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Pathways are integral to systems biology. Their classical
representation has proven useful but is inconsistent in
the meaning assigned to each arrow (or edge) and
inadvertently implies the isolation of one pathway from
another. Conversely, modern high-throughput (HTP)
experiments offer standardized networks that facilitate
topological calculations. Combining these perspectives,
classical pathways can be embedded within large-scale
networks and thus demonstrate the crosstalk between
them. As more diverse types of HTP data become avail-
able, both perspectives can be effectively merged,
embedding pathways simultaneously in multiple net-
works. However, the original problem still remains –
the current edge representation is inadequate to accu-
rately convey all the information in pathways. Therefore,
we suggest that a standardized and well-defined edge
ontology is necessary and propose a prototype as a
starting point for reaching this goal.

Uniting classical pathways and modern networks
In biology, a pathway refers to a sequence of reactions,
usually controlled and catalyzed by enzymes, by which one
organic substance is converted to another. Biological path-
ways are an important component of systems biology. The
classical representation of these pathways provides varied,
mechanistic associations between many proteins. Conver-
sely, modern high-throughput (HTP) experiments and
large-scale databases have given rise to standardized
networks that provide a somewhat different perspective
on pathways. By combining and comparing these perspect-
ives, classical biochemical pathways can be embedded into
large-scale networks. This reveals two problematic issues
with classical pathways: (i) the components included and
their exact symbolic representation (e.g. the meaning of
each arrow) in the same pathway that has been documen-
ted in different databases are often inconsistent; and (ii)
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pathways are isolated from one another in classical
representations, which de-emphasizes crosstalk. By con-
trast, embedded pathways offer completely uniform
representations and relate network statistics such as aver-
age degree or diameter consistently. However, they are
more limited in the level of detail of the mechanistic
biochemistry that they can convey. As more diverse types
of HTP data become available, it will be possible to embed
classical pathways simultaneously in many large-scale
networks, effectively merging both approaches. To accom-
plish this, a precise edge (or arrow) ontology needs to be
defined. For illustrative purposes, we propose a prototype
of ontology that provides an unambiguous representation
of the edges connecting biomolecules and that also
describes higher-level relationships among edges. Here,
we demonstrate the usefulness of the simple-edge ontology
on four diverse types of pathways. We do not intend to
provide a complete ontology here but, rather, we want to
stimulate people working in this field to continue building
upon existing knowledge until a complete ontology is
achieved.

Pathway databases and limitations
During the past decade, an increasing number of pathway
databases have been established to document the ever-
expanding knowledge regarding established pathways.
Some of these pathway databases are organism specific.
For example, EcoCyc [1] describes the genome and the
biochemical machinery of Escherichia coli (K12 MG1655).
A few other pathway databases focus on a specific type of
disease or disorder, for example, The Cancer Cell Map
(http://cancer.cellmap.org) or GOLD.db [2]. The majority
of these pathway databases cover a certain functional area
that occurs in multiple organisms. Furthermore, such
databases can often be approximately divided into three
categories: (i) those containing metabolic pathways (e.g.
KEGG [3], WIT [4], BioCyc [5], MetaCyc [6] and GenMAPP
[7]); (ii) those containing signal-transduction (signaling)
d. doi:10.1016/j.tibs.2007.06.003
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pathways {e.g. BioCarta (http://biocarta.com), STKE (http://
stke.sciencemag.org), Pathways Knowledge Base (http://
ingenuity.com) and Reactome [8]}; and (iii) those containing
both (e.g. KEGG, BioCarta and Reactome). Excellent recent
reviews on thesepathwaydatabases can be found elsewhere
[9,10].

Although the afore-mentioned databases provide
valuable resources for studying associations between
proteins, they are hampered by several limitations. First,
the same pathways documented in different databases are
often inconsistent. In many cases, a pathway is described
by including a few core components first. The decision of
whether to include additional components in the given
pathway is usually empirically determined, based on
the expert curators’ knowledge and experience. Therefore,
the boundary of a pathway is usually vague. The con-
sequence is that the number of components in the
same pathway in different databases varies greatly (See
Supplementary Table S1).

