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Abstract

Functional RNA structures play an important role both indbetext of non-coding RNA
transcripts as well as regulatory elements in mRNAs. Hergresent a computational
study to detect functional RNA structures within the ENCOBd#ected regions of the
human genome. Since structural RNAs in general lack cheriatit signals in their primary
sequence, comparative approaches that evaluate theiemalytconservation of structures
are most promising. The deeply sequenced ENCODE regiomeftine provide an ideal
data set for these methods.

We have used three recently introduced programs basedtar pliylogenetic stochas-
tic context free grammatsy oFol d) or energy directed foldingRNAz andAl i f ol dZ)
yielding several thousand candidate structures (correpg to about 2.7% of the EN-
CODE regions) EvoFol d has its highest sensitivity in highly conserved and reddyiv
AU-rich regions whileRNAz favors slightly GC-rich regions, resulting in a relativsiyall
overlap between methods. In comparison with the GENCODBtation our data points
to new functional structural RNAs in all genomic contextgfva slightly increased density
of predictions in 3'UTRs.

While we estimate a significant false discovery rate of abOu70% in this screen, many
of the predictions can be further substantiated by additioriteria: 248 loci are predicted
by bothRNAz andEvoFol d, an additional 239RNAz or EvoFol d predictions are sup-
ported by the (more stringend)l i f ol dZ algorithm. 570RNAz structure predictions fall
into regions that show signs of selection pressure also@adfuence level (i.e. conserved
elements). Over 700 predictions overlap with non-proteidirg transcripts detected by
oligonucleotide tiling arrays.

175 selected candidates were tested by RT-PCR in 6 tissuesxgmession could be
verified in 43 cases (24.6%).

Key words: Functional RNA; conserved RNA secondary structure; couipas genomics

1 Introduction

The goal of the ENCODE (“ENCyclopedia Of DNA Elements”) @dj is the
comprehensive analysis of functional elements in the hugesmome. One of its
main goals is the thorough annotation of transcripts in $eofrstructure and func-
tion. Both genome-wide studies (Carninci et al., 2005; @hetral., 2005; Bertone
et al., 2004) and the far more detailed studies targetedetd=tMCODE regions
(ENCODE Consortium, 2007) show a much more extensive andpltran-
scriptional map than previously anticipated, comprising@saic of overlapping
transcription, antisense-transcripts, abundant alteeaplicing, and a plethora of
novel transcribed elements. Using a series of sensitiveadstit was demonstrated
that 93% of the ENCODE regions exist in primary nuclear tcaipss in at least one
of the tested tissues.

An as yet not satisfactorily resolved question is whetherehtranscripts lacking



protein coding capacity (non-coding transcripts) havedgizal function as such,
or whether they rather represent “biological noise” (i€estively neutral tran-
scription). Analogous to the analysis of protein codingegm combination of
both experimental and computational techniques seemssemgeto address this
guestion.

On the experimental side, we can draw upon the evidence &aye kcale oligonu-
cleotide tiling array studies performed on the ENCODE regias well as a small
set of verification experiments (ENCODE Consortium, 200ffortunately, there
is at present no general way to predict non-coding transangeukaryotic genomes.
A few methods exploit weak statistical signals like mutasibstrand bias, strand
specific selection against polyadenylation signals, otusken of repeat elements
to predict transcribed regions in the genome (Semon andtD2084; Glusman
et al., 2006). Such approaches are limited to very largestrgrts and cannot de-
fine functional elements within a transcript, as for exangptaein gene finders do
by predicting coding exons. A subclass of noncoding traps;rhowever, appears
to function in the context of ribonucleoprotein complexestrequire specific RNA
secondary structures. This is the case in particular foryroéthe “classical” non-
coding RNAs (ncRNAs) including snoRNAs, snRNAs, or the sigrecognition
particle RNA. Other sources of structural constraints megve from particular
processing pathways, such as the hairpin-shaped preswtonicroRNAS, spe-
cific steric requirements as in the case of tRNAs, or fromcstmal requirements
for the catalytic function of the RNA itself, as in the case®RNAs, RNaseP RNA,
and group | and Il introns (Bompfuinewerer et al., 2005).

RNA secondary structures are known to play an importanttfonal role not only
in noncoding transcripts, but also in the context of protmding mRNAs. Struc-
tural motifs serve regulatory functions in untranslategioas (Mignone et al.,
2002), lead to genetic reprogramming of coding regions (Wetal., 2004; Hubert
et al., 1996) and can influence splicing of pre-mRNAs (Bueattl Baralle, 2004).

The comprehensive knowledge of encoded secondary stesgciuthe genome is
important to determine at which level DNA is actually fumetal and without it, an
“encyclopedia” of functional elements would be incomplete

In this article we use different comparative approachegédipt functional RNA
secondary structures and provide a detailed comparisdnthe results of other
ENCODE sub-projects, in particular experimental data fodigonucleotide tiling
array studies. The computational approach is based ongtiregiconsensus struc-
tures and the observation that structural constraintsyirgpécific mutational pat-
terns visible at the sequence levelioFol d (Pedersen et al.,, 2006) analyzes
substitution patterns and models RNA structures directlyhe framework of a
phylogenetic-stochastic context free grammar (phylo-SCfEnudsen and Hein,
1999, 2003), whileRNAz (Washietl et al., 2005b) anél i f ol dZ (Washietl and
Hofacker, 2004) consider structural conservation andlgiabf the putative struc-



tures in terms of predicted folding energies (Hofacker e28l02). BothEvoFol d
and RNAz have been used in genome-wide computational screens tmtwted
RNAs (Pedersen et al., 2006; Washietl et al., 2005a), loni@wever, on a pre-
selected set of sequence constrained elements (Siepel 20@b), and also based
on a much smaller number of genomes. In the ENCODE regionapivenly have
access to alignments of up to 28 species, which greatly eslsahe power of such
comparative approaches, but more importantly there iscattemse set of additional
data to compare to.

2 Results

2.1 Three approaches

Almost all RNA molecules form secondary structures. Thdlehge is thus to rec-

ognize those sections of the genome in which the structureige conserved than
one would expect from primary sequence conservation alde@mploy here three
fairly different methods that are designed to recognizdwsamarily conserved

secondary structures. All three are based on given mulsiptpience alignments
and attempt to (i) predict a consensus secondary struaburaliffned sequences
and then (ii) apply a test of whether the found consensuststlis unusual or
not.

