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An important question in molecular biology is how gene 
expression is regulated in response to changes in the 
environment. Previous studies have explored this by 
making genome-wide measurements of gene expression 
levels with DNA arrays [1–3] and by searching for 
transcription factor (TF)-binding sites using genetic, 
biochemical and large-scale ChIp–chip (chromatin 
immunoprecipitation and DNA chip) experiments [4–10]. 
Here, we integrate gene-expression and TF-binding data 
for Saccharomyces cerevisiae to determine the effect that 
regulatory networks have on the expression of targeted 
genes.  

TFTFTFTF------------target regulatory networktarget regulatory networktarget regulatory networktarget regulatory network    
We compiled a yeast regulation dataset by merging the 
results of genetic, biochemical and ChIp-chip experiments 
[4,5,7,10]. It contains 7419 TF-target pairs from 180 TFs 
and 3474 target genes (Table 1). Regulatory networks can 
be simplified into six basic motifs [9,10] (Fig. 1a). Here, 
we focus on the single input motif (SIM), multi-input 
motif (MIM) and feed-forward loop (FFL) as the data for 
the remaining motifs are too sparse. 

GeneGeneGeneGene----expression datasetexpression datasetexpression datasetexpression dataset    
We obtained expression profiles of yeast genes through 
two complete cell cycles [11]. Between the expression 
profiles of pairs of genes, we used a local clustering 
method to calculate four types of temporal relationships 

[12] (Fig. 1b): correlated, time-shifted, inverted and 
inverted time-shifted. To find these relationships, 
expression levels must be assessed over a time-course, 
with many measurements, at small and uniform 
intervals. Most available datasets do not satisfy these 
conditions, being only suitable for simple correlation 
calculations (i.e. co-expression); thus, we can only conduct 
detailed analysis on the cell-cycle dataset. Nevertheless, 
similar overall results are observed in other microarray 
datasets. 

SSSSttttatistical formalismatistical formalismatistical formalismatistical formalism    
We use several statistics to quantify the significance of 
our observations. The P-value is the probability that an 
observation (e.g. co-expression of target genes) would be 
made by chance, and is calculated using the cumulative 
binomial distribution: 
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N is the total number of possible gene pairs in the 
data, co is the number of observed pairs with a specific 
relationship (i.e. from expression or function), and p is 
the probability of finding a gene pair with the same 
relationship randomly (picking from the entire genome). 

The log odds ratio (LOD) is the enrichment a 
particular relationship in the presence of regulation with 
respect to random expectation for the occurrence of the 
relationship: 
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P(relationship|regulation) is the probability of gene 
pairs with certain regulatory relationship (e.g. 
TF→target) having a specific expression or functional 
relationship (e.g. correlated expression). P(relationship) 
is the probability of randomly selected gene pairs having 
the same expression or functional relationship. When we 
report this together with P-values, we use the following 
notation {log P-value;LOD value}.  

Relationships between target genesRelationships between target genesRelationships between target genesRelationships between target genes    

Target genes are co-expressed 



 

First, we investigate expression relationships between 
genes targeted by the same TFs. Overall, 3.3% of target 
gene pairs are co-expressed, which is four times greater 
than random expectation {−12;1.3} (Fig. 2a, column 'All'). 
We detect few inverted or time-shifted relationships (see 
section 'effect of regulatory-signal type'). 

The level of correlation is very dependent on the type 
of regulatory network motif (Fig. 2a). Genes targeted by 
individual TFs (SIM) are not strongly correlated: just 
1.3% of target pairs are co-expressed although this is 
significantly higher than expected {−11;0.29}. Correlation 
is stronger for genes targeted by multiple, common TFs: 
24.4% of MIM target pairs {−12;3.2} and 5.0% of FFL 
targets exhibit co-expression {−12;1.6}. Similar results 
are observed for other expression datasets [3,13–17] 
(Table 1). 

The differences in enrichment (i.e. LOD values) 
indicate that expression is much more tightly regulated 
when multiple TFs are involved. However, with >100 
yeast transcription factors yet to be investigated [18], 
unidentified TF–target relationships will probably alter 
the classification of SIM target genes to MIM or FFL 
networks in the future. 

