al., 2006). This includes the GENCODE annotation
(Harrow et al., 2006), the “moderate” set of constrained elements (Margulies et al.,
2006) and the union of Yale and Affymetrix TARs/Transfrags signals from all 11
tissues and RNA extractions (PolyA+ and complete RNA) (ENCODE Consortium,
2007). Overlap calculations, partition into the differentannotation types and calcu-
latingPhastCons scores were accomplished using the tools of the Galaxy2ENCODE
system and the UCSC table browser (Kent et al., 2002).

4.7 Selection of candidates for RT-PCR verification

We manually selected 175 candidates for RT-PCR verificationin three sets:RNAz
hits (60),EvoFold hits (57) and overlappingRNAz/EvoFold hits (58). For the
first two sets we explicitely chose half of the targets with overlap to TARs/Transfrags
and the other half without. The third set of overlappingRNAz/EvoFold hits was
chosen without regard to TAR/Transfrag overlap (35 of the 58have overlap). RNA
predictions shorter than 200 nucleotides were extended to target regions of at least
200 nucleotides length (limiting our detection performance of small RNAs, e.g. we
cannot detect mature miRNAs).

Criteria that were used for selecting candidates include: high RNAz/AlifoldZ
and/orEvoFold scores, absence of any indication of alignment errors or other
alignment artifacts, presence of compensatory mutations,genomic location in ei-
ther introns of protein coding transcripts or unannotated intergenic regions.

We routinely generated structure annotated and colorized alignments of all hits vi-
sualizing the predicted structure together with the mutational pattern. Inspection of
the alignments can help to select more reasonable candidates mainly by weeding
out obvious false positives. For example, unusual gap patterns or low complexity
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runs of single letters indicate an artifactual hit. Currently, the programs themselves
cannot efficiently recognize such artifacts and there is still much room for improve-
ment (e.g. by using an explicit indel-model inEvoFold).

Negative controls were obtained by randomizing the set of ncRNA target regions
using the “Random Intervals” tool of the Galaxy2ENCODE system. From the re-
sulting randomized locations we chose 38 targets: 19 in intergenic regions (9 over-
lapping TARs/Transfrags) and 19 in intronic regions (9 overlapping TARs/Transfrags).
As positive controls we randomly chose 8 regions in exons of mRNAs of known
protein coding genes and the 8 ncRNAs from Tab 3.

4.8 RT-PCR

Brain, heart, kidney, liver, lung and testis total RNA (0.1µg each) were mixed and
reversed transcribed in 25µl with AMV Reverse Transcriptase XL in presence of
dNTP nucleotide analogs to avoid amplification of genomic DNA contaminants,
RNase Inhibitor and MgCl2 (mRNA Selective PCR kit, Takara). The reaction was
carried out in 1× Selective buffer II with 0.4µM of specific primer (see below)
following manufacturer’s instructions, i.e. 30◦C 10 min, 42◦C 30 min and 5◦C
5 min. The PCR amplification was performed in 25µl with one fifth of the RT-
reaction and primers at a final concentration of 0.4µM at 85◦C 1 min, 50◦C 1 min
and 72◦C 1 min for 30 cycles following manufacturer’s instructions(mRNA Se-
lective PCR kit, Takara). Amplimers were separated on a 1.8%agarose gel and se-
quenced. The primers were selected with Primer3 (http://frodo.wi.mit.
edu/cgi-bin/primer3/primer3 www.cgi) and default parameters. For
all predictions and controls we tested forward and reverse strand. The reason for
this is that the programs cannot determine the correct reading direction in all cases
(strong RNA signals, i.e. base paring patterns, can usuallyalso be detected in the
reverse complement).

4.9 5’-RACE/array analysis

5’-RACE reactions were performed on brain and testis cDNA prepared from both
polyA+ and total RNA and oligo-dT and random hexamers, respectively, as de-
scribed (Denoeud et al., 2007). The mapping of the the RACE primers are given
in Fig. 7. The RACE amplimers were hybridized to ENCODE tiling arrays as de-
scribed in (Kapranov et al., 2005) and modified in (Denoeud etal., 2007).
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5 Data Availability

The predictions described in this paper, are available as annotation tracks in BED
format suitable for use with the UCSC genome browser and can be downloaded
here:http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/ENCODE/.
Primer sequences and results of the RT-PCR experiments can also be downloaded
from this web site.
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