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Individual bits of genomic data need to be
put in a context to be meaningful. For
instance, the isolated fact that yeast gene
YBR191w is expressed at a level of 65
copies per cell in microarray experiments
is, by itself, meaningless. However, if one
can connect this measurement to those of
other genes and an overall functional

classification, one can determine that this gene codes for a
ribosomal protein and that ribosomal proteins have among
the highest levels of expression in yeast. The same logic applies
to structure. Coordinates by themselves just specify shape and
are not necessarily of intrinsic biological value, unless they can
be related to other information. In the past, for ‘single-mole-
cule’ experiments, formal integration was unnecessary; one
got the whole picture through reading the literature. However,
this is impossible for all ∼ 18,000 proteins in the worm. Thus,
integrative database analysis is essential in structural
genomics. Specifically, it allows one to think broadly about
structure in terms of the distribution of properties of many
molecules in a genome, rather than about the individual
details of a particular one, and to highlight certain folds and
features that stand out against this distribution. Furthermore,
it potentially gives one an unbiased view of the full universe of
macromolecular structure.

Database integration is of great value for companies produc-
ing propriety genome-scale datasets, as their data become more
valuable when packaged with other genomic information. In
particular, a number of companies offer integrated views of the
human genome. Currently, these focus more on genetic rather
than structural features, such as allowing one to find all the
domain homologies in genes with splice variants.

Integrated database surveys (or censuses) are useful in both
prospective and retrospective senses. In the former, one uses
genomic information to pick targets for large-scale structure
determination efforts. In the latter, one does data mining on the
results of many structure determinations, trying to glean inter-
esting statistics about a large population of structures. As illus-
trated in Figs 1 and 2, the main sources of information to
inter-relate with structures are fold and function classifications,
patterns of phylogenetic occurrence, expression data and pro-
tein–protein interactions.

Finite parts list, fold classifications and assigment
A key idea in structural genomics is that of a finite list of protein
‘parts’, a ‘lego-kit’ from which all proteins can be assembled.
Parts can be defined as sequence modules, in terms of families of
homologous sequences (for example, from PFAM, PROTOMAP,
CDD, and COGs1–3) and associated structures. Alternatively,
they can be defined as folds purely based on similarity of three-
dimensional structure, with one fold combining a number of
sequence modules. The fact that the number of folds is consider-
ably smaller than that of modules provides a valuable simplifica-
tion in interpreting complex genomic information (although
there is the complication that folds can unite analogous rather
than distantly homologous sequences).

There are a number of different classifications of folds, derived
from manual or automatic structure comparison (for example,
SCOP, CATH, FSSP4–6). For structural genomics, these are essen-
tial for putting individual structures into proper context in fold-
space and measuring the scale of the structure data bank and its
rate of increase. By one measure there are ∼ 550 known folds
(SCOP 1.50) out of an estimated total of only 1,000–10,0007,8.

To directly cross-reference folds against genomes one needs
sensitive procedures for sequence comparison with the
sequences corresponding to known structures. There are a vari-
ety of techniques for this, ranging from standard and reliable
pairwise comparison (such as fasta and blast9,10), to multiple-
sequence comparison (PSI-blast and variants11,12), to more sensi-
tive, though more speculative, threading methods13,14. One
important issue in these calculations is the degree that they are
biased by the incomplete nature of the structure data bank and
the varying sensitivity of some comparison programs, especially
the profile-based ones, which find disproportionately more
homologs for certain families15.

Phylogenetic occurrence information
If one carefully tracks the species of each sequence assigned a
fold, one can use structural genomics to address certain evolu-
tionary questions16,17. Are specific folds associated with particu-
lar phylogenetic groups — that is, are there metazoan-only folds?
To what degree are folds shared between related organisms and
does this degree of sharing parallel measures of relatedness
derived from the traditional evolutionary trees? Initial analyses
indicate that the sharing of folds does indeed parallel the tradi-
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tional tree18. Furthermore, one can look at the prevalence of par-
ticular folds in various organisms. Initial surveys show that the
frequency of folds differs considerably among organisms but
there are a few folds, such as those of TIM-barrels and P-loop
hydrolases, that are common in all genomes studied19 (Fig. 1).

While these analyses are useful retrospectively, the phyloge-
netic distribution of folds and sequence families is also useful
prospectively in target selection (see the article by Brenner).
One can choose to focus on folds and families unique to an
organism or those shared among many organisms — that is,
atypical or typical proteins. Straightforward, sequence-based
clustering of proteins can readily identify large, shared families
that represent typical proteins1–3. Alternatively, folds and fami-
lies unique to pathogenic organisms may provide good drug
targets. While speculative, this idea is partially borne out by the
recent structure of OspA, a protein that has a fold unique to the
pathogen B. burgdorferi and also functions as the antigen for a
vaccine against it20.