Target genes have similar functions 
Previous studies showed that co-expressed genes tend to 
share similar functions [19,20]. By comparing the MIPS 
(Munich Information Center for Protein Sequences, level 
2) functional classifications [21], we find that genes 
targeted by the same TFs are five times more likely to 
share functions than expected randomly {−12;1.6} 
(Fig. 2b). Comparing between regulatory motifs, we again 
see that target genes sharing more than one common TF 
tend to exhibit this effect to an even greater degree 
(SIM{−10;1.6}, MIM{−12;2.2}). Interestingly, FFL motifs 
display the smallest enrichment {−11;1.5}. We speculate 
that this is because they have specialized effects on gene 
expression (see below) and so regulate a very precise 
subset of genes that do not necessarily share functions, 
but nonetheless require coordinated expression. 

Co-expression is most likely for target genes with similar 
functions 
We also examined the expression relationships for co-
targeted genes that share functions (Fig. 2c). The degree 
of co-expression is extremely high if targets have the 
same function, but low if they do not. For example, 75% 
of MIM target genes are co-expressed if they share 
functions {−12;4.3} but only 3.6% if they do not {−6;1.3}. 
Thus, there must be a common set of TFs for genes of 
similar functions to be co-expressed. Furthermore, 
although TFs often target genes of various functions, 
there are regulatory subdivisions and co-expression does 
not usually extend across functional categories. 

Effect of regulatory-signal type 
We have limited experimental data describing type of 
regulatory signal (i.e. activation or repression) for 906 
TF-target pairs [5]. Overall, target genes display 
correlated expression relationships (see section 'Target 
genes are co-expressed'). However, we observe more 
complex relationships once regulatory-signal type is 

considered (Fig. 2d). Unsurprisingly, co-activated genes 
mostly have correlated relationships {−12;2.3}. By 
contrast, co-repressed genes have a variety of 
relationships. The results indicate that genes activated 
by the same TFs co-express, but genes inhibited by the 
same repressors do not always co-express, although they 
shut down simultaneously. 

ReReReRelationships between TFs and target geneslationships between TFs and target geneslationships between TFs and target geneslationships between TFs and target genes    

Complex expression relationships 
Next we compared the expression profiles of TFs with 
their targets (Fig. 2e). Here the relationships are more 
complex than co-expression: SIMs exhibit time-shifted 
{−3;0.64} and inverted time-shifted relationships 
{−2;0.69}, whereas MIMs display inverted time-shifted 
relationships {−9;1.4}. This suggests that target genes 
have a delayed response to regulatory events. 

FFL motifs present the most interesting and complex 
relationships. The leading TFs in the motif (denoted TF1) 
generally have negative relationships with the target 
genes; that is, inverted {−2;0.82} or inverted time-shifted 
{−10;2.0}. The intermediate TFs (TF2) exhibit all four 
types of relationship. The most common arrangement 
(55% of FFLs, Supplementary Table 2 at 
http://download.bmnqc.com/supp/tig/Ru230_Yu.pdf) is 
where the leading TF has a negative relationship with 
the target and the intermediate TF has a positive one (i.e. 
correlated or time-shifted). (Note, however, there are only 
11 FFLs for which both TF1 and TF2 have significant 
expression relationships with the targets.) 

Relation to regulatory-signal type 
As in section 'Effect of regulatory-signal type', we can 
measure the TF–target expression relationships when 
the type of regulatory signals is taken into account. 
Although the data are too sparse to make statistically 
sound conclusions, we try to make some observations. 
Unsurprisingly, activators are co-expressed with their 
targets {−2;0.63} (Fig. 2f), and comprise over 50% of TF–
target pairs with significant expression relationships. We 
also find that repressors exhibit inverted {−2;1.1} and 
inverted time-shifted relationships {−2;1.2}. There are 
unexpected results too. Activators display significant 
inverted time-shifted relationships {−6;1.8} and 
repressors show (normal) time-shifted relationships. 
There are several reasons for this. A sizeable proportion 
of TFs (15%) act both as activators and repressors, in 
some cases for the same target. Furthermore, the 
combined effect of multiple TFs in MIM and FFL motifs 
can have an unpredictable effect on target expression. 

Examples of TFExamples of TFExamples of TFExamples of TF----target relationshipstarget relationshipstarget relationshipstarget relationships    
In Fig. 3 we examine specific regulatory networks. 

