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Abstract 
For the ~1% of the human genome selected by the ENCODE consortium only about half 
of the transcriptionally active regions (TARs) identified with tiling microarrays 
correspond to exons of annotated genes. Grappling with, classifying and analyzing this 
large amount of "unannotated transcription" presents new challenges. Here we attempt an 
overall categorization of the 6,988 novel TARs detected. We use a number of disparate 
features to classify TARs -- their expression profile of array signals across 11 cell lines 
and conditions, their overall sequence composition, their phylogenetic profile (presence 
or absence of syntenic conservation across 17 mammalian species), and their location 
relative to gene annotation. We perform the classification stepwise. In a first pass, we 
filter out TARs with unusual sequence composition and those likely to result from cross-
hybridization. We then associate some of those remaining with known exons based on 
proximity and similar expression profiles. Finally, we attempt to group unclassified 
TARs into putative clusters of novel transcription, perhaps representing novel loci, based 
on similarity in their expression and phylogenetic profiles. Storing, visualizing, 
manipulating, and comparing all these different groupings of TARs requires a different 
infrastructure than for conventional gene annotation. Therefore, we have constructed the 
Database of Active Regions and Tools (DART.gersteinlab.org) to develop and 
encapsulate our classification. DART has special facilities for rapidly handling and 
comparing many sets of TARs and their heterogeneous features, synchronizing across 
genome builds, and robustly interfacing with other resources (such as the UCSC Genome 
Browser). Using our DART classification, we find that ~14% of the novel TARs can be 
confidently associated with known genes, while ~21% can be clustered into ~200 novel 
loci, comprised of ~7 TARs each. We also find some novel TARs are arranged in tandem 
arrays of sequence-similar blocks. We survey novel TARs for protein homology and their 
potential to form structured RNAs, and we conclude that TARs associated with known 
genes are most strongly enriched for structural RNAs. Finally, we observe that many of 
the novel TAR clusters are associated with a nearby promoter. In a future scale-up of the 
ENCODE project, we anticipate that categorization of novel TARs can help 
systematically targeting medium-scale follow-up experiments (e.g. by RACE and RT-
PCR). To benchmark this, we use the DART classification to design a set of experiments 
for testing the connectivity of transcripts amongst novel TARs and between them and 
known exons. Overall, we find that ~40% of the connections tested (18 out of 46) 
validate by RT-PCR and that 4 out of the 5 PCR products that were sequenced confirm 
connectivity unambiguously. 
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INTRODUCTION 
 
In recent years there have been a number of experiments using genomic tiling 
microarrays that have found significantly more transcribed DNA sequences in the human 
genome than had been previously annotated as genes (see Kapranov et al. 2002, Rinn et 
al. 2003, Bertone et al. 2004 & Cheng et al. 2005). The biological function of this vast 
quantity of additional transcribed RNA is not yet fully understood. There have been 
independent experiments using complementary sequencing technologies that have also 
detected large amounts of previously unidentified transcription (Carninci et al. 2005). 
Genome tiling arrays have likewise been used for transcript mapping in a variety of 
organisms besides human: A. thaliana (Yamada et al. 2003), D. melanogaster (Stolc et al. 
2004, Manak et al. 2006), S. cerevisiae (David et al. 2006) and O. sativa (Li et al. 2006).  
 
One of the goals of the ENCODE (ENCyclopedia Of Dna Elements) project (ENCODE 
Project Consortium 2004) is to map out and determine the function of these unannotated 
transcripts for the one percent of the human genome selected for the pilot phase of the 
project. For the selected ENCODE regions, RNA transcript maps were constructed for a 
variety of cell lines and biological conditions ([reference to ENCODE manuscript]). 
Consistent with earlier studies a large fraction of the sequences identified as transcribed 
are not in annotated genomic regions. An important result obtained from these 
experiments was the discovery of tissue-specific alternative transcription start sites, found 
by conducting 5’ RACE extensions from exons of known transcripts. Many of the 
transcription start sites were found to be more than 100 kb upstream of an annotated start 
site. Although these alternate long transcripts account for some of the novel transcribed 
regions detected, the majority remain unexplained. These long transcripts demonstrate 
that gene loci are quite complex and that there is probably a multiplicity of alternative 
isoforms that are transcribed from most complex loci. Even in the set of well curated 
genes for the ENCODE regions (the GENCODE/HAVANA annotation, Harrow et al. 
2006) we see on average 5.4 alternative isoforms per locus. This number is most likely a 
significant underestimate of the number of distinct transcripts arising from an average 
locus in all cell lines, especially when all cellular conditions are considered. 
 
