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Abstract 
From merging a number of data sources, we created an extensive map of the 
transcriptional regulatory network in yeast, comprising 7419 interactions 
connecting 180 transcription factors (TFs) with their target genes. We integrated 
this network with gene-expression data, relating the expression profiles of TFs and 
target genes. We found that genes targeted by the same TF tend to be co-expressed, 
with the degree of co-expression increasing if genes share more than one TF. 
Moreover, shared targets of a TF tend to have similar cellular functions. In contrast, 
the expression relationships between the TFs and their targets are much more 
complicated, often exhibiting time-shifted or inverted behavior.  
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1. Introduction 

 

An important question in molecular biology is how gene expression is regulated in 

response to changes in the environment. Previous studies have explored this by making 

genome-wide measurements of gene expression levels with DNA arrays1-3 and by 

searching for transcription factor (TF) binding sites using genetic, biochemical, and 

large-scale ChIp-chip (chromatin immunoprecipitation and DNA chip) experiments4-10. 

Here, we integrate gene-expression and TF-binding data for Saccharomyces cerevisiae in 

order to determine the effect that regulatory networks have on the expression of targeted 

genes.  

 

1.1 TF-target regulatory network  
 
We compiled a yeast regulation dataset from merging the results of genetic, biochemical 

and ChIp-chip experiments4,5,7,10. It contains 7,419 TF-target pairs from 180 TFs and 

3,474 target genes (Table 1). Regulatory networks can be simplified into six basic motifs 

(Fig. 1a)9,10. Here, we focus on the single input motif (SIM), multi-input motif (MIM) 

and feed-forward loop (FFL) as the data for the remaining motifs are too sparse.  

  
1.2 Gene expression dataset 
 
We obtained expression profiles of yeast genes through two complete cell cycles.11 

Between the expression profiles of pairs of genes, we used a local clustering method to 

calculate four types of temporal relationships as diagramed in Fig. 1b12: correlated, time-

shifted, inverted, and inverted time-shifted. To find these relationships, expression levels 

must be assessed over a time-course, with many measurements, at small and uniform 

intervals. Most available datasets do not satisfy these conditions, being only suitable for 

simple correlation calculations (ie co-expression); thus, we can only conduct detailed 

analysis on the cell-cycle dataset. Nevertheless, similar overall results are observed in 

other microarray datasets. 

 

1.3 Statistical formalism 
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We use several statistics to quantify the significance of our observations. The p-value is 

the probability that an observation (eg co-expression of target genes) would be made by 

chance, and is calculated using the cumulative binomial distribution: 
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N is the total number of possible gene pairs in the data, co is the number of observed pairs 

with a specific relationship (ie from expression or function), and p is the probability of 

finding a gene pair with the same relationship randomly (picking from the entire 

genome). 

 

The log odds ratio (LOD) is the enrichment a particular relationship in the presence of 

regulation with respect to random expectation for the occurrence of the relationship:  

( | )LOD ln[ ]
( )
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P(relationship | regulation) is the probability for gene pairs with certain regulatory 

relationship (eg TF=>target) to have a specific expression or functional relationship (eg 

correlated expression). P(relationship) is the probability for randomly selected gene pairs 

to have the same expression or functional relationship.  When we report this together 

with p-values, we use the following notation {log p-value,LOD value}. 
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2. Relationships between target genes 

 

2.1 Target genes are co-expressed 

 

First, we investigate expression relationships between genes targeted by the same TFs. 

Overall, 3.3% of target gene pairs are co-expressed, which is four times greater than 

random expectation {-12,1.3} (Fig. 2a, bar-ALL). We detect few inverted or time-shifted 

relationships (§2.4).  

 

The level of correlation is very dependent on the type of regulatory network motif (Fig. 

2a). Genes targeted by individual TFs (SIM) are not strongly correlated: just 1.3% of 

target pairs are co-expressed though this is significantly higher than expected {-11,0.29}. 

Correlation is stronger for genes targeted by multiple, common TFs: 24.4% of MIM 

target pairs {-12,3.2} and 5.0% of FFL targets exhibit co-expression {-12,1.6}. Similar 

results are observed for other expression datasets3,13-17 (Table 1). 

 

The differences in enrichment (ie LOD values) indicate that expression is much more 

tightly regulated when multiple TFs are involved. However, with >100 yeast transcription 

factors yet to be investigated18, unidentified TF-target relationships will probably alter the 

classification of SIM target genes to MIM or FFL networks in the future.  