Second, these pathways are isolated in classical repres-
entations. This is the consequence of the traditional reduc-
tionist approaches to molecular biology, whereby genes
and pathways are investigated as isolated entities. How-
ever, from the perspective of modern systems biology, the
interactions between biological pathways must be studied
to understand how biological systems function. On the
systems level, the crosstalk between pathways seems to
be particularly important but lacks substantial study.
Although there have been efforts to integrate them, such
as in the Boehringer Mannheim Biochemical Pathways
wall chart, many aspects of the relationships between
pathways have yet to be systematically identified and
incorporated.

Third, the classical representations of pathways use
symbols that lack a precise definition. The same symbol
is often used to represent a variety of functions. For
example, arrows are used to represent direct interactions
in some circumstances but, in others, they are also used to
represent translocation to a different subcellular compart-
ment. Although this might not cause problems for labora-
tories that focus on individual pathways, these notations
must be precisely defined to perform analyses on pathways
on larger scales. A structured vocabulary or ontology of
these symbols should be developed to ameliorate this
problem.

Recent advent of network biology
A particularly novel concept in the post-genomic era is the
idea that a living cell can be viewed as a complex network of
biomolecules. Indeed, a biomolecular network can now
be rendered as a collection of nodes and edges. Nodes
represent biomolecules such as proteins, genes and metab-
olites, whereas edges represent the types of associations
between two nodes, such as physical interactions and co-
expression of mRNAs. The combined functions and inter-
actions between these networks constitute the behavior of
the cell. Mapping and understanding biomolecular net-
works represents the first step towards modeling how a
cell actually operates.

As a result of recent genome-wide HTP experiments,
including large-scale yeast two-hybrid screens and micro-
www.sciencedirect.com
array experiments, many types of networks have been
mapped, including protein–protein interaction, expres-
sion, regulatory, metabolic and signaling networks. For
example, protein–protein interaction networks have been
experimentally determined in Saccharomyces cerevisiae
[11–15], Caenorhabditis elegans [16], Drosophila melano-
gaster [17],Homo sapiens [18,19], Plasmodium falciparum
[20] and Helicobacter pylori [21]. The availability of such
well-mapped networks has enabled us to compare and
contrast them in terms of global and local topology, in
addition to relating the structural properties of these
networks to protein properties such as function and essen-
tiality.

Topological analysis of networks provides quantitative
insight into their basic organization. Different network
statistics have been designed to capture the characteristics
of network topology (see Supplementary Table S2). Despite
the seemingly vast differences between biomolecular net-
works, they are found to share common features with
respect to network topology. Barabási et al. [22] proposed
a ‘scale-free’ model in which the degree distribution in
many large networks follows a power-law distribution
[P(k) � k�r]. What is remarkable about this distribution
is that, whereas most of the nodes within these networks
have few links, a few of these nodes, classified as hubs, are
exceptionally well-connected. Concurrently, Watts and
Strogatz [23] found that many networks also have a
‘small-world’ property, meaning they are defined as being
both highly clustered and containing small characteristic
path lengths.

Network analysis has provided new quantitative
insights into protein properties, cellular dynamics and
other biological problems. For example, research has
shown that hubs in a network are more likely to be
essential proteins, and there is debate over whether hubs
tend to evolve slower [24–26]. Furthermore, different
motifs have been implicated in different stages of dynamic
transitions of a network [27].