Transcribed regions detected by genomic tiling arrays are known as TARs 
(transcriptionally active regions, see Rinn et al. 2003) or alternatively as transfrags 
(transcribed fragments, see Kapranov et al. 2002). Although novel transcribed regions 
have been observed and analyzed in previous works, in this paper we present an overall 
characterization and systematic classification of novel TARs. Some of this classification 
is briefly discussed in [reference to ENCODE manuscript] where novel TARs are 
categorized on the basis of their vicinity to known genes. We extend this analysis by 
grouping the novel TARs into a number of distinct possible categories: (i-a) novel TARs 
with peculiar sequence composition, (i-b) novel TARs that are probably caused by cross-
hybridization on the microarray, (ii) novel TARs that are associated with known gene 
loci, and (iii) novel TARs that are not associated with known genes but can be grouped 
into clusters which may be novel transcribed loci.  
 
Data sets for novel TARs and their associated information should not be thought of as 
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regular gene annotation, since unlike genes, properties such as the connectivity between 
novel TARs, which potentially form spliced transcripts, are not very well defined. 
Moreover, TARs have additional information such as the fluorescent array signal that is 
not usually associated with gene annotation. Thus existing databases such as the UCSC 
Genome Browser (Kent et al. 2002), Gene Expression Omnibus (Edgar et al. 2002) or 
ArrayExpress (Brazma et al. 2003) do not have the flexibility to store sets of TARs with 
all the associated information and make them accessible in an efficient manner. For this 
reason we have constructed a database (DART: Database of Active Regions and Tools) 
for encapsulating our classification. The database is optimized for browsing sets of TARs 
discovered in tiling microarray experiments. In addition the database allows the storage 
of sites of transcription factor binding and modifications called BARs (binding active 
regions), which are important to associate with TARs. We have also constructed a set of 
tools (Active Region Comparer) that can be used for the comparison of multiple sets of 
active regions with each other and with annotations from EnsEMBL (Birney et al. 2006). 
Both the database and tools are connected with the UCSC Genome Browser for 
automated visualization of custom tracks.  
 
The DART methodology developed in this paper is a first pass analysis of the novel TAR 
data sets and transcript maps that are available today as part of the pilot phase of the 
ENCODE project. An optimal approach to understanding the biological role of the 
multitude of novel TARs is to couple array experiments with medium-scale follow-up 
experiments. As an initial iteration of this process, we used the results of our 
classification to design some small-scale experiments that investigated the connectivity 
between novel TARs and exons of known genes and the connectivity between novel 
TARs clustered into novel transcribed loci. This validation experiment demonstrates that 
~40% of the novel TARs tested for association with either an exon of a known gene or 
another novel TAR can be confirmed to be connected in a transcribed RT-PCR product. 
When the next phase of the ENCODE project scales to the whole genome, the resulting 
experimental data can be used to optimize the classification procedure in future iterations 
 
RESULTS 
 
Novel Transcribed Regions 
 
Transcript maps were constructed across the 44 ENCODE regions using genomic tiling 
microarrays for 11 different cell lines and conditions ([reference to ENCODE 
manuscript]). The 44 ENCODE regions span 30 Mb of genomic sequence, half of which 
comes from manually selected gene loci (e.g. HOX cluster & CFTR locus) and half 
comes from 500 kb regions chosen to stratify differing levels of both gene density and 
non-exonic conservation with mouse. The 11 different cell lines and conditions were a 
combination of both Poly(A)+ and total RNA samples. Transcript maps were constructed 
by hybridizing reverse transcribed double-stranded cDNA to a high-density 
oligonucleotide tiling array which covered one strand of the ENCODE regions.  
 