 

2.2 Target genes have similar functions 

 

Previous studies showed that co-expressed genes tend to share similar functions19,20. By 

comparing the MIPS (level 2) functional classifications21, we find that genes targeted by 

the same TFs are five times more likely to share functions than expected randomly {-

12,1.6}( Fig. 2b). Comparing between regulatory motifs, we again see that target genes 

sharing more than one common TF tend to exhibit this effect to an even greater degree 

(SIM{-10,1.6}, MIM{-12,2.2}). Interestingly, FFL motifs display the smallest 

enrichment {-11,1.5}. We speculate that this is because they have specialized effects on 
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gene expression (see below) and so regulate a very precise subset of genes that do not 

necessarily share functions, but nonetheless require coordinated expression. 

 

2.3 Co-expression is most likely for target genes with similar functions 

 

We also examine the expression relationships for co-targeted genes that share functions 

(Fig. 2c). The degree of co-expression is extremely high if targets have the same function, 

but low if they do not. For example, 75% of MIM target genes are co-expressed if they 

share functions {-12,4.3} but only 3.6% if they do not {-6,1.3}. Thus, there must be a 

common set of TFs for genes of similar functions to be co-expressed. Furthermore, 

though TFs often target genes of various functions, there are regulatory subdivisions and 

co-expression does not usually extend across functional categories.  

 

2.4 Effect of Regulatory-signal Type  

 

We have limited experimental data describing type of regulatory signal (ie activation or 

repression) for 906 TF-target pairs. Overall, target genes display correlated expression 

relationships (§2.1). However, we observe more complex relationships once regulatory-

signal type is considered (Fig. 2d). Unsurprisingly, co-activated genes have mostly 

correlated relationships {-12,2.3}. In contrast, co-repressed genes have a variety of 

relationships. The results indicate that genes activated by the same TFs co-express, but 

genes inhibited by the same repressors do not always co-express, though they shut down 

simultaneously. 
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3. Relationships between TFs and target genes 

 

3.1 Complex expression relationships 

 

Next we compare the expression profiles of TFs with their targets (Fig. 2e). Here the 

relationships are more complex than co-expression: SIMs exhibit time-shifted {-3,0.64} 

and inverted time-shifted relationships {-2,0.69}, whereas MIMs display inverted time-

shifted relationships {-9,1.4}. This suggests that target genes have a delayed response to 

regulatory events.  

 

FFL motifs present the most interesting and complex relationships. The leading TFs in 

the motif (denoted TF1) generally have negative relationships with the target genes -- i.e. 

inverted {-2,0.82} or inverted time-shifted {-10,2.0}. The intermediate TFs (TF2) exhibit 

all four types of relationships; The most common arrangement (55% of FFLs, 

supplementary table 2) is where the leading TF has a negative relationship with the target 

and the intermediate TF has a positive one (ie correlated or time-shifted). (Note, however, 

there are only 11 FFLs for which both TF1 and TF2 have significant expression 

relationships with the targets.)  

 

3.2 Relation to Regulatory-signal Type  

 

As in §2.4, we can measure the TF-target expression relationships when the type of 

regulatory signals is taken into account. Though the data is too sparse to make 

statistically sound conclusions, we try to make some observations. Unsurprisingly, 

activators are co-expressed with their targets {-2,0.63} (Fig. 2f), and comprise over 50% 

of TF-target pairs with significant expression relationships. We also find that repressors 

exhibit inverted {-2,1.1} and inverted time-shifted relationships {-2,1.2}. There are 

unexpected results too. Activators display significant inverted time-shifted relationships 

{-6,1.8} and repressors show (normal) time-shifted relationships. There are several 

reasons for this: A sizeable proportion of TFs (15%) act both as activators and repressors, 
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in some cases for the same target. Furthermore, the combined effect of multiple TFs in 

MIM and FFL motifs can have an unpredictable effect on target expression.  
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4. Examples of TF-target relationships 

 

In Fig. 3 we examine specific regulatory networks.  

 

4.1 SIM: ndd1 network 

 

Ndd1, a cell cycle regulator during S and G2/M transition22,23, acts as the sole regulating 

TF for MCM21, kinetochore protein required for normal cell growth from late S to early 

M phase24,25, and STB5, another transcription factor26. All three genes display cell cycle 

periodicity. NDD1 peaks early in S and sustains high expression until G2. The targets are 

co-expressed and time-shifted with respect to NDD1 by one time-point, peaking later in 

S.  