Comparisons between classical and embedded
pathways
Large-scale networks can be constructed using different
types of data from HTP experiments: protein–protein
interaction networks from yeast two-hybrid screens, and
co-expression networks from microarray experiments pro-
vide apt examples of this. For each classical pathway, the
corresponding sub-network can be extracted from the
entire network by mapping the core components in the
classical pathway onto the network of biomolecules. Froma
network point of view, this mapping can also be regarded
as embedding pathway components into the network. To
differentiate from the classical pathways, we refer to these
sub-networks as embedded pathways (Figure 1). The core
components of a classical or embedded pathway are defined
as the biomolecules in the KEGG pathway diagram. For
this review, we used KEGG because of its high quality, as
pointed out by Wittig et al. [28].

The Notch pathway can be used as an example to
illustrate embedded pathways because of its elegance and
simplicity. The Notch signaling pathway is a highly con-
served pathway for cell–cell communication that is involved
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Figure 1. Classical versus embedded pathway. (a) Because of their wide use in textbooks, biochemists are probably most familiar with the classical representation of pathway,

in which reactions and interactions are presented in a typically linear manner from the input to the output. In classical pathways, the edges are added according to expert

curators’ knowledge. (b) The recent phenomenon of showing pathways in a systems biology manner results in an embedded pathway. In this instance, the interaction between

components is not necessarily linear, and components potentially involved with but outside the immediate pathway can also be shown. In this type of representation, the edges

are mapped according to data from HTP experiments such as yeast two-hybrid screens of protein–protein interactions or from large-scale databases. In the example shown here,

a core embedded pathway contains the same set of core components (A–E, blue nodes) as in the classical pathway in part (a), including the edges linking them together.

However, the extended embedded pathway (b) also contains the nodes (yellow) that are immediately linked to the core components. Note that different numbers of edges have

been intentionally drawn among the blue nodes to emphasize the potential for the occurrence of differences between classical and embedded pathways. In this example, A is

shown to interact with E in the embedded pathway, whereas no such interaction is shown in the classical pathway. This is because A does not inhibit or cause E to perform a

chemical reaction and, therefore, no representation of this is required in the classical pathway. However, the interaction in the embedded pathway could indicate that A functions

as a scaffold for E within the pathway but does not necessarily imply that it causes E to perform a reaction.
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in the regulationof cellulardifferentiationandproliferation.
We constructed core and extended embedded pathways by
collecting the 22 core-protein components listed in KEGG
and mapping them onto the large-scale protein–protein
interaction network deposited in the Human Protein Refer-
ence Database (HPRD) [29] (Figure 1). The HPRD inter-
actions are manually curated by expert biologists to reduce
errors.

Comparisons between classical and core embedded
Notch pathways reveal several differences. First, the clas-
sical pathway contains directed and undirected edges
(Figure 2a). Directed edges often represent activations,
such as the edge between Delta and Notch. They also
represent translocation to a different cellular compart-
ment, for example, the edge between Notch and the Notch
intracellular domain (NICD). Undirected edges often
represent an interaction between two components, such
as the edge between CSL (recombination signal-binding
protein for immunoglobulin kJ region-like) and SKIP
(SNW domain-containing 1). By contrast, the edges
between components in the embedded pathway are
uniform (Figure 2b). In this case, they are protein–protein
interactions. Although the edge representation in the core
embedded pathway is more consistent, it loses information
encoded in classical pathways.

Second, althoughmost of the edges are common between
both representations, some appear only in one representa-
tion. The core embedded pathway also reveals 12 new
interactions that are not found in the KEGG classical path-
way. Conversely, two edges in the KEGG pathway are not
present in the core embedded pathway: between Notch and
Dishevelled (DVL) and between Notch and TACE (ADAM
metallopeptidase domain 17), which indicates either that
www.sciencedirect.com
the protein–protein interaction map is incomplete or that
these interactions take place through an intermediate
(Figure 2a and b).

Comparedwith the classical pathway, the core embedded
pathway has two advantages. First, it can indicate which
isoform is responsible for an interaction. For example, in the
interaction between Notch and Numb, the embedded path-
way identifies that Notch1 (Entrez ID: 4851) – but not the
other three isoforms – interacts with Numb (Figure 2c).
By contrast, the current version of the classical pathway
collapses multiple protein isoforms into one single node.