TARs were determined by locating stretches of oligonucleotide probes with high 
hybridization signals compared to background. The signal thresholds used to identify 
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these transcribed genomic regions were determined using bacterial control sequences 
included on the Affymetrix tiling microarrays (Kampa et al. 2004). We note that the 
amount of transcription detected and the fraction that is in annotated regions are 
dependent on the signal threshold used (see Royce et al. 2005 & Emanuelsson et al. 
2006). Using a more stringent threshold, we detect fewer overall TARs, however, the 
fraction that corresponds to annotated exons increases because novel TARs tend to be 
transcribed at lower levels than exonic TARs. A threshold was determined such that the 
false positive rate from bacterial negative controls was only 5 percent for each of the cell 
lines and conditions mapped. There has been an ongoing debate in the genomics 
community as to the fraction of the human genome that is transcribed. In [reference to 
ENCODE manuscript] it has been determined that more than ~70% of the human genome 
is transcribed as primary transcripts. However, the use of a stringent threshold for tiling 
microarray signal selects for genomic regions that are transcribed as part of processed 
(spliced) RNAs. Thus the large number of novel TARs detected as part of the ENCODE 
project’s pilot phase are more likely to be components of processed transcripts rather than 
due to the basal level of transcribed genomic DNA. Our DART classification procedure 
attempts to categorize these novel transcribed regions as part of known genes and into 
potential novel transcribed loci. Although many of the TARs that were detected 
correspond to exons of known genes, this study focuses on the novel TARs that do not 
match exonic sequences. These novel, unannotated TARs lie either, within the introns of 
known genes or within the intergenic regions between known genes. Here we will use the 
set of GENCODE/HAVANA annotation (Harrow et al. 2006), which is a comprehensive 
set of all the well-curated transcripts contained within the ENCODE regions.  
 
The initial set of all TARs generated can be classified into three basic categories: TARs 
corresponding to known or putative GENCODE genes, TARs overlapping annotated 
pseudogenes and novel TARs in unannotated regions. TARs overlapping pseudogenes 
are ambiguous given the homology of the pseudogene sequence to its parent gene, both 
of which are potentially transcribed. Other more detailed studies of pseudogene 
transcription have determined that a small but significant fraction are transcribed and can 
be distinguished from parental gene transcription (Zheng et al. 2005). However, in order 
to avoid these ambiguities for the purposes of this analysis the sets of TARs are filtered 
for those that intersect low complexity repeats or any annotated pseudogene in the 
ENCODE regions. Novel TARs are then classified into one of the following categories: 
(i) intronic TARs, (ii) intergenic TARs and (iii) TARs that match other ESTs that were 
not part of the GENCODE annotation (typically unspliced ESTs that do not contain a 
polyadenylation signal). The intergenic and intronic TAR sets are further subdivided into 
those that are proximal subsets that are within 5 kb of GENCODE exons and distal 
subsets that are further than 5 kb (see figure 1a for a diagram of this classification). The 
distribution of TAR locations can be seen in table 1 where we observe that nearly half of 
the novel TARs are in intronic regions proximal to exons of known genes. The table also 
includes the 195 TARs that intersect pseudogenes prior to their removal. In figure 1b we 
develop a strategy for a more detailed classification of sets of novel TARs, which will be 
described in more detail in the steps below. Each of these classified sets can also be 
individually partitioned as per figure 1a, on the basis of proximity to annotation. 
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Each novel TAR has a number of distinct features: expression profile across the 
biological samples mapped, genomic location relative to known GENCODE annotation, 
sequence composition, sequence conservation, and phylogenetic profile of conservation 
(see figure 2). In the following analysis we make use of some of these features when 
grouping the sets of novel TARs into the following distinct categories: (i) potentially 
artifactual TARs that are caused by peculiar sequence composition or cross-
hybridization, (ii) novel TARs that can be associated with known gene loci and (iii) novel 
TARs that can be clustered into groups forming potential novel transcribed loci. For the 
remaining unclassified novel TARs with above average array signal, additional clustering 
is performed on the basis of vicinity and phylogenetic similarity. See figure 1b for a 
schematic of the stepwise classification procedure. Many of the DART classification 
steps use the expression profiles of individual novel TARs across the eleven different cell 
lines and conditions. For each novel TAR we also construct a phylogenetic profile across 
the species sequenced by the ENCODE consortium ([reference to ENCODE 
manuscript]). These profiles identify which of these species contain the novel TAR in a 
syntenic region. The classification uses other information as well, such as the sequence 
composition of novel TARs and their location relative to known genes. We also study the 
protein coding potential for novel TARs by searching for homologous protein sequences, 
and we investigate the likelihood of the various categories of TARs to form structured 
RNAs (using RNAz, Washietl et al. 2005). All of these features, as well as the 
classification sets, are stored in the DART database. 
 