 

4.2 MIM: forkhead network 

 

Ndd1 is recruited to G2/M-transition-specific promoters by Fkh1 and Fkh2, two forkhead 

transcription activators22,23,27. Collectively, these three TFs regulate Dbf2, a kinase 

needed for cell-cycle regulation28, and HDR1 (function unknown). The expression 

profiles of the three TFs are only loosely correlated and peak at different points from 

early S to late G2. The targets are time-shifted with respect to FKH1 by two time-points 

and peak at the G2/M transition. The local clustering scores show that their expression 

profiles are better correlated than in the preceding SIM example (Supplementary Table 

3).   

 

4.3 FFL: mbp1/swi4 network 

 

In a feed-forward-loop, Mbp1 (a cell-cycle regulator controlling DNA replication and 

repair6,29) is the leading TF, Swi4 (a cell-cycle regulator controlling cell-wall and 

membrane synthesis6,29) is the intermediate TF, and SPT21 (a TF involved in histone 

expression30) and YML102C-A (function unknown) are the target genes. The profiles of 

the intermediate TF and target genes are correlated and peak sharply in G1. In contrast, 
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the leading TF displays an inverted relationship, which highlights its involvement as a 

target repressor. (Previous studies have shown Mbp1 acts as an activator for ~50% its 

targets during the G1/S transition and as a repressor for ~10% of its targets later in the 

cycle6,7,29.)  
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5. Conclusions 

 

In summary, we find significant connections between the networks from TF-binding 

experiments and gene expression data. (i) Genes targeted by the same TF are generally 

co-expressed and the correlation in expression profiles is highest for genes targeted by 

multiple TFs. (ii) Genes targeted by the same TF tend to share cellular functions, and 

there are subdivisions within individual network motifs that separate the regulation of 

genes of distinct functions. (iii) The expression profiles of transcription factors and their 

target genes display more complex relationships than simple correlation, with the 

regulatory response of target genes often being delayed.  
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Figure captions: 
Figure 1. Schematic representations of transcription regulatory motifs and temporal 
gene expression relationships. (A) Depiction of the six basic regulatory motifs:  TF, 

 target. (1) single input motif -  target gene has one TF, (2) multi-input motif – target 
gene has multiple TFs, (3) feed-forward loop – leading TF (TF1) regulates an 
intermediate TF (TF2) and both regulate the target gene, (4) autoregulation – TF targets 
itself, (5) multi-component loop – two TFs regulate each other, and (6) regulator chain – 
set of TFs regulate each other in series. (B) Schematic of the four gene expression 
relationships: (1) correlated (ie co-expressed - genes have similar profiles), (2) time-
shifted  (genes have similar profiles, but one is delayed with respect to the other in the 
cell cycle), (3) inverted  (genes have opposing profiles), and (4) inverted time-shifted. 
The local clustering method uses a dynamic programming algorithm to align the 
expression profiles of the genes in question. From the alignment, the method is able to 
determine which of the four types the relationship is and assign a clustering score 
measuring the significance of the relationship; for the Cho et al dataset, a score of 13 or 
above corresponds to a relationship significant to p = 2.7×10-3 (see supplementary 
materials). 
 
Figure 2. Expression relationships between gene pairs. Log odds ratio (LOD) values 
above 0 signify observations that are more common than expected by chance, and vice 
versa (see supplementary materials). Parts A to D show relationships between target 
genes (as indicated by the color coding) for each of the different network motifs. (Note 
the category “All” includes all gene pairs co-regulated by at least one common 
transcription factor.) (A) LOD values of the likelihood that target gene pairs have 
correlated expression in different network motifs. (B) LOD values of the likelihood that 
target pairs share the same cellular function. (C) LOD values of the likelihood that target 
pairs with the same function have correlated expression. (D) LOD values of the 
likelihood that co-activated or co-repressed target pairs exhibit one of the four expression 
relationships. Parts E and F show Expression relationships between TFs and target genes. 
(E) LOD values of the likelihood that TFs and their target genes exhibit one of the four 
expression relationships in different network motifs. FFLs are divided into the TF-target 
relationship for the leading (TF1) and intermediate TFs (TF2). (F) LOD values of the 
likelihood that activator and repressor TF-target pairs exhibit one of the four expression 
relationships.  
 