Consensus structures can be inferred either by means ajyediected folding
or using a phylogenetic stochastic context-free grammhayl@eSCFG) model.
TheRNAal i f ol d algorithm computes the most stable secondary structutéstha
compatible with the input alignment (Hofacker et al., 200#)ol d uses a phylo-
SCFG to predict the most likely common secondary structased on a model
of secondary structure formation combined with a phylogjeraaalysis of the ob-
served substitution pattern (Knudsen and Hein, 1999, 2@ih approaches yield
comparable accuracies for consensus secondary structadietpn (Gardner and
Giegerich, 2004). Recently, these algorithms have beemfos@cRNA prediction
by augmenting them with significance measures.

Al i f ol dZ uses a random shuffle approach to estimate the expectedrbankig
distribution (Washietl and Hofacker, 2004). It expres$esdignificance of a hit in
terms of a normalized-score. Negative-scores indicate that an observed fold is
more stable and conserved than expected by chahaed.ol dZ is relatively slow
and non-deterministic, and fairly sensitive to alignmanbes since it depends on
a strictly conserved fold.

These limitations are overcome BNAz (Washietl et al., 2005b) which uses a dif-
ferent approach to evaluate tRBlAal i f ol d prediction. Structure conservation is



measured here directly as the ratio of the unconstraineéhipkenergies relative to
the folding energies under the constraint that all aligregpiences are forced to fold
into a common structure. If no common structure can be fotimsiresults in a low
conservation score. Thermodynamic stability is measurddpendently for each
sequence and then averaged over the alignment. Both measarnaterpreted by a
support vector machine (SVM) classification algorithm.cgitthe thermodynamic
component is completely independent of the alignment, tie¢hod is relatively
robust against alignment errors. In its current implem@mait is however limited
to six sequences.

EvoFol d is based on two competing phylo-SCFG models of RNA sequerze e
lution: a structural model, similar to tH& ol d model, and a non-structural model
(Pedersen et al., 2008) Structure is only predicted when a segment of the align-
ment is better described by the structural model than thestraictural model.
The two models describe alignments with identical propsrtexcept that the non-
structural model assumes a higher substitution rate and dokinclude corre-
lated base-pair changes, as found in RNA helices. Eachtsteuprediction is as-
signed a score based on the relative likelihood of the algmrander the combined
structural/non-structural model and a purely non-stmattonodel. For the purpose
of this paper, the structure predictions are ranked acegridi their score.

2.2 Screening multi species alignments of the ENCODE region

We usedTBA/ MULTI Z (Blanchette et al., 2004) multiple sequence alignments
with up to 28 species as prepared by the ENCODE alignmentpgflargulies

et al., 2006). The non-repeat regions were scanned usintptbe algorithms as
described in detail iMethods We predict local secondary structures, performing
the analysis in overlapping windows of size 120 and slide 40.

ForAl i f ol dZ we used a sample of a maximum of 10 sequences from the align-
ments. The consensus minimum free energy (MFE) quantifyiagtability of the
consensus fold predicted BNAal i f ol d of all scanned windows are shown in
Fig. 1. This shows that some sort of consensus fold can bedfouaimost all
alignments. It is not possible to discriminate on the baéithis score, therefore
thez-score is calculated to assess its significance. We onlyideresiz-scores for
alignments with consensus MKE—15, sincez-scores can be unstable for low lev-
els of consensus MFE. This filter is the most stringent onel@anks us with 660
and 348 hits, respectively, for the two significance cusaft —3.5 andz < —4,
which have been used in (Washietl and Hofacker, 2004).

1 This approach is also similar in spirit @RNA, a program that detects conserved RNA
structures in pairwise alignments by comparing a SCFG bas&imodel to a background
model (Rivas and Eddy, 2001).



In the case of th&NAz screen we selected up to six sequences and if there were
more than 10 sequences in the alignment we selected thfeeedifsamples of six.
These were classified using the SVM. The SVM score distomgtcan be seen in
Fig. 1. For convenience, the SVM scores are converted to “RIgss probabilities”

and we used two cutoffs 0.5 and 0.9 as introduced in (Wasttiedl, 2005b). This
results in 7,093 and 3,707 predictions, respectively.

All sequences of the alignments were usedHEgoFol d. First the regions were
screened in fixed sized windows, then the predicted sulitatescwere re-scored
and filtered for spurious predictions (short predictiondMess than 10 base-pairs
were discarded). Based on tBeoFol d score, we defined two sets: one with all
predicted structures and one with the top 50% high scoringtstres, consisting
of 9,953 and 4,986 predictions, respectively.

From the score distributions in Fig.1 and the results in Tabne can see that all
three methods apply a relatively stringent filter on the datathe high significance
level,RNAz andEvoFol d predict 1.4% and 1.3% of the ENCODE regions to form
structural RNAs, which is in both cases less than 5% of theesliaput alignments.
Note that the input varies betwe8NAz andEvoFol d because specific schemes
were used to filter the raw alignments (ddethodsfor details).

2.3 Estimating background signal

An important issue in any genome wide screen, be it expeti@mh@n computa-
tional, is the estimation of the false discovery rate. T@ #mnd, we repeated the
analysis with randomly shuffled alignments (9dethod$. This procedure is de-
signed to remove correlations arising from secondary &iras while leaving other
characteristics of the aligned sequences untouched. Stributions for the ran-
domized data are shown in Fig. 1, the results of the randairszeeens are sum-
marized in Tab. 1.