SIM: ndd1 network 
Ndd1, a cell-cycle regulator during S and G2/M transition 
[22,23], acts as the sole regulating TF for Mcm21, 
kinetochore protein required for normal cell growth from 
late S to early M phase [24,25], and STB5, encoding 
another transcription factor [26]. All three genes display 
cell cycle periodicity. NDD1 expression peaks early in S 
and sustains high expression until G2. The targets are 



 

co-expressed and time-shifted with respect to NDD1 by 
one time-point, peaking later in S. 

MIM: forkhead network 
Ndd1 is recruited to G2/M-transition-specific promoters 
by Fkh1 and Fkh2, two forkhead transcription activators 
[22,23,27]. Collectively, these three TFs regulate Dbf2, a 
kinase needed for cell-cycle regulation [28], and HDR1 
(function unknown). The expression profiles of the three 
TFs are only loosely correlated and peak at different 
points from early S to late G2. The targets are time-
shifted with respect to FKH1 by two time-points and 
peak at the G2/M transition. The local clustering scores 
show that their expression profiles are better correlated 
than in the preceding SIM example (Supplementary 
Table 3 at 
http://download.bmnqc.com/supp/tig/Ru230_Yu.pdf). 

FFL: mbp1/swi4 network 
In a feed-forward-loop, Mbp1 (a cell-cycle regulator 
controlling DNA replication and repair [6,29]) is the 
leading TF, Swi4 (a cell-cycle regulator controlling cell-
wall and membrane synthesis [6,29]) is the intermediate 
TF, and SPT21 (a TF involved in histone expression [30]) 
and YML102C-A (function unknown) are the target 
genes. The profiles of the intermediate TF and target 
genes are correlated and peak sharply in G1. By contrast, 
the leading TF displays an inverted relationship, which 
highlights its involvement as a target repressor. 
(Previous studies have shown Mbp1 acts as an activator 
for ~50% its targets during the G1/S transition and as a 
repressor for ~10% of its targets later in the cycle 
[6,7,29].) 

ConclusionsConclusionsConclusionsConclusions    
In summary, we find significant connections between the 
networks from TF-binding experiments and gene 
expression data. (1) Genes targeted by the same TF are 
generally co-expressed and the correlation in expression 
profiles is highest for genes targeted by multiple TFs. (2) 
Genes targeted by the same TF tend to share cellular 
functions, and there are subdivisions within individual 
network motifs that separate the regulation of genes of 
distinct functions. (3) The expression profiles of 
transcription factors and their target genes display more 
complex relationships than simple correlation, with the 
regulatory response of target genes often being delayed. 
Note that our results are fairly robust with respect to 
specifics of the regulatiory network. As a check, we 
recalculated all our results using just the interactions in 
the Lee et al. dataset (106 regulators and 2416 genes) 
[10], and we got essentially the same results. 