Step 1A: Filtering TARs for Peculiar Sequence Composition 
 
Genomic tiling microarrays interrogate genomic sequences by the use of short 
oligonucleotide probes that tile the region of interest. There are two main effects that can 
cause regions to erroneously appear as transcribed. The first effect results from the basic 
mechanism by which array hybridization works, which is the binding of a sample’s 
cDNA to its matching reverse complement DNA oligonucleotide probe. The amount of 
cDNA that hybridizes to a particular spot on the microarray, and the corresponding 
fluorescent signal measured, are subject to the binding affinity between the cDNA and 
probe, which is in turn dependent on the sequence composition of the oligonucleotide. 
Thus probes with higher G/C content tend to bind more tightly and show greater 
fluorescent signal (SantaLucia 1998). In addition short sequence motifs that bind with 
higher affinity would cause many probes to show abnormally high signal in genomic 
regions not transcribed (Rozowsky et al. unpublished). Probe sequence effects are 
dramatically reduced by the use of sliding window scoring, which averages the signal 
from multiple oligonucleotide probes in a short genomic span (see Cawley et al. 2004, 
Kampa et al. 2004, Royce et al. 2005). However, biases due to oligonucleotide probe 
sequence effects are still evident when one compares the G/C content of sequences 
detected to be transcribed against all annotated sequences. 
 
In [reference to ENCODE manuscript] the di-nucleotide frequency was compared among 
novel TARs, exonic TARs, all exons and randomly selected sequences. This analysis 
showed that the di-nucleotide frequency of novel TARs was more similar to that for 
exons than random sequences. However, for the CC/GG and AA/TT di-nucleotides (both 
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the forward and reverse complement di-nucleotides are combined since TARs are not 
stranded) the average frequency was significantly different from the frequency for 
annotated exons. Figure 3 illustrates this difference where the distribution of CC/GG 
frequencies for novel TARs is skewed to higher frequencies than that for GENCODE 
exons. Thus CC/GGs occur more often in novel TARs than in known exons, while the 
AA/TT frequency for novel TARs is lower than for exons (see supplementary figure 1). 
In order to be cautious, we removed novel TARs whose CC/GG frequency was above the 
top one percent of CC/GG frequencies for GENCODE exons as well as those whose 
AA/TT frequency was below the bottom one percent for exons. There are 380 novel 
TARs whose CC/GG frequency is greater than 0.156 (indicated by the black arrow on 
figure 3), as well as 175 novel TARs whose AA/TT frequency is below 0.004. Thus 503 
novel TARs were excluded from the 6988 total novel TARs leaving 6485 novel TARs 
which we shall consider. 
 
Step 1B: Filtering TARs for Cross-Hybridization 
 
The second main microarray artifact, which can lead to false positive detection of 
transcribed regions, is cross-hybridization. Cross-hybridization happens when 
oligonucleotide probes on the array hybridize to cDNA from transcripts that have partial 
sequence complementarily to the probe, but the transcripts originate from somewhere else 
in the genome. One standard approach is to take the sequences of novel transcribed 
regions and BLAST (Altschul et al. 1990) them against the current build of the genome to 
identify sites of potential cross-hybridization. However, the limitation of this approach is 
that once one has located a potential site of cross-hybridization, which could be either 
annotated as part of a known transcript or an additional putative novel TAR, the true 
source of transcription remains ambiguous (one or both sites could be transcribed). The 
approach that we propose would resolve this ambiguity.  
 