An important aspect in the context of randomizing RNA se@wpdtructures is di-
nucleotide content (Workman and Krogh, 1999). Since endigcted folding is
based on stacking interactions of neighboring base-g#iirg)cleotide content can
affect stability scores considerabRINAz uses a mononucleotide shuffling model
to compute the energgscores which are used as stability measure for the single
sequences in the alignment. Indeed, we observe that themaped alignments
on average lead to slightly negatizescores rather than being centered around
zero. This signal disappears when using di-nucleotideflamgf It is interesting

to ask why the natural di-nucleotide content of the genorseltg in more sta-
ble secondary structures and whether this has a biologieahing given that a
large fraction of the genome is transcribed. However, cvagieely, we have to
consider this effect as a bias. Randomization procedurestire alignments that



Table 1. Statistics of predictions

Input regions

Low significance level

High significance levél

MB % ENCODE No.hits MB %input %ENCODE No.hits MB %input % ENOCE&
AlifoldZ  native 9.76 32.6 660 0.070 0.7 0.2 348 0.036 0.3 0.1
random  9.36 31.3 148 0.015 0.2 0.0 69 0.007 0.1 0.0
RNAz native 9.76 32.6 7,093 0.748 7.7 2.5 3,707  0.413 4.2 1.4
random  9.36 31.3 1,349 0.117 1.25 0.4 536 0.0466  0.50 0.2
randoni  9.36 31.3 4018 1852
EvoFold native 14.44 48.14 9,953 0.800 5.5 2.7 4,986 0.378 5 2. 1.3
random  14.44 48.14 7,390 0.603 4.4 2.0 3,535 0.274 1.9 0.9

aAl i f ol dZ: z< —3.5; RNAz: P > 0.5; EvoFol d: all predictions
BAl'i f ol dZ:z< —4;RNAz: P > 0.9; EvoFol d: top 50% predictions
¢ z-scores corrected to compensate for the genomic backgignél
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Fig. 1. Score distribution of Al i f ol dZ, RNAz and EvoFol d computed for all in-
put alignments. (a) Minimum free energies of the consensus structures as com-
puted by RNAal i f ol d. Note that more negative scores correspond to more sta-
ble/conserved consensus structures. (b) The significance of the consensus MFEs
are estimated by Al i f ol dZ for all consensus structures with MFE< —15 result-
ing in normalized z-scores. Also here negative values mean more stable and con-
served structures. The two significance cutoffs used throughout this work are indi-
cated. (c) RNAz classifies alignments using a support vector machine. The distri-
bution of SVM decision variables are shown as well as the two significance cutoffs,
which are expressed as “classification probabilities” P. (d) Enlarged tail of (c). (e)
raw EvoFol d scores on the original input alignments. (f) EvoFol d scores after
extracting the predicted substructure, filtering weak structures (see Methods) and
re-scoring. The histogram shows all predictions of which the top-scoring 50% were
chosen as the high significance prediction set.

respect di-nucleotide content do not seem feasible, hemceannot correct for
the di-nucleotide frequency effect in the casedbf f ol dZ. For RNAz, however,
the energyz-score is independent of the alignment. We can compensiatedali-



Table 2. False discovery rates estimated on shuffled alignments (in %)

Method Low significance level High significance level
AlifoldZz 22.4 19.8

RNAz 19.0 14.5

RNAz (corrected) 56.6 50.0

EvoFold 74.2 70.9

nucleotide bias in the random control by shiftinga#icores by the observed back-
groundz-score of 0.5 and re-evaluating the adjusted values by tid. &V oFol d

is not directly affected by di-nucleotide content since3@FG does not explicitly
model stacking base-pairs.

We observe a relatively high false discovery rate for bieihz and Evof ol d
(Tab. 2). On the highly significant set, the false discoverg (after di-nucleotide
correction) is 50.0% foRNAz and 70.9% forEvoFol d, respectively. Since the
shuffling approach comes with uncertainties (Pedersen,&Qfl6; Washietl et al.,
2005a; Washietl and Hofacker, 2004), the real false p@sitite could conceivably
be even higher.

2.4 Comparison of different predictions

Fig. 2 shows the overlap between different methods. 70.98eAl i f ol dZ hits
overlap with theRNAz predictions. Since false positives are estimated to beaat le
20%inAl i f ol dZ and false positives fdRNAz andAl i f ol dZ arise for different
reasons, this overlap is what can be expected. The 247 ppartahits thus can be
regarded as predictions with very high confidence. On therdthnd, due to the
very restrictive consensus MFE amdcore cutoff used fofl i f ol dZ, many true
RNAz hits will not yield anAl i f ol dZ signal.

The overlap betwee®NAz and EvoFol d is extremely low. Only 7.2% of the
RNAz hits overlap withEvoFol d predictions. While this constitutes a6tfold
enrichment over the randomly expected overlap, and altindlg high estimated
false discovery rates limits the best possible overlap twaly/3, this small over-
lap came unexpected. Close inspection of the data, howevegled the interesting
fact thatRNAz andEvoFol d essentially detect complementary RNA structures:
While RNAz is sensitive on alignments with moderate and high GC corgadt
relatively low sequence similarit{EvoFol d has its peak sensitivities for low GC
content and high sequence similarity (Fig. 3). Both metheelse trained on struc-
turally diverse subsets of the Rfam database with averageda@&nts of around
50%. However, the parametrization®®f oFol d’s non-structural submodel creates
a bias in its structural predictions toward AT-rich regiolle human genome has

10
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Fig. 2. Overlap of predictions from different methods (high significance level). The
sets are drawn to scale for overlap in terms of nucleotides, numbers indicate over-
lapping predictions. In addition we give the total number of items outside the re-
spective sets. Left: all predictions. Right: Predictions without coding exons and
UTRs according to GENCODE annotation.

an overall GC content of about 42%. Many of the known strietRNAS, such
as microRNAs and H/ACA box snoRNAs have an average GC cowtest to
50%, however, some have a relatively low GC content, sucRE#As that have an
average GC content of 34%.

The second clear difference is that a large fractioreobFol d predictions are
within highly conserved alignments, whilRNAz predictions essentially follow
the conservation distribution found in the input regioBgoFol d, as opposed
to RNAz, explicitly models the rate of substitution and was traiteedetect slowly
evolving RNA structures. Since many known ncRNAs are higtdpserved not
only in structure but also in sequence, this part of the cmasien spectrum is of
particular interest. However, due to the lack of sequencatan in these align-
ments, discriminating between true and false positiveiptieas is difficult. EvoFol d
is more sensitive for highly conserved alignments tRAAz, at the expense of a
higher rate of false positives.