Functional classification and protein interactions
Integrated structural genomics analysis must include functional
classification. However, there is currently no ‘universal’ classifica-
tion, covering all functions in all organisms, that could be applied
uniformly to all structures. Most of the existing schemes (such as
GO, MIPS, GenProtEC, Enzyme, and COG2,21–24) focus on all
functions in specific organisms or specific functions (such as
enzyme reactions) across many different organisms.
Furthermore, classifications may mean different things when
they refer to function, conflating biochemical mechanism, cellu-
lar role, and phenotypic manifestation (for example ‘is-hydrolase’
versus ‘in-glycolytic-pathway’ versus ‘cancer-causing’). Finally,
many proteins have multiple functions and some functions
require multiple proteins.

One of the greatest potential retrospective uses of structural
genomics is making more precise the annotation of function.
Certain folds are related to specific biochemical functions, and,
broadly, certain classes of folds tend to be associated with certain

Fig. 1 An example of structural genomics data integration is shown for yeast. The figure shows the ten most common folds in the yeast genome and
the rankings these have when they have been arranged according to measures other than level of genome duplication. It gives an overview of the
degree to which the common parts in yeast occur in other genomes, are prevalent in the structure data bank, have many functions and interactions,
and are highly expressed. In general, ranking is useful for bringing together many disparate properties of folds into a common numerical framework.
In the table, the numbers and color coding indicate the rank, with black for the top rank, followed by teal for ranks between 2 and 5, pink for ranks
between 6 and 9, and white for ranks between 10 and 25. Ranks >25 are just indicated by a white box containing a "-". A known "not present" (zero
value) is shown as a yellow box with an "x", whereas a fold with insufficient information to be ranked according to a particular attribute is indicat-
ed by a completely empty square. Note that the precise values for the rankings are contingent on the evolving contents of various data banks. Thus,
over time as more structures are determined, one should expect statistics such as the most common folds in a particular genome to change some-
what. Specific discussion of the ranking attributes in each column follows. The columns headed “phylogenetic occurrence” (B–G) show the rankings
of each fold in a number of other representative genomes. (These are based on previously described PSI-blast sequence compariso n of genomic
sequences against the PDB11,19,25.) The columns headed “fold classification” show some typical ways of ranking folds based on their prevalence in the
structure databank (from structural alignments of proteins in ref. 28). Column H shows a rough ranking in terms of frequency in the PDB. Comparing
it to columns B–G gives one a rough measure of the ‘biases’ in the PDB as compared to the natural occurrence of folds. Column I shows how each fold
ranks against others in the data bank in terms of the overall structural similarity of the representatives of the fold. The col umns headed “gene
expression” show rankings of folds from weighting them either by their mRNA population (column J) 34 using data from ref. 35 or in terms of the
degree to which they change in expression during a gene expression tim ecourse (either “cell cycle” or “sporulation”, columns K or L). The columns
headed “function & interaction” show how further functional genomics information can be integrated. Column M shows the sensitivity of the com-
mon yeast folds (that is, of all ORFs containing that fold) to an inserted transposon when yeast is grown in a specific condition33, and column N ranks
these folds in terms of the number of interactions in the two-hybrid experiment29. Finally, column O gives the number of functions found for the fold
in a survey of the whole data bank (as defined in ref. 25). Further fold rankings are available from bioinfo.mbb.yale.edu/partslist.
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classes of functions (for example, α/β folds with enzymes)25,26.
Moreover, the concept of ‘fold’ while not perfect, is more precise
than that of ‘function’, and there is a clearly defined relationship
between the degree of similarity in sequence and the correspond-
ing degree of similarity in structure, while the analogous rela-
tionship for function is less well understood27,28.

One can take these ideas further and, prospectively, try to pre-
dict function given just structure (see the article by Thornton
and colleagues). This is in essence a speculative extrapolation
from the known fold-function relationships in the database. The
existence of folds that have many functions confounds this to
some degree. However, there are actually only a few multipur-
pose scaffolds, with most folds only having a single function,
suggesting that function prediction may be realistic for a subset
of proteins (Fig. 2)21,25. (This situation has a direct analog in day-
to-day experience, where given the shape of a mechanical part
one can usually, but not always, guess what it does.)

Protein function is often closely related to protein–protein
interactions. The structure data bank itself and some whole-
genome experiments (particularly the yeast two-hybrid29) now
allow one to survey interactions on a large-scale and relate them
to structure. Broadly, one sees patterns, such as folds that inter-
act with many other different folds having many functions (Fig.
2). One of the most interesting questions suggested by such com-
prehensive data is the prediction of the entire protein–protein
interaction map for an organism given all the structures in its
genome. That is, can one correctly dock the structures in an
organism’s parts list to predict their associations?