Second, extended embedded pathways can systemati-
cally represent new components involved in classical path-
ways. The extended embedded Notch pathway identifies
218 new proteins that are potentially involved in the Notch
pathway by extracting the immediate interacting partners
of these core components (Figure 2d). It is increasingly
evident that theNotch pathway is subject to a wide array of
regulatory influences, from those that affect ligand–recep-
tor interactions to those that govern the choice of Notch
target genes [30,31]. For example, the classical Notch
pathway in KEGG shows that DVL inhibits Notch. In
the HTP networks, Notch and DVL do not interact directly
but through an intermediate protein, namely, glycogen
synthase kinase 3b (GSK-3b). DVL andGSK-3b are known
to be involved in the Wnt pathway. The interaction of Wnt
with Frizzled receptors activates a cascade for which DVL
is required. Activated DVL inhibits GSK-3b [32]. The
relationship between GSK-3b and Notch has been found
by Espinosa et al. [33], who report that GSK-3b phosphor-
ylates Notch2 both in vitro and in vivo. They suggest that
GSK-3b can partially mediate crosstalk between Wnt and
Notch pathways.
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Despite these advantages, the embedded pathway
suffers substantial information loss by restricting the
edges to describing physical interaction. One way to
circumvent this problem would be to overlay additional
types of large-scale data onto the network by defining
different types of edges. For example, it has been found
that Notch down-regulates Presenilin 1 (PSEN). This
interaction is particularly interesting because PSEN is
a component of the g-secretase complex, which cleaves
the intracellular domain of Notch, triggering the rest of
the pathway. By laying the regulatory network on top of
the protein–protein interactions, this feedback loop is
highlighted [34].
Figure 2. Comparisons of classical and embedded representations of the Notch s

representations, this figure demonstrates how embedding classical pathways into larg

reference pathway elements that are not present in the HPRD. Blue nodes are core com

HPRD. (a) The Notch signaling pathway as illustrated in KEGG. Both directed and undire

meanings, for example, directed edges (i.e. arrows) represent activations (e.g. betwe

compartment (e.g. between Notch and NICD). (b) The Notch pathway mapped onto inter

protein–protein interactions between the core (blue nodes) components.

www.sciencedirect.com
Relating network properties in embedded pathways
Because of the heterogeneity of the edges and the incom-
plete nature of classical pathways, it is difficult to relate
the mathematical quantities of modern network biology
to these pathways. However, the same task becomes
straightforward when applied to the embedded pathways
created by mapping the core components of classical path-
ways onto large-scale networks. We provide an illustrative
example as Supplementary material, showing how the
topological quantities in modern network biology can lead
to new insights into biochemical pathways. We found
that signaling pathways from metabolic pathways have
significantly different network topologies (Supplementary
ignaling pathway. By highlighting the differences between the two types of

e-scale networks might generate new insights. In all cases, white nodes refer to

ponents in HPRD and yellow nodes are the extended components mapped from

cted edges are used, and exactly the same type of edge is often assigned multiple

en Delta and Notch) and they also represent translocation to a different cellular

action networks. The red edges between components are uniform, all representing



Fig. 2. Cont. (c) Multiple nodes in the embedded Notch pathway. Different colors are used to differentiate the interactions between isoforms. Blue edges are used to

represent the interactions between Notch1 and its interacting partners, red edges represent the interactions between Notch2 and its interacting partners, and so on. (d) First

neighbors of Notch pathway proteins. Blue nodes represent the core components of the Notch pathway, and yellow nodes represent their interacting proteins. Red edges

connect interactions between core components, and black edges connect interactions between core and extended components.
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Table S3 and Figure S1). This difference has enabled us
to successfully differentiate signaling pathways from
metabolic pathways.