2.5 Detection of known ncRNAs

The ENCODE regions are surprisingly poor in annotated ncRNX 74 loci with
sequence similarity to ncRNAs in the Rfam database (Grfitbnes et al., 2005),
60 are repeat-masked and hence excluded from this study amd @nnotated
as “ncRNA-related” (i.e. putative pseudogenes). Thuggtlaee only eight well-
characterized ncRNAs within the ENCODE regions: 3 H/ACARNAs, 4 mi-
croRNAs, and H19, an imprinted developmentally regulat&NA-like noncod-
ing transcript in human and mouse which is not contained anR{Gabory et al.,
2006), see Tab. 3. There is, for example, not a single tRNA/Br ltbx snoRNA
in any of the ENCODE selected regions. The eight well-chtaraaed examples
are generally detectable by all three methods with highifsogimce @l i f ol dZ
z< —4.7,RNAz P > 0.95 andEvoFol d top 25%). For the few examples missed,

11
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Fig. 3. Densities of EvoFol d and RNAz predictions (high significance level) as
function of GC content and sequence conservation measured by the Phast Cons
program (Siepel et al., 2005). While most RNAz predictions have elevated GC con-
tent and moderate sequence conservation, EvoFol d is most sensitive at low GC
contents and high sequence conservation.

Table 3. Known ncRNAs in ENCODE regions

Alifoldz
RNAzP MFE  zscore EvoFold Rank (%) Comment

u70 0.96 271  —-47 88

ACA36 (0.99) (205) (—6.6) 98 not in RNAz input set (repeat-
masked in rodents)

ACA56 0.95 -170 -49 84

mir-192 0.97 -365 54 81

mir-194-2  (1.00) (46.9) (-6.9) 97 not in RNAz input set (RNA
split in two TBA blocks)

mir-196 0.99 —-242 73 98

mir-483 1.00 —27.7 —-5.6 (75) not in EvoFold input set

H19 1.00 —-51.8 -7.1 90 3 and 8 independent hits with
RNAz and EvoFold, resp., one
overlapping

Scores for RNAs that have been missed in this screen due Ihbepms in the input align-
ments or the pre-screening process are shown in brackets.

the reason is always because the ncRNAs is not represertteel imput alignment
and simple manual editing of the alignment would have reslh positive predic-
tions. This shows the importance of the underlying genoingneents.

An interesting example is H19 which shows that long splicadgcripts can have

12



structural “domains” and that structural ncRNAs are notessarily small RNAs
with a global structure as seen for tRNAs or snoRNAs. In aaldito these well
described examples we found seven overlapgwgFol d/RNAz hits with signif-
icant sequence similarityd{ ast E < 107%) to the set of putative ncRNAs from
the mouse Fantom2 project (Okazaki et al., 2002) suppatti@gole of these tran-
scripts as functional ncRNAs.

2.6 Comparison with other ENCODE data

Sites of transcription can be empirically determined usatigonucleotide tiling
array techniques resulting in maps of “TARS” (transcriptifly active regions,
(Bertone et al., 2004)) or “Transfrags” (transcribed fragms, (Cheng et al., 2005)).
We compared predicted RNA structures with a union of TARa&/§frags generated
in the course of the ENCODE project using 11 human tissueCEDE Consor-
tium, 2007). One has to keep in mind that these maps wereatdiiom RNA frac-
tions longer than 200 nucleotides and, therefore, a laegeiém of small structured
NcRNAs should be missed. However, many ncRNAs like miRNA$ stmoRNAs
are processed from longer precursor transcripts and ayewelt detectable by
these methods (see below).

22.3% of the high significancBNAz hits overlap with experimentally detected
sites of transcription. This includes UTR elements and ttegliptions in coding
regions (see below). Without these regions (i.e. countimg mtergenic and in-
tronic), 15.7% of theRNAz hits overlap with TARs/Transfrags. This corresponds
to a significant enrichment of approximately 2-fold. Howewthis must be inter-
preted with caution since TARs/Transfrags are very GC-fishkannotated Trans-
frags: 56%). It is unclear to what extent this bias has biklgeasons or is the
result of the hybridization technique, and consequentlig difficult to interpret
the significance of these enriched overlaps. GC contentséeime an important
issue since we do not see any enrichment but in fact a smadtimegcorrelation
of EvoFol d hits and TARs/Transfrags (only 5.8% of the intergenic aritbimc
EvoFol d hits overlap TARs/Transfrags). The sensitivity of tilingays on AU
rich sequences may be lower than for GC rich sequences.

Another important issue in this context is that it is uncleew secondary structure
affects detection performance on tiling arrays. Similaptevious studies (Clote
et al., 2005), which reported that functional RNAs are maable than other se-
guences, we systematically compaeegtores of folding stability of single seque-
ces while taking di-nucleotide content into account. We parad different anno-
tation groups (introns, intergenic, CDS, UTRs, TARs/no BAB see if there are
any general trends. Somewhat surprisingly, we found onigglesstatistically sig-
nificant signal, which we interpret to be a technical ratihanta biological effect:
Regions detected by TARs/Transfrags are on average ldss $it@n regions not

13



TARs
6527

EvoFol d
3526

Constrained elements Constrained elements

Fig. 4. Overlap of predicted structured RNAs (high significance level) with the union
of TARs/Transfrags and the “moderate” set of sequence constrained elements. Hits
in coding exons and UTRs are excluded.

detected by TARs (Wilco® = 2.5-107 7). In addition, we previously observed
several examples where highly stable ncRNAs (both prediiotees and known

microRNAS) result in a negative signal (“holes”) in tilingray data (Cheng et al.,
2005). These results suggest that tiling arrays have a eeldsensitivity for strongly

structured ncRNAs.

While much of the ENCODE regions is alignable at least with genomic DNA

of closely related species, and hence used as input in thewational screens
detailed above, only a subset of these sequences are uabiizstg selection at
the sequence level. We therefore compared the structuréddahdidates with the
multiple species analysis for sequence constrained elisméle used the “moder-
ate” set of constrained elements which comprises regiotectbel by at least two
of three conservation programs in at least two of three aligmts prepared by dif-
ferent methods (Margulies et al., 2006). These consenardesits cover 4.9% of
the ENCODE regions.

841RNAz hits (22.69%) overlap with conserved regions, 570 (17.2%)aut hits
in UTRs and coding regions. F&v oFol d predictions the overlap is much higher,
3579 (71.78%) including exons, 2130 (60.41%) without exonkne with the pro-
gram’s general tendency to predict structures in highlyseoved regions. The fact
that a large fraction of predicted conserved RNA structdass not correlate with
high sequence conservation does not come as a surprisedinb@arinsson and
colleagues reported expressed noncoding RNASs in regiatsatie not alignable
between human and mouse and nevertheless have consereadascstructures
(Torarinsson et al., 2006). It is interesting, furthermdhat structured RNA ac-
counts for less than 10% of the sequence-constrained datie buman genome
(based orRNAz which is relatively unbiased with respect to sequence quase
tion).
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It seems noteworthy that all but ofieof the few known ncRNAs in the ENCODE
regions overlap with constrained elements and TARs/Tragsf This might be
special for this set of snoRNAs and miRNAs which are presuynabundantly
expressed as a kind of “housekeeping ncRNAs” and have weWhireasons for
sequence constraints.