Expression data and related functional information
An exciting new source of information is whole-genome expres-
sion data, which gives the level of expression of a particular gene
in the context of all the genes in the genome (reviewed in refs
30,31). Two-dimensional gel experiments provide analogous
information on cellular protein abundance32, and for select
organisms there is further related genomic information, such as
the essentiality of a given gene and the subcellular localization of
its protein product23,33. Overall these functional genomics data

sets are by far the largest source of information in genomics; for
yeast, they now dwarf the information in the sequence alone.
Combining expression information with genome fold assign-
ments allows one to see whether highly expressed or highly
abundant proteins share particular features, which might, for
instance, better stabilize them34. Expression time courses may
also be useful for detecting and studying proteins in large com-
plexes as well as proteins that strongly interact35, as these often
show concerted changes in expression. Finally, expression infor-
mation will be useful prospectively in target selection, for high-
lighting proteins that may be more readily expressed and
purified.

Technical issues: interconnecting databases
The most important issue in integrative database analysis and data
mining is determining scientifically relevant questions to address
and interesting statistics to compute. One cannot understand how
to design, build, and interrelate genomic and structural databases
in the abstract without a sense of the types of questions that inte-
gration can address. Furthermore, beyond conventional relational
databases, robust file systems, and standard statistical techniques,
there are few generic tools and approaches.

That said, one of the major practical issues confronting
structural genomics today is bringing together, in the comput-
er, many different data sets. This process differs depending on
the overall architecture of the information: whether it is stored
in a single centralized repository or in a federation of different
resources. The former has the advantages of efficiency and uni-
formity and is the solution adopted by the major archival data-
bases, GenBank and the PDB (see the article by Berman and
colleagues). It clearly works well for bulk data in standardized
formats, such as coordinates and sequences. However, much of
the information generated by functional and structural
genomics projects will be more heterogeneous, such as large-
scale data sets reporting crystallizability or the binding of
metabolites to protein arrays. Furthermore, it will be collected
in many locations, reflecting the distributed character of bio-
logical research. It is impossible for all this information to be

Fig. 2 Results of an integrated database analysis on
the relationship between fold, function and interac-
tions and its implications for structural genomics. The
top part of the figure shows a histogram of the num-
ber of folds with a given number of functions, from
previous tabulations21,25. Only a few folds, which are
highlighted, have many functions, whereas most
have only one or two functions. This has implications
for data mining and function prediction based on
structural genomics. In particular, it implies that if a
structure with an unknown function is solved, one
may be able to confidently infer function if is it is not
one of the few multi-functional folds. The bottom
part of the figure shows a histogram, similarly for-
matted to the one at top, with the number folds with
a given number of interactions, where the number
of interactions for a given fold is the number of
other folds it interacts with in the PDB. This high-
lights how folds with many functions also interact
with many other folds. The axes on both histograms
are not drawn to scale, but exact number of func-
tions (boxed) and interactions are listed above each
bar. (For clarity, immune system folds were omitted
from the histogram.) Data interactions are from Ref.
40. See bioinfo.mbb.yale.edu/partslist for further
details.
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kept in a single repository in a single format; rather, it will be
stored in distributed resources. This federated structure has the
advantage that it can harness many people in the genome-
annotation effort. Moreover, it is similar in spirit to the open-
source software movement, which gave rise to the popular
linux operating system.

Given the federated structure of genomic information, one has
the problem of database interoperability36. Currently, the most
common interface involves reports on a single protein ‘joined’
together by web hyperlinks. This provides a simple and effective
way of traversing multiple information sources for a single pro-
tein. However, it is ineffective for genome-scale queries. There
are a variety of technologies (such as CORBA and SRS37) for
addressing this, and a number of novel approaches for creating
virtual meta-databases through which one can perform queries
across many information sources. Nevertheless, at present the
solution often adopted is transferring structured data files.
Ideally these come in standard formats (such as XML and
ASN.1) with metadata describing their contents. For effective
use, all these approaches require more standardized nomencla-
ture than we currently have, and there are a number of proposals
for creating ontologies and controlled vocabularies for biological
function and structure24,38. Specifying a ‘version history’ on
information is also essential; in reporting the results of a data-
base survey reproducibly one needs a way of referring to particu-
lar ‘frozen’ snapshots of a number of continually growing data
bases.

The major information resource in science is the literature.
This is often not discussed in the way data bases are, but it should
be39. Papers are the way sequences and structures have tradition-
ally been ‘annotated’. With the advent of on-line journals and the
way they can be queried in an integrated fashion (via PubMed),
there may be little distinction between future data bases and
journals, or between curators and editors.

Structure as the ‘final’ annotation for the genome
Structural information can and should be tightly integrated with
genomic information. Now that the human genome has been
sequenced, attention is turning to annotation. Considering a
long-time horizon, one can see that there will be essentially an
infinite amount of resources for annotating the human genome.
Given this, what would one want as the ‘final’ annotation?
Structure will undoubtedly be vital. It connects genomics with
chemistry, which is invaluable for pharmaceuticals. Moreover,
structural domains provide a natural way of specifying a basic
unit in annotation, as the definition of modules purely in terms
of conserved sequence motifs is not nearly as unambiguous and
rigorous. Finally, the definition of protein fold, while not perfect,
is more precise than that of function, providing a valuable refer-
ence point in annotation.
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