It is also interesting to note that the topological
quantities between two of the same type of pathway
(signaling or metabolic) can be different even when they
contain a similar number of core components, as illustrated
by Notch versus Hedgehog extended embedded pathways
(Figure 3). Do these differences reveal anything about the
underlying mechanisms of Notch and Hedgehog? Initially,
we must consider the possibility that these differences are
merely artifacts, that is, that the protein-interaction
network is incomplete and, as the map expands, such
differences will disappear. Although this is plausible, an
alternative explanation is that these differences reflect
real biological differences. This might be explained by
the different regulatory mechanisms used by the two path-
ways. For example, Notch pathway might be subject to
more regulatory influences. Indeed, although our analysis
indicates that whereas the core components of Notch
www.sciencedirect.com
embedded pathway have an average of �21 interacting
partners, those of the Hedgehog embedded pathway have
just �7 (Figure 3).

In addition to global inferences, topological measures
can be used to identify nodes of particular importance or
function (see Supplementary Table S6 for detailed defi-
nition of network topologies). For instance, hubs (nodes of
high degree) in regulatory networks correspond to master
regulators [35]. Conversely, bottlenecks (nodes of high
‘between-ness’) often correspond to nodes that function
as important information conduits, particularly in directed
networks such as metabolic networks (in which metab-
olites flow between nodes) or signaling networks (in which
information in the form of activations flows between nodes)
[36]. Furthermore, these nodes most likely function as
connectors between pathways, thereby mediating cross-
talk (see later). Likewise, essential regulators can be
identified by searching for composite hubs (i.e. nodes that
have many interacting partners both in the metabolic and
signaling network [37]). A combination of network stat-



Figure 3. Differences in the topology of Notch and Hedgehog embedded signaling pathways. The Notch (a) and Hedgehog (b) networks were constructed from HPRD data

and the corresponding statistics are listed (c). Blue nodes represent the core components of pathways and yellow nodes represent their interacting proteins. Although

Notch and Hedgehog embedded pathways have a comparable number of core proteins (36 and 38, respectively), they have vastly different topologies (see Supplementary

Table S6 for detailed definition of network topologies). The clustering coefficient (C), degree (K) and ‘between-ness’ (B). Values are all significantly higher in the Notch

pathway (highlighted in red) than in the Hedgehog pathway. Note, K, C and B are statistical parameters used to measure network topologies (see Supplementary Table S2

for full definitions).
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istics across different networks can be employed to identify
several nodes that might have key roles in the biological
function of cells. As knowledge of the different types of
networks increases, an unambiguous and rigorous defi-
nition of protein function will eventually emerge from a
combination of topological measures and network position
[38]. That is, the importance of a protein is not only defined
by its classical biochemical function, but also its position in
the network. For example, hubs in Notch pathway include
the histone deacetylases (HDAC), cAMP response element-
binding protein (CREB)-binding protein (CREBBP), E1A
binding protein p300 (EP300) and DVL2; all of these nodes
have crucial roles in the regulation of the pathway.
Furthermore, axis inhibitor 1 (AXIN1) is a bottleneck in
both the Hedgehog and the Wnt pathways, indicating
its importance for the information flow both within and
between these pathways.

Examining crosstalk between embedded pathways
In living organisms, pathways are not isolated entities.
From a systems biology perspective, pathways are linked
together through crosstalk to perform biological functions
as a system. In biology, the term ‘crosstalk’ refers to the
www.sciencedirect.com
phenomenon that signal components in signal transduc-
tion can be shared between different signaling pathways,
and responses to a signal-inducing condition (e.g. stress)
can activate multiple responses in the cell or organism.
This crosstalk can be exemplified by protein kinase C,
which is shared by the mitogen-activated protein kinase
(MAPK), calcium, phosphatidylinositol, Wnt and vascular
endothelial growth factor (VEGF) signaling pathways.
However, because classical pathways only contain core
components, they are insufficient to study crosstalk. This
is evidenced by the few overlaps between classical path-
ways, which serve as indicators of the extent of crosstalk
between them (Figure 4 and Supplementary Table S4). By
contrast, embedded pathways provide an excellent plat-
form to examine crosstalk because components of path-
ways are essentially embedded within a bigger network,
which enables systematic identification of overlapping and
linking components.