Data avaData avaData avaData availabilityilabilityilabilityilability    
The datasets used for this analysis are available at 
http://bioinfo.mbb.yale.edu/regulation/TIG/. 
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Fig.Fig.Fig.Fig.    1.1.1.1. Transcriptional regulatory motifs and temporal gene expression relationships. (a) The six basic regulatory motifs, where circles represent the transcription 
factors (TFs) and squares, targets. For the single input motif, the target gene has one TF; for the multi-input motif, target gene has multiple TFs. In the feed-
forward loop, the leading TF (TF1) regulates an intermediate TF (TF2), and both regulate the target gene. In autoregulation, the TF targets itself, and in the multi-
component loop, two TFs regulate each other. In a regulator chain, a set of TFs regulate each other in series. (b) The four gene expression relationships: 
correlated, where genes have similar profiles (co-expressed); time-shifted, where genes have similar profiles, but one is delayed with respect to the other in the 
cell cycle; inverted, where genes have opposing profiles; and inverted time-shifted. The local clustering method uses a dynamic programming algorithm to align 
the expression profiles of the genes in question. From the alignment, the method is able to determine which of the four types the relationship is and assign a 
clustering score measuring the significance of the relationship; for the Cho et al. dataset [11], a score of 13 or above corresponds to a relationship significant to P 
= 2.7 × 10−3 (see Supplementary data at http://download.bmnqc.com/supp/tig/Ru230_Yu.pdf). 
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Fig.Fig.Fig.Fig.    2.2.2.2. Expression relationships between gene pairs. Log odds ratio (LOD) values above 0 signify observations that are more common than expected by chance, 
and vice versa (see Supplementary data at http://download.bmnqc.com/supp/tig/Ru230_Yu.pdf). (a---d) Relationships between target genes (as indicated by the 
color coding) for each of the different network motifs. (Note the category 'All' includes all gene pairs co-regulated by at least one common transcription factor.) 
(a) LOD values of the likelihood that target gene pairs have correlated expression in different network motifs. (b) LOD values of the likelihood that target pairs 
share the same cellular function. (c) LOD values of the likelihood that target pairs with the same function have correlated expression. (d) LOD values of the 
likelihood that co-activated or co-repressed target pairs exhibit one of the four expression relationships. (e,f) Expression relationships between TFs and target 
genes. (e) LOD values of the likelihood that TFs and their target genes exhibit one of the four expression relationships in different network motifs. FFLs are 
divided into the TF-target relationship for the leading (TF1) and intermediate TFs (TF2). (f) LOD values of the likelihood that activator and repressor TF-target pairs 
exhibit one of the four expression relationships. FFL, feed-forward loop; MIM, multi-input motif; SIM, single-input motif; TF1---T FFL, TF1---target pairs in FFLs; 
TF2---T FFLs, TF2---target pairs in FFLs. 
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Fig.Fig.Fig.Fig.    3.3.3.3. Expression profiles of example regulatory networks during the cell cycle. Circles show transcription factors (TFs), squares show targets. The arrow 
indicates a time-shift relationship. The inset shows the relationships between the TF and target genes involved in the example. (a) Single input motif; (b) multi-
input motif; (c) feed-forward loop. 



 

 

Table 1. Summary of transcriptional regulatory network dataset 

  Motifs
b
 SIM MIM FFL All Refs 

  No. of TFs 119 118 97 188  
  No. targets targets 1754 986 511 3416  
No. of TF–target pairs Total 1754 2781 1523 7419  
 Activationc 37 50 19–33d 144  
 Repressionc 12 34 23–10d 79  
LOD values for co-expressed  Stress response 0.44a 3.55a 0.59 0.88a [13] 
target pairse Sporulation 0.03 0.25 0.08 -0.05 [15] 
 Diauxic shift 0.11a 1.78a 0.30a 0.30a [3] 
 DNA damage 1.24a 4.87a 1.26a 2.14a [14] 
 Cell cycle 0.37a 2.09a 1.62a 0.52a [17] 
 Cell cycle 0.29a 2.79a 1.35a 0.93a [11] 
 Cell cycle 0.22a 2.50a 0.91a 0.64a [16] 

Abbreviations: All, all the transcription factor–-target pairs; FFL, feed-forward loop; LOD, log odds ratio; MIM, multi-input motif; SIM, single-input motif; TF, transcription 
factor. 
aLOD values with P-value smaller than 1 × 10−5 (see Supplementary Table 1 at http://download.bmnqc.com/supp/tig/Ru230_Yu.pdf) 
bThere are three smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 targets. The random expectation for the number of targets is 6130, the number of yeast genes. 
The random expectation for the number of gene pairs in yeast is 18785385 = 6130(6129)/2, which is obtained by counting all pairs between yeast genes. 
cPositive expression relationships (correlated and time-shifted) are considered as activation signals, whereas negative relationships (inverted and inverted time-shifted) 
are considered as repression signals. Overall, 18 regulators activate some of their targets but repress others. Note this is distinct from the number of activator relations 
determined experimentally (as described in sections 'Effect of regulatory-signal type' and 'Relations to regulatory-signal type) 
dWe show the number of relations for TF1–target pairs (N1) and TF2–target pairs (N2) in FFLs, using the following notation (N1–N2). 
eLOD values for target gene pairs having correlated profiles in different expression datasets. The local clustering method cannot be applied, so expression correlation is 
measured using the Pearson correlation coefficient. Co-expressed gene pairs are those in the top 1% of largest correlation coefficients. 

 
 
 