The 114 and 142 intergenic/intronkiNAz and EvoFol d hits, respectively, that
overlap both conserved elements and TARs/Transfrags aspexfal interest. 21

of these are detected by boBvoFol d and RNAz, while 12 of these have a
Al'i f ol dZ zscore< —3.5. These numbers demonstrate that there is only a rel-
atively small, but non-negligible, number of structuredRhMAs that are similar

to the “classical” ncRNA families in terms of high sequencaservation, highly
stabilized and well-conserved secondary structures, gyiddxpression levels.

2.7 Overlap with GENCODE annotations

The goal of the GENCODE project (Harrow et al., 2006) is thingation of one
complete mMRNA sequence for at least one splice isoform difi @astein coding
gene in the ENCODE regions, and often, but not systematjaak inference of
a number of additional alternative splice forms of theseegeWe mapped the
predicted structured RNAs in comparison to all scored impgions to this set
of annotations (Fig. 5). Extrapolating from our knowleddelescribed functional
RNAs we have to expect signals in all fractions (intergemitpns, UTRs, coding
sequences) and f&(fNAz we can observe only moderate trends of relative enrich-
ment. We see the strongest enrichmentRbAz in 3'-UTRs. This is remarkable
given that 3'-UTRs are generally very AU rich (GC-contentyo#4%) and that
RNAz has limited sensitivity in AU rich regions. In contrast, teés no enrichment
in 5-UTR which is again interesting given that 5’-UTRs ahe ffraction with the
highest GC content (60%). This result is consistent not evith the EvoFol d
predictions which have higher enrichment in 3’-UTR than B'Rs but also with
previous results from Siepel et al. (2005) who found thahlyigonserved region in
3’-UTRs of vertebrates have significantly increased prspgrio form secondary
structures while in 5’-UTR this effect is not that pronoudce

RNAz predictions are depleted in coding regions despitehiigh GC content
(53%). This is in keeping with the expectation that funcabncRNAs in coding
regions should be rare. However, functional RNA structdieesccur within coding
regions, and thus these predictions are also of interesmégioned in the intro-
duction there are a few well known functions assigned togmastructures within
coding regions. In addition, there is recent evidence thabsdary structures are
much more widespread in coding regions of both prokarydtesz(and Burge,

2 mir-483 does not overlap with TARs/Transfrags. It might pedsfic in fetal liver tissue
which is not among the 11 tissues tested.
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Fig. 5. Genomic location of predicted RNAs (high significance level) relative to the
GENCODE protein gene annotation. For comparison the annotation of the input
alignments are shown for both RNAz and EvoFol d (they differ slightly because
of the different filtering steps used for both programs, see Methods). “Distal” and
“Proximal” refer to a distance boundary of 5kb away from the next gene (intergenic
fraction) or coding exon (intronic fraction). Some hits fall within more than one
annotation category, so the sums of the fractions are slightly above 100%.

2003) and eukaryotes (Meyer and Miklos, 2005; Chamary amét12005) than
previously thoughtEvoFol d predictions are highly enriched in coding regions.
However, the method has previously been shown to have ah@rage rates of
false positives in coding regions (Pedersen et al., 20063ymably because of the
high level of sequence conservation. The interpretatidhege coding predictions
are thus challenging and often requires additional evidesgch as, conservation
of synonymous codon positions (Pedersen et al., 2004a,byevlapping predic-
tions from several methods. There are 41 overlappiNgz/EvoFol d hits from
the high significance sets in coding exons, 18 of which paldity stable with
Al'i fol dZ scorez < —3.5.

In general, we do not see any trend of noncoding structukesifey intronic over
intergenic fractions. FORNAz, however, one can observe that “proximal” inter-
genic and intronic fractions are slightly enriched whilstdl fractions are depleted,
i.e. we see more structures near genes and exons&vadfol d both intergenic
and intronic fractions are depleted in favor of the more eovesd UTR and coding
regions.
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An interesting result of the GENCODE annotation projecthie transcriptional
complexity of protein coding gene loci. For the 487 loci ir tBNCODE regions,
2608 different transcripts were identified, 1511 of them-ooding. 229 and 940
RNAz and EvoFol d hits, respectively, overlap with a non-coding GENCODE
transcript. Some of these transcripts are extensivelgtsired (see below and Fig. 7
F and G).

2.8 Experimental verification of selected predictions

The high false discovery rates clearly show the limitatioithe methods used here,
indicating that reliable and fully automatic annotatiostil out of reach. However,
to demonstrate that selection of high-scoring predictanded by visual inspection
(seeMethod$ can result in high quality predictions, we have performexdfication
experiments on selected candidates. We performed 245 RTdX@eriments on
total RNA of six tissues (175 ncRNA predictions, 16 posithamtrols, 38 negative
controls, and 16 non-spliced ESTs clusters (Harrow et @069). The latter were
named TEC (To be Experiementally Confirmed) by the GENCODBRotation.
They have poly-A features and are potentially protein coditarrow et al., 2006).
Only one (U70) of the 8 known ncRNAs (12%, Fig. 6), but 5 of tHeCB (31%)
were recovered by RT-PCR, indicating that this protocat ({dethod$ is probably
not optimal for small, highly structured RNAs. Overall wecogered 43 of the
175 predictions (25%). Thus the fraction of verified ncRNA&dlictions exceeds te
amplification rate of randomly selected sequences by arfat®-3. Furthermore,
we find that predictions that are supported by TARs or Tragsfare more likely to
yield positive RT-PCR results (29% compared to 19% withaypiport from tiling
arrays).