Figure 4 and Supplementary Table S4 show the
overlaps between embedded pathways that correspond
to signaling pathways in humans. The overlaps between
both the core and the extended embedded pathways have
been examined: the larger the overlap between embedded



Figure 4. Overlaps between core and extended embedded pathways can provide insights into pathway crosstalk. (a) Discrepancies between the number of core

components in KEGG and BioCarta are listed. (b) Blue nodes represent the core pathways, blue edges connect two core pathways that have significant overlaps (p-

value � 0.01). The yellow nodes and edges represent the extended pathways and the significant overlaps between extended pathways. [Part (b) uses the same color-coding

as Figure 1.]
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pathways, the more crosstalk takes place between the two
pathways. Although most of the core embedded pathways
do not overlap significantly, the corresponding extended
embedded pathways often show a significant increase in
overlap (Supplementary Table S4). These results indicate
that many proteins exist as liaison components between
pathways, and all the signaling pathways can be connected
with just one degree of separation. A careful examination of
these intermediate proteins might be useful in unraveling
themechanisms bywhich different pathways are related to
each other.

Developing a simple version of edge ontology for
pathways
As mentioned, classical pathway representations are often
ambiguous because they use the same symbol to represent
different functions. In the post-genomic era, this problem is
further confounded by the emergence of various types of
HTP data, which reveal different relationships between
pathway components. In addition to protein–protein inter-
action networks, the core components of a pathway can also
be mapped onto other types of networks, such as gene
expression and regulatory networks. Simple edges (e.g.
www.sciencedirect.com
arrows) that are traditionally used in classical pathway
representations might not be sufficient to meet the chal-
lenges of integrating these heterogeneous datasets. To
perform large-scale mining of pathways, a precise edge
ontology (or arrow ontology) must be developed to
represent different types of relationships between pathway
components.

To make things more complicated, many pathway data-
bases are currently available [9,39]. Unfortunately, they do
typically not share data models, file formats or access
method. To foster sharing of these different information
sources, several Extensible Markup Language (XML)
exchange formats have been developed. System Biology
Markup Language (SBML) [40] and CellML [41] focus
mainly on quantitatively simulating concentrations of
pathway components. The Proteomic Standards Initiative’s
Molecular Interaction (PSI-MI) [42] is an exchange format
for molecular interaction, and the Biological Pathway
Exchange (BioPAX) [43] is a more general format used to
describe biological pathways.

Much effort has been devoted to developing consistent
representations of pathways; however, most of these efforts
focus on enumerating diverse types of edges. BioPAX has
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been developing an ontology of interactions that reveals
relationships between edges. To perform large-scalemining
of pathways, making explicit the relationships between
edges is an important step for elucidating the transitions
and reactions between molecules. A precise edge (or arrow)
ontology might also help improve pathway representation
Table 1. A prototype of an edge ontology

www.sciencedirect.com
byhighlightingbothdifferent typesof relationshipsbetween
pathway components and the knowledge of that relation-
ship.

As an example, phosphorylation, ubiquitylation, glyco-
sylation and methylation can all be viewed as types of
reactions by transferring ‘tags’ to target proteins. Thus, an



Figure 5. Biochemical pathways redrawn using the new edge ontology. We believe that pathways can be redrawn in a more representative manner using our proposed new

edge ontology. Four different types of pathway are shown to highlight how more information can be conveyed using a more descriptive ontology. In particular, compare (a)

with Figure 2a. In this case, for example, the interaction between TACE and Notch is more clearly seen to be a cleavage reaction in (a), whereas the type of interaction

328 Opinion TRENDS in Biochemical Sciences Vol.32 No.7
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ontology of edges that not only enumerates different types
of edges but also classifies the edges into groups should be
developed to capture this information. This explicit hier-
archy of relationships can be exploited to enable accurate
computational analysis without losing the expressiveness
of the classical representation. For example, some pathway
interactions can be represented by specific symbols, such
as serine phosphorylation. However, translation to a more
general interaction, such as ‘tagging’ that leads to acti-
vation, can be employed to perform high-level analysis of
the pathway or to compare multiple pathways represented
at a different level of specification.