Figure 3. Expression profiles of example regulatory networks during the cell cycle. 

  TF,   target. | | indicates a time-shift relationship. The inset describes the TF and 
target genes involved in the example. (A) Single input motif, (B) multi-input motif, and 
(C) feed-forward loop. 
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Table 1. Summary of transcription regulatory network 
dataset. 

motifs† SIM MIM FFL ALL

# TFs 119 118 97 188
#  targets 1754 986 511 3416

Total 1754 2781 1523 7419

Activation‡ 37 50 19 - 33§ 144

Repression‡ 12 34 23 - 10§ 79

Stress response 0.44* 3.55* 0.59 0.88*
Sporulation 0.03 0.25 0.08 -0.05
Diauxic shift 0.11* 1.78* 0.30* 0.30*
DNA damage 1.24* 4.87* 1.26* 2.14*

Cell Cycle 
(Spellman et al.) 0.37* 2.09* 1.62* 0.52*

" " (Cho et al) 0.29* 2.79* 1.35* 0.93*
" " (Zhu et al) 0.22* 2.50* 0.91* 0.64*
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* LOD values with P-value smaller than 1e-05 (see supplementary Table 1) 
† The abbreviation for the motifs is the same as in the caption of Figure 1A. ALL, All the 
TF-target pairs. There are 3 smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 
targets. The random expectation for the number of targets is 6130, the number of yeast 
genes. The random expectation for the number of gene pairs in yeast is 18785385 = 
6130(6129)/2, which is obtained by counting all pairs between yeast genes.  
‡ Positive expression relationships (correlated and time-shifted) are considered as 
activation signals, while negative relationships (inverted and inverted time-shifted) are 
considered as repression signals. Overall, 18 regulators activate some of their targets but 
repress others. Note this is distinct from the number of activator relations determined 
experimentally (as described in §2.4 and §3.2) 
§ We show the number of relations for FFL:TF1 and FFL: TF2. 
£ Log odds ratios for target gene pairs having correlated profiles in different expression 
datasets. The local clustering method cannot be applied, so expression correlation is 
measured using the Pearson correlation coefficient. Co-expressed gene pairs are those in 
the top 1% of largest correlation coefficients. 
. 
 
 



 17

Supplementary Materials§ 

Determination of the expression relationships using 
local clustering method (excerpt from Jiang et al, JMB, 
314:1053-1066)∗ 
“We use a degenerate dynamical programming algorithm to find time-shifted and 
inverted correlations between expression profiles. The algorithm does not allow gaps 
between consecutive time points in the current version. However, there are some obvious 
extensions, which we explore later in the discussion section. 
  
“Suppose there are n (1,2,…n) time-point measurements in the profile. First, the 
expression ratio is normalized in "Z-score" fashion, so that for each gene the average 
expression ratio is zero and standard deviation is 1. The normalized expression level at 
time point i for gene x is denoted as ix . Consider a matrix of all possible similarities 
between the expression ratio for gene x and gene y. This matrix can also be called a 
‘score matrix’. In our algorithm, it is defined as M(xi,yi) = xiyj . For simplification, it will 
be referred as Mi,j for comparison of any two genes. 
 
“Then, two sum matrices E and D are calculated as Ei,j = max(Ei-1,j-1+Mi,j, 0) and Di,j = 
max(Di-1, j-1–Mi,j, 0). The initial conditions are E0,j = 0 and Ei,0 = 0, and the same initial 
conditions are also applied to the matrix of D.  The central idea is to find a local segment 
that has the maximal aggregated score, i.e., the sum of Mi,j in this segment. This can be 
accomplished by standard dynamic programming as in local sequence alignment 29 and 
results in an alignment of l aligned time points, where l<n. 
 
“Finally, an overall maximal value S is found by comparing the maximums for matrices 
E and D. This is the match score S for the two expression profiles. If the maximum is off 
diagonal in its corresponding matrix, the two expression profiles have a time-shifted 
relationship. This involves an alignment over a smaller number of time points l than the 
total number n. A maximal value from matrix D indicates these two profiles have an 
inverted relationship. 
 