2.9 Examples of selected predictions

Fig. 7 shows some examples of predicted RNAs in differenbgea context. A
series of criteria support the prediction of these regionguactional RNA: (i)
Several independe®NAz and/orEvoFol d hits in close vicinity (ii) overlapping
hits of EvoFol d/RNAz (iii) additional support fromAl i f ol dZ (iv) support from
compensatory/consistent mutations in the predictedtsires (v) overlap with pre-
dictions of sequence constrained elements. Evidencedosdtription of these re-
gions comes from TARs/Transfrags, ESTs or GENCODE traptscfHarrow et al.,
2006). In addition we have performed 5’-RACE/microarrapexments (seMeth-
ods.

Examples A, B and C are located within intergenic regiorgfdhem more than 50

kB away from any GENCODE annotation. There are also no “pugabr “pseu-
dogene” GENCODE annotations or any predicted protein @pdenes close by.
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Fig. 6. RT-PCR verification of ncRNA predictions. Positive controls include the
known small ncRNAs listed in Tab. 3 as well 8 randomly chosen mRNAs of
CGENCODE protein coding genes. Negative controls are randomly selected inter-
genic and intronic regions. Sets of RNAz and EvoFol d predictions were manually
selected both overlapping (T+) and not overlapping (T-) with TARs/transfrags. In
addition, we selected a set of overlapping RNAz/EvoFol d predictions (see Meth-
ods).

Nevertheless, we observe sequence constrained elemrealidses the sequences
are conserved across eutherian mammals, B is also congerd@dken, in C there
is a sequence from opossum. We observe seiRdéar andEvoFol d hits in these
regions. In A, for example, we have two independ@NAz hits, one overlapping
with an EvoFol d hit. This example illustrates the different “sweet-spat§’the
two programs. The significaf®NAz hit is in the region of moderate conservation
while the overlapping hit wittEvoFol d within the highly conserved region is
only of borderline significance. In all three examples thisradditional support
from Al i f ol dZ, which is in particularly impressive for B and C wighscores of
—9.5 and—-7.0. We want to recall that thizsscore means standard deviations from
the expected random background score for a given alignriettranscription of
these RNAs were confirmed by 5’-RACE/array analysis.

Examples D and E show two sequence constrained “islandgitions of well
known protein-coding genes. They do not overlap with anyligted coding ex-
ons, but show clear signs of conserved RNA structures atdagt bothRNAz and
EvoFol d with additional support ol i f ol dZ. The structure models show a se-
ries of consistent/compensatory mutations and the RNA wtected by the RACE
experiments. In the case of example D, further support ferirtkronic region to
be part of a stable ncRNA comes from TARs/Transfrags as veel ahort EST
mapping nearby and overlapping with two additioRBIAz andEvoFol d hits.
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Examples F and G show alternative splicing products of tvadgin loci detected
and confirmed by the GENCODE annotation project. In F, we fesen internal
transcription start (further supported by a CpG island)aklgives rise to a tran-
script without clear coding potential but which is highlywsttured: There are five
independenRNAz hits, two of which overlap witlevoFol d hits and two with sig-
nificantAl i f ol dZ scores £5.0 and—6.4). A similar situation can be observed
in G, where high densities &®NAz hits and overlappingvoFol d hits coincide
with noncoding transcripts which arise from an alterndgivapliced protein-gene
locus.

3 Discussion

RNA secondary structures can provide important clues tigaten locus is proba-
bly transcribed and that this transcript is functional & BNA level. Here we at-
tempted to comprehensively detect functional structubes.to the lack of generic
sequence signals that would imply RNA function, at preseatonly way towards
this goal (apart from functional studies of individual tsanipts) is comparative
analysis. As the ENCODE regions are deeply sequenced tbeidpran ideal prov-
ing ground for such an endeavor.

In contrast to previous genome-wide screens for structld, which were re-
stricted to very well-conserved regions of the genome, Werscreenedll alignable
sequences. Indeed, high sequence conservation is nosadbeseeded for func-
tion (Pang et al., 2006; Bentwich et al., 2005). In fact, magiwn ncRNAs that
were missed in the previolRNAz screen of the human genome (Washietl et al.,
2005a), were not detectable because they were not prestet mghly conserved
input set. Here we want to extend the spectrum and screerumeazbnserved as
well as highly conserved regions. There is even a non-netgigart of ncRNAs
which are not alignable at all. For such cases, other metfthalsHavgaard et al.,
2005; Torarinsson et al., 2006; Uzilov et al., 2006) woulchbeessary, which we
do not cover here.

Using our highest threshold level and considering our ed@shof false positives
on shuffled alignments, we estimate approximately 1800 &00 local RNA sec-
ondary structure elements usiiNAz and EvoFol d, respectively, in the EN-
CODE regions. We observed a fairly small overlap of predisteuctures between
RNAz and EvoFol d. While surprising and at first sight discouraging, this dis-
crepancy is explained by the fact that both methods aretsenfr dramatically
different GC contents and levels of sequence conservaione known functional
RNAs exist and are detected in the sensitivity ranges of patgrams, the methods
in fact yield complementary results, indicating that thentner of structured RNAs
is larger than predicted by any one of the programs alon¢h&umore, one should
keep in mind, that comparative approaches are by consirutithited to evolu-
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Fig. 7. Selected high scoring examples. On the left, UCSC genome browser
screen-shots featuring conserved RNA predictions and additional ENCODE anal-
ysis tracks are shown. The significance levels of RNAz and EvoFol d hits are
color coded (see legend). Significant Al i f ol dZ hits are marked with * and the
z-score is shown. In addition, the results of the RACE/microarray experiments,
TARs/Transfrags, constrained elements, Phast Cons scores and GENCODE an-
notations are shown. For details on these tracks refer to Methods. On the right
consensus structure models generated by RNAal i f ol d are shown for selected
hits (marked by grey, dashed boxes; in example G the first three hits and the 6th
hit are shown). In the consensus structures, variable positions are circled indicat-
ing compensatory and consistent mutations supporting the structure. The color
indicates the number of different nucleotide combinations forming one base-pair.
Inconsistent mutations lead to pale colors. For an interpretation of the examples
refer to the text. This figure is continued on page 21.

tionarily relatively old sequences: they are bound to méxent lineage-specific
innovations as there is no conserved sequence to compdtastthus likely that
the number of functional RNAs in the human genome is evendrigtan the esti-
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Fig. 7. Continued.

mates arising fronkEvof ol d andRNAz.