Here, we propose a simple version of edge ontology to
illustrate how we could deal with this issue in the future.
This ontology provides both an unambiguous definition of
the interactions and defines a hierarchy of those inter-
actions. In particular, the hierarchy of interactions might
be useful to obtain multiple views of a pathway, from a
general one to amore specific one. It also contains symbols
that might help the graphical representation of inter-
actions. Please note, this ontology is far from complete.
We foresee that the formidable goal of constructing a
complete ontology for pathways would take multiple
groups many years to achieve. However, this simple
ontology could be used as a starting point from which
we hope a complete ontology can be built. We also realize
that a consistent representation of nodes is equally
important; however, this problem can be largely solved
by using Gene Ontology (GO) [44]. The GO provides
a controlled vocabulary for describing gene and gene-
product attributes in any organism, and hence could be
used as an approximate node ontology. Here, we focus on
edge ontology.

The edge ontology we propose is presented in Table 1.
We use different shapes, symbols and colors to represent
diverse types of interactions between pathway com-
ponents. We also define a simple hierarchy of interactions
from general ones to more specific ones. The first level
divides directed from undirected interactions, whereas the
second level highlights the main mechanisms of inter-
action, which are, in turn, defined in more detail in the
third level. The fourth level further specifies some of the
interaction types. The edges in the second level have
different shapes, whereas those in the third level are
represented by different colors. Further specifications
can be defined by adding annotations on the edge, such
as those in the fourth level. Nearly all the edges connect
two components of the pathways, such as proteins and
between the two components is not depicted in Figure 2a. Note, solid ellipses have bee

indicate known physical interactions. In other contexts, different edges can be used giv

pathway, Fringe activates Notch by glycosylation (pink solid arrow). Delta activates (blac

cleavage (black with solid diamond) of Notch. Binding edges (black lines) are used co

translocates (black open arrow) into the nucleus and promotes transcription in combina

homolog A; CIR, CBF1-interacting co-repressor; CtBP, C-terminal-binding protein; CSL, re

homolog 2; Fringe, LFNG O-fucosylpeptide 3-b-N-acetylglucosaminyltransferase; HATS

ubiquitin protein ligase; MAML, Mastermind; NCSTN, nicastrin; NICD, Notch Intra-ce

homolog; PSE2, presenilin enhancer 2 homolog; PSEN, presenilin 1; Serrate, jagged 1; S

connects an enzyme to a ‘chemical reaction’ edge (see Table 1 for key). The main che

direct interaction between IDH3A, IDH3B and IDH3G; however, the specific type of int

(TAP)-tagging experiments, is not known. Thus, we could use ‘association’ or ‘binding o

between proteins in this complex. Abbreviations: ACO1, aconitase 1; ACO2L, aconitase 2

malate dehydrogenase; OGDH, oxoglutarate (a-ketoglutarate) dehydrogenase (lipoam

succinate dehydrogenase complex, subunit A, B, C and D, respectively; SUCLA2, succ

forming), a subunit; SUCLG2, succinate-CoA ligase (GDP-forming), b subunit.
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molecules, except that the ‘catalysis’ edge connects a path-
way component to a ‘chemical reaction’ edge. This enables
us to properly describe metabolic pathways that typically
display a sequence of chemical reactions in which enzymes
take part.