“At the end of this procedure, one obtains a match score and a relationship, i.e., 
‘simultaneous,’ ‘time-delayed,’ ‘inverted,’ or ‘inverted time-delayed’. Obviously, for the 
gene pairs with a very low match score, even though they are also assigned a relationship, 
we can classify them as ‘unmatched’. 
 
“Figure 1E† is the corresponding matrix E for the expression profiles shown in Fig. 1B. 
The matrix D for these expression profiles is not shown here because the maximal value 
                                                 
§ Please visit the supplementary website (http://bioinfo.mbb.yale.edu/regulation/TIG/) for further 
information. 
∗ Please note that the “simultaneous” relationship discussed in the JMB paper is the “correlated” 
relationship discussed in this paper. 
† Supplementary Figure 1 is the Figure 1 in the JMB paper. 
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is not in this matrix. The match score for these expression profiles, a score of S=19, is 
highlighted in the black cell.  There is a time delay (time shift) in their relationship 
because the match score of 19 is not on the main diagonal of the matrix. Figure 1F is the 
corresponding matrix D for the profiles shown in Fig. 1C. The match score is S=20; and 
because the maximum value is from matrix D rather than E (not shown), these expression 
profiles are correlated in an inverted fashion. ” 
 
Supplementary Figure 1. “Three examples showing simultaneous (A), time-
delayed (B), and inverted (C) relationships in the expression profiles. Note there are only 
8 time points for each profile, while in the real yeast cell-cycle data there are 17 time 
points. Also, the expression ratio is not normalized, whereas in the real data each profile 
is normalized so that the averaged expression ratio is 0 and the standard deviation is 1. 
The thick segments of the expression profiles are the matched part. (D) The 
corresponding matrix E for the expression profile shown in (A). The corresponding 
matrix D is not shown because in this case the match score (the maximal score) is from E 
and not D. The numbers outside the border of the matrix are the expression ratio shown 
in (A). The black cell contains the overall match score S for these two expression 
profiles, and the light gray cells indicate the path of the optimal alignment between the 
expression profiles. The path starts from the match score and ends at the first encountered 
0. (E) The corresponding matrix E for the expression profile shown in (B). Note the time-
shifted relationship and how the length of the overall alignment can be shorter than 8 
positions. (F) The corresponding matrix D for the expression profiles shown in (C). The 
matrix E is not shown because the best match score is not from this matrix in this case.” 

Calculation of the LOD values 

Figure 2A 
( - | - )LOD ln[ ]

( - )
P co exp co reg

P co exp
=  

where P(co-exp | co-reg) is the possibility for genes co-regulated by a certain motif to be 
co-expressed (i.e. correlated), which is calculated as the percentage of correlated pairs 
between all possible pairs of co-regulated genes. P(co-exp) is the possibility for gene 
pairs randomly chosen from the dataset to be co-expressed, which is calculated as the 
percentage of correlated pairs between all possible gene pairs in Cho’s dataset.  

Figure 2B 
( | )LOD ln[ ]

( )
P same function co reg

P same function
− −

=
−

 

where P(same-function | co-reg) is the possibility for gene pairs co-regulated by a certain 
motifs to have the same functions. P(same-function) is the possibility for gene pairs 
randomly chosen from the dataset to have the same functions. 

Figure 2C 
( | , )LOD ln[ ]

( )
P co exp same function co reg

P co exp
− − −

=
−
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where P(co-exp | same-function, co-reg) is the possibility for gene pairs that are co-
regulated and have the same functions to be co-expressed. 

Figure 2D 
Log odd ratios for the co-activated gene pairs are calculated by the formula: 

( | - )LOD ln[ ]
( )

P Exp co activated
P Exp

=  

Log odd ratios for the co-repressed gene pairs are calculated by the formula: 
( | - )LOD ln[ ]

( )
P Exp co repressed

P Exp
=  

where P(Exp | co-activated) and P(Exp | co-repressed) are the possibilities of having 
certain expression relationship between co-activated and co-repressed gene pairs, 
respectively. P(Exp) is the possibility for gene pairs randomly chosen from the dataset to 
have the corresponding expression relationship. 

Figure 2E 
( | )LOD ln[ ]

( )
P Exp TF T

P Exp
−

=  

where P(Exp | TF-T) is the possibility for the TF-target pairs (TF-T) to have certain 
expression relationship. 