Despite the rich comparative sequence data in the ENCODé&n&gothRNAz and
EvoFol d exhibit fairly high false discovery rates of 50-70% as eatead from
randomized input data and correction for di-nucleotidguiencies. Also this high
noise level reduces the observed overlap. The overlap évrqus screens restricted
to Phast Cons conserved regions, for example, resulted in a two-fold &igiver-
lap. Substantial noise levels, however, also plague thererpntal approaches. For
example, tiling arrays, CAGE, DiTags techniques show d&netecovery rates and
overlap on annotated coding transcripts but, elsewheseajtrin large number of
other signals with moderate overlap and of uncertain relevaThe same is true
for protein coding gene prediction, which yields excelleggults on known pro-
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tein coding exons but also predict thousands of additiaxahgincorrectly (Guigo
et al., 2006). Despite such limitations inherent to all kigloughput methods, the
output of such methods can be of high value if sensibly imeteal.

About 25% of a manual selection of ncRNA candidates werdigdrby means of
RT-PCR indicating that our computational approach detacggnificant number
of verifiable transcripts. Small and highly structured kmaveRNAS are poorly re-
covered, indicating that the RT-PCR data most likely unstareate the true extent
of transcription. In line with the observation from the ENDD Pilot project (EN-
CODE Consortium, 2007), we furthermore expect that mosteuamting transcripts
have a specific spatio-temporal expression pattern; oaerarf 6 tissues is thus
priori expected to have only limited sensitivity.

One can consider various modes of function for non-codiagdtripts like tran-
scriptional interference (Martens et al., 2004), or amigseinteractions (Katayama
et al., 2005). Since we successfully predict ncRNA trapgsibased on evolution-
ary conservation of RNA secondary structure in the presefisequence variation,
our data strongly suggests that a large number of non-c&INAs require specific
well-defined secondary structure or structured regionghr biological function.
Current methods are not capable to distinguish whethee tétesctures are required
for autonomous actions of the RNAs or whether they are pdrirafing motifs for
specific interaction partners.

We found evidence for functional RNA structures in all regioof the genome.
A fraction of these signals is likely to correspond to smaRNAs in the classical
sense, which are processed from introns or transcribedifr@rgenic regions with
dedicated promoters, as is known for snoRNAs or miRNAs. We &und many
signals in UTRs (particularly enriched in 3'UTRs) of welldwn protein-coding
genes, suggesting regulatory functions of these signédteahRNA level.

Our computational data, as well as the results from highuthinput experiments
and the evidence from individual experimental resultsreghp suggests that the
functional spectrum of ncRNAs is much broader than pre\woeispected. For ex-
ample we have convincing evidence for functional RNA suiues in a few dozen
of coding exons. These might have regulatory roles for théNdFbut it is also

conceivable that they serve a double role as mRNA and ncRhz#edd, there is
one example with such a dual role described in the literatbeeSteroid Receptor
Activator (SRA) (Lanz et al., 2002; Chooniedass-Kothagalet2004). We also ob-
served that alternative transcripts derived from proteai give rise to transcripts
with compelling evidence for functional RNA structures btite coding potential.

This further blurs the difference of coding and noncodingege There is also a
recent example of an enhancer element which is transcribeédarms a spliced
and polyadenylated ncRNA (Evf-2) which binds to the tramtion factor as co-

activator which in turn binds to the enhancer element (Fdangl.e 2006). This

shows that functional RNAs can overlap with various otherctional elements.
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In general, the abundance of predicted functional RNA siings associated with
protein genes supports the notion of a “hidden regulatgmgriavhich exists on the
RNA level in complex organisms (Mattick, 2004, 2003).

Our data in combination with other ENCODE data and aided byalization meth-
ods (Kent et al., 2002) allows a new way of seeing things amgkshgirecting ra-

tionally devised experiments. It opens a perspective ogé&m@me which we hope
will help to better understand the “modern RNA world”.

4 Methods

4.1 Multiple Sequence Alignments

We used 28-wayfBA/ MULTI Z alignments with human (hgl7) as reference se-
guence, which were provided by the ENCODE alignment grougr@ulies et al.,
2006). We chose th€BA/ MULTI Z method alignments mainly because all previ-
ous applications of the programs used were don€B& MJULTI Z alignments or
other alignments constructed frdmh ast z based local comparisons. None of the
three programs used for our analysis can handle unprocgssedne-wide align-
ments as presented BBA/ MULTI Z. A series of pre-processing and filtering steps
were necessary. The analysis pipeline varies in detail tet the specific require-
ments of the three programs.

4.2 RNAz predictions

For theRNAz screen alignments were sliced in overlapping windows af 420
and slide 40. Each series of windows was started at the biegiofa TBA block.
For windows reaching over the end of a block we tried to appkee@djacent block
to the current one. Two blocks were only merged if all seqasmeere exactly or
almost consecutive (up to 10 bases were allowed to be mjs$taghermore, se-
guences with more than 25% gaps with respect to the humameseguwvere dis-
carded. Only alignments with more than four sequences, amm size of 50
columns and at most 1% repeat masked letters were consid@éd can only
handle alignments with up to six sequences. From alignmeitiismore than six
sequences we chose a subset of six: We used a greedy algaritthiteratively
selected sequences optimizing the set for a mean pairwesgitig of around 80%.
In cases of alignments with more than 10 sequences we sartiplssl different
of such subsets. The windows were finally scored Wit#z version 0.1.1 in the
forward and reverse complement direction. Overlapping\with at least one sam-
pled alignment withP > 0.5 were combined to a single genomic region (“cluster”).
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Clusters were assigned two significance level3>*0.5" means that there is at
least one window in the cluster with a melof at least 0.5. P > 0.9” means that
there is at least one window in the cluster with m&aof all samples> 0.5 and at
least one hit witiP > 0.9.

4.3 AlifoldZ predictions

The pre-processing steps were the same aflfgz. However, we only scored
one sample per window. If there were less than 10 sequendhs elignment all
sequences were used. If there were more than 10 sequenceypke sd 10 se-
guences optimized for a mean pairwise identity of 80% waseholt does not
seem reasonable to score alignments with too many sequesicesAl i f ol dZ
because the efficiency of alignment shuffling and alignmermtre become limit-
ing. In fact, the larger number of sequences per alignmemthrage contributed to
the low number of hits produced & i f ol dZ in comparison tdRNAz. We only
scored alignments with a RNAalifold consensus MFE bettanthl15, using the
same version AAl i f ol dZ that was originally published with the paper (Washietl
and Hofacker, 2004). A sample size of N=100 was chosen tmattithez-scores
for both the forward and reverse complement direction. @p@ing hits were clus-
tered as descibed above ®RINAz predictions and assigned two significance levels
usingz < —3.5 andz < —4 as cutoffs.