For example, a black arrow is used to indicate a ‘tagging’
interaction, meaning an interaction that binds a molecule
to a pathway component. If we know the type of interaction
in more detail, different colors can be used to describe
different ‘tagging’ mechanisms: red for phosphorylation,
blue for ubiquitylation and so on. In many cases, however,
the tagging mechanism activates proteins; to highlight
that some tagging mechanisms inhibit proteins, a solid
vertical line is used instead of an arrowhead. To add
further detail to the relationship, an annotation on the
edge can be used, such as ‘ser’ for serine phosphorylation
and ‘N’ for N-linked glycosylation. It is worth noting that
symbols from different levels can be used concurrently in
the same pathway. This might be used to emphasize the
level of understanding of the interaction.

For illustration purposes only, we provide four examples
of the application of this edge ontology: the Notch pathway,
the citric acid cycle, the JAK–STAT signaling pathway
and the caspase cascade pathway. Figure 5 shows the
classical pathways redrawn according to our new edge
ontology.

Concluding remarks
Although classical representations of biochemical pathways
can provide in-depth views of isolated sets of genes, the
networkapproach is capable of analyzing pathways on three
different levels: whole system (crosstalk), whole network
and individual nodes. Whereas embedding pathways to
large-scale protein–protein interaction networks enables
easy comparison of properties across, between and within
pathways, we also experience substantial information loss.
One way to circumvent this problem would be to overlay
additional types of HTP data onto the pathway by defining
different types of edges.

To properly analyze this type of multilayered network, a
precise edge ontology must be defined. The edge ontology
should provide an unambiguous representation of the
relationships between biomolecules in addition to reveal-
ing relationships between the edges. However, even a well-
defined edge ontology suffers the limitation of lacking
explicit temporal information. Properly incorporating
explicit temporal information will be the next challenge
in the representation of pathways.
n used to enclose complexes, and the complexes are also linked by solid edges to

en the uncertainty over the types of actual association. (a) In the Notch signaling
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Fig. 5. Cont. (c) The caspase cascade involves mainly cleavage interactions among caspases, which cleave proteins after an aspartic acid residue. Abbreviations: APAF1,

apoptotic peptidase activating factor 1; ARHGDIB, Rho GDP dissociation inhibitor (GDI) b; BIRC, baculoviral IAP repeat-containing; CASP, caspase; CYCS, cytochrome c,

somatic; DFFA, DNA fragmentation factor (DFF), 45-kDa, a polypeptide; DFFB, DFF, 40-kDa, b polypeptide; GZMB, granzyme B; LMNA, lamin A/C; LMNB, lamin B; PARP1,

poly (ADP-ribose) polymerase-1. (d) A portion of the JAK–STAT signaling pathway, including the response to IL-2 and IL-3. JAKs bind to interleukin receptors and are

activated by the binding of the ligand (black solid arrow). JAK1 and JAK3 activate STAT5 by phosphorylation (red solid arrow), which translocates (black open arrow) to

the nucleus and activates transcription of its target genes (black line). PTPN6 inhibits the cytokine receptor and JAK1 through dephosphorylation (green with bar). JAK1

and JAK3 activate PTPN11, which is bound to GRB and SOS-1. This PTPN11–GRB–SOS-1 complex activates the MAPK signaling pathway. Abbreviations: AKT, v-akt

murine thymoma viral oncogene homolog 3 (protein kinase B,g); ELK-1, member of ETS oncogene family; ERK, mitogen-activated protein kinase 3; FOS, v-fos FBJ

murine osteosarcoma viral oncogene homolog; GRB, growth factor receptor-bound protein 2; IL, interleukin; IL-3R, interleukin 3 receptor; JAK, Janus kinase; MEK,

mitogen-activated protein kinase kinase 1; PI3K, phosphatidylinositol 3-kinase; PTPN, protein-tyrosine phosphatase; RAF1, v-raf-1 murine leukemia viral oncogene
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transcription.
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