Figure 2F 
Log odds ratios between the activators and their targets are calculated by the formula: 

( | )LOD ln[ ]
( )

P Exp A T
P Exp

−
=  

where P(Exp | A-T) is the possibility for the activator-target pairs (A-T) to have certain 
expression relationship. 
Log odds ratios between the inhibitors and their targets are calculated by the formula: 

( | )LOD ln[ ]
( )

P Exp I T
P Exp

−
=  

where P(Exp | I-T) is the possibility for the inhibitor-target pairs (I-T) to have certain 
expression relationship. 

Table 1 
( - | - )LOD ln[ ]

( - )
P co exp co reg

P co exp
=  

where all the calculations are very similar to those in Figure 2A, except that the 
expression relationships between gene pairs are determined using Pearson correlation 
coefficient in different microarray datasets. 
All the possibilities in the analysis are calculated in the same way as in Figure 2A. 
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Supplementary Table 1. P-values* for the LOD values in Table 
1 

Motif† Stress 
response Sporulation Diauxic 

shift 
DNA 

damage 
Cell-cycle by 

Spellman et al 
Cell-cycle by 

Cho et al 
Cell-cycle by 

Zhu et al 

SIM 2.50E-06 0.2958 4.88E-06 1.33E-11 2.28E-11 1.29E-11 2.28E-09 

FFL 0.0097 0.2829 5.71E-07 5.81E-07 0 3.95E-13 0 

MIM 0 0.1351 0 9.78E-13 3.73E-13 1.48E-12 3.22E-15 

ALL 4.67E-11 0.9877 0 1.16E-10 5.96E-10 8.88E-10 0 
Correlation 
coefficient 

Cut-off‡ 
0.70 0.95 0.90 0.80 0.70 0.70 0.70 

* P-values are calculated by the formula given in text. 
† The abbreviation for the motifs is the same as in the caption of Figure 1. 
‡ Correlation coefficient cut-off is determined as the Pearson correlation coefficient, 
above which roughly top 1% gene pairs with the largest correlation coefficient are. The 
correlation coefficient cut-offs are equivalent to local clustering score of 13. 

 

Supplementary Table 2. Number of FFLs with different 
regulatory relationships between the regulators and 
their targets determined from the expression data 

Type of FFLs 
TF1-target TF2-target 

# of FFLs 

P* P 3 
P N 2 
N P 6 
N N 0 

* P: positive relationships between the TFs and their targets; N: negative relationships 
between the TFs and their targets. 
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Supplementary Table 3. Relationships and scores 
between the genes in the examples determined by local 
clustering 

Motif Gene 1 ORF name Gene 2 ORF name Relationship
Local 

clustering 
score 

P-value

NDD1 YOR372C MCM21 YHR178W Time-shifted 13 2.7e-03
NDD1 YOR372C STB5 YDR318W Time-shifted 13 2.7e-03SIM 

MCM21 YHR178W STB5 YDR318W Correlated 13 2.7e-03
FKH1 YIL131C FKH2 YNL068C Time-shifted 12* 1.3e-02
FKH1 YIL131C NDD1 YOR372C Time-shifted 12 1.3e-02
FKH1 YIL131C DBF2 YGR092W Time-shifted 13 2.7e-03
FKH1 YIL131C HDR1 YBR138C Time-shifted 13 2.7e-03
FKH2 YNL068C NDD1 YOR372C Time-shifted 12 1.3e-02
FKH2 YNL068C DBF2 YGR092W Time-shifted 13 2.7e-03
FKH2 YNL068C HDR1 YBR138C Time-shifted 14 3.8e-04
NDD1 YOR372C DBF2 YGR092W Time-shifted 13 2.7e-03
NDD1 YOR372C HDR1 YBR138C Time-shifted 12 1.3e-02

MIM 

DBF2 YGR092W HDR1 YBR138C Correlated 15 2.9e-05
MBP1 YDL056W SWI4 YER111C Inverted 14 3.8e-04
MBP1 YDL056W SPT21 YMR179W Inverted 12 1.3e-02
MBP1 YDL056W YML102C-A YML102C-A Inverted 13 2.7e-03
SWI4 YER111C SPT21 YMR179W Correlated 14 3.8e-04
SWI4 YER111C YML102C-A YML102C-A Correlated 15 2.9e-05

FFL 

SPT21 YMR179W YML102C-A YML102C-A Correlated 14 3.8e-04
* Local clustering score of 12 is equivalent to correlation coefficient of about 0.6 
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