4.4 EvoFold predictions

For theEvoFol d analysis, sequences with more than 20% gaps relative tofuma
were first removed. Second, alignments with sequence fremthean six species
were eliminated. ThirdT BA alignment blocks consecutive relative to human were
concatenated. Fourth, non-syntenic sequences that eskginents from disparate
genomic regions (more than twice the length of the humarreste sequence
apart) were removed; however, if the resulting alignmert less than six se-
guences, none were removéd.oFol d 1.1 was then applied to the concatenated
alignments, and their reverse complements, in 120 londameing windows each
offset by 40. Weak predictions (less than ten pairing basemncaverage stem-
length of less than three) as well as predictions overlapm@peats or retro-genes
(as defined by tracks of the UCSC browser) were eliminatethllyi the set was
reduced to single coverage, by removing the lowest scor@mglidates if overlap
occurred, and ranked according to score. Two predictios\sete defined based
on the final score: all predictions and the top-50%.
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4.5 Randomization of alignments

All three screens were repeated on randomizBé alignments. The alignments
were shuffled as described previously (Washietl and Hofa@@04) resulting in
random alignments of the same base composition, sequensergation and gap-
patterns. We could not exactly preserve local conservadterns, since this would
have been limiting in the case of large alignments. Howeteradapted shuffling
method we used retains a coarse grained pattern of conser(@ly columns with
mean pairwise identity 0.5 and< 0.5 were shuffled with each other, respectively).

4.6 Comparison with other ENCODE data

We used the ENCODE data from December 2005 provided at ttex@ENCODE
website (Nekrutenko and et al., 2006). This includes the GEBRE annotation
(Harrow et al., 2006), the “moderate” set of constrainedhelets (Margulies et al.,
2006) and the union of Yale and Affymetrix TARs/Transfraggals from all 11
tissues and RNA extractions (PolyA+ and complete RNA) (ENDECConsortium,
2007). Overlap calculations, partition into the differanhotation types and calcu-
latingPhast Cons scores were accomplished using the tools of the Galaxy2HDNEO
system and the UCSC table browser (Kent et al., 2002).

4.7 Selection of candidates for RT-PCR verification

We manually selected 175 candidates for RT-PCR verificatidhree setsRNAz
hits (60),EvoFol d hits (57) and overlappinBNAz/EvoFol d hits (58). For the
first two sets we explicitely chose half of the targets witkibap to TARs/Transfrags
and the other half without. The third set of overlappRgAz/EvoFol d hits was
chosen without regard to TAR/Transfrag overlap (35 of thé@&& overlap). RNA
predictions shorter than 200 nucleotides were extendeat¢et regions of at least
200 nucleotides length (limiting our detection performan€small RNAs, e.g. we
cannot detect mature miRNAS).

Criteria that were used for selecting candidates incluagh RNAz/Al i f ol dZ
and/orEvoFol d scores, absence of any indication of alignment errors agroth
alignment artifacts, presence of compensatory mutatigeispmic location in ei-
ther introns of protein coding transcripts or unannotatgergenic regions.

We routinely generated structure annotated and colorizgaraents of all hits vi-
sualizing the predicted structure together with the mateti pattern. Inspection of
the alignments can help to select more reasonable canslidetmly by weeding
out obvious false positives. For example, unusual gap patter low complexity
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runs of single letters indicate an artifactual hit. Curkgrihe programs themselves
cannot efficiently recognize such artifacts and there lisstich room for improve-
ment (e.g. by using an explicit indel-modelkvoFol d).

Negative controls were obtained by randomizing the set BN target regions
using the “Random Intervals” tool of the Galaxy2ENCODE syst From the re-
sulting randomized locations we chose 38 targets: 19 imgeteéc regions (9 over-
lapping TARs/Transfrags) and 19 in intronic regions (9 taygping TARs/Transfrags).
As positive controls we randomly chose 8 regions in exons BNs of known
protein coding genes and the 8 ncRNAs from Tab 3.

4.8 RT-PCR

Brain, heart, kidney, liver, lung and testis total RNA (Qd.each) were mixed and
reversed transcribed in 3% with AMV Reverse Transcriptase XL in presence of
dNTP nucleotide analogs to avoid amplification of genomicADddntaminants,
RNase Inhibitor and MgGI(mRNA Selective PCR kit, Takara). The reaction was
carried out in Xk Selective buffer 1l with 0.4uM of specific primer (see below)
following manufacturer’s instructions, i.e. 30 10 min, 42C 30 min and 3C

5 min. The PCR amplification was performed in @5with one fifth of the RT-
reaction and primers at a final concentration of|@Mtat 85°C 1 min, 50C 1 min
and 72C 1 min for 30 cycles following manufacturer’s instructiofsRNA Se-
lective PCR Kkit, Takara). Amplimers were separated on a a§&bose gel and se-
guenced. The primers were selected with Primét3tp: //frodo.wi . mt.
edu/ cgi - bi n/ primer 3/ primer3.ww. cgi ) and default parameters. For
all predictions and controls we tested forward and revetrsa@. The reason for
this is that the programs cannot determine the correctmgatirection in all cases
(strong RNA signals, i.e. base paring patterns, can usadty be detected in the
reverse complement).

4.9 5-RACE/array analysis

5’-RACE reactions were performed on brain and testis cDNéppred from both
polyA+ and total RNA and oligo-dT and random hexamers, retpay, as de-
scribed (Denoeud et al., 2007). The mapping of the the RAQMBgIE are given
in Fig. 7. The RACE amplimers were hybridized to ENCODE tliarrays as de-
scribed in (Kapranov et al., 2005) and modified in (Denoelal.e007).
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5 Data Availability

The predictions described in this paper, are available aetation tracks in BED
format suitable for use with the UCSC genome browser and eatolvnloaded
herecht t p: / / www. t bi . uni vi e. ac. at / paper s/ SUPPLEMENTS/ ENCODE/ .
Primer sequences and results of the RT-PCR experimentdsabedownloaded
from this web site.
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