Using the method by which novel TARs will be determined to be associated with known 
gene loci by use of co-expression of novel TARs with exons of known GENCODE 
genes, we propose the following procedure: We first identify the most likely source for 
cross-hybridization by using BLAST (we call the matching region a blastTAR). Only 
TARs that have a significant match are considered (at a BLAST e-value of less than 10-5 
or a bit score of 54.0, which corresponds to approximately 40-50 nucleotides with greater 
than 90 percent sequence identity). The expression profile of the original novel TAR is 
then compared against exons of genes in the local genomic vicinity of the blastTAR. If 
the novel TAR is co-expressed with the blastTAR’s surrounding exons, then the most 
likely explanation is that the blastTAR is the primary source of transcription and the 
original novel TAR was detected because of cross-hybridization. Determining the true 
source of transcription from two genomic locations with high degree of sequence 
similarity is thus made possible by using the expression profiles of the novel TARs 
compared with exons nearby the potential cross-hybridization site.  
 
Of the 6485 filtered novel TARs from step 1A, 658 have matches with an e-value of 10-5 
or better. Since the ENCODE regions only cover approximately one percent of the 
genome, a naïve expectation is that only about one percent of these matches would be 
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located within the ENCODE regions (we can only implement this procedure for 
blastTARs that are located within ENCODE since we need to compare them with the 
expression profiles of nearby exons). BlastTARs that are located in the same ENCODE 
region as the original TAR need to be treated separately (this is discussed in further detail 
later on). However, there are no novel TARs for which a blastTAR is located in a 
different ENCODE region. Even though we are unable to utilize this approach for the 
novel TARs in ENCODE, it will be applicable when tiling arrays studies that cover the 
entire genome become more abundant. 
 
Step 2: Association of Novel TARs with Known Gene Loci 
 
We want to address the question of how many of the novel TARs can be confidently 
assigned to known gene loci. By this we mean that the novel TARs are transcribed as 
parts of longer transcripts, which are as yet unannotated isoforms of transcripts from a 
specific gene locus or of distinct RNAs that are co-regulated with the gene of interest. In 
order to make these assignments we identify novel TARs that are co-expressed with 
exons of genes in the vicinity of the novel TARs. We do this by computing the Pearson 
correlation coefficient between the expression profiles of novel TARs and the expression 
profiles of nearby exons (see figure 4). This method is similar to how different genes are 
determined to be co-expressed. Here, however, we are comparing the expression profiles 
of individual novel TARs and exons, not those of entire transcripts. For a gene that only 
encodes a single transcript (i.e. has no alternative isoforms), the expression profile of the 
gene should be the same as that for each of its constituent exons. However, for a locus 
that is transcribed as multiple different isoforms, the expression profiles of the different 
exons may be different. Thus, a novel TAR which is co-expressed with an exon of a 
known gene can be assigned with some confidence to that locus as part of an alternative 
isoform or as part of a distinct coregulated RNA. 
 
In order to demonstrate that this method works, we first took the set of all known 
GENCODE genes in the ENCODE regions and computed the expression profiles for all 
component exons. For each exon, we can test whether we can assign it to the correct gene 
by comparing its expression profile with the expression profiles of nearby exons. The 
assignment is made to the target gene which has an exon with the highest correlation. In 
figure 5 we plot sensitivity against the false positive rate using this assignment procedure. 
The Pearson correlation threshold for making an assignment is what parameterizes each 
curve. The blue curve represents the assignment to exons for genes anywhere in the 
ENCODE regions; the red and green curves are for assignment to exons of genes that are 
within 100 kb and 20kb of the exon that is being tested. As expected, we see that the 
accuracy of the assignment is improved by restricting attention to nearby exons. See 
supplementary material for a more detailed description of this simulation. 
 
For each novel TAR (see Methods for more details) we use the above method to find the 
known exon within a 20kb window on either side of the TAR and from either strand that 
has the highest Pearson correlation between its expression profile and that of the novel 
TAR. We choose to use a Pearson correlation of 0.9 as a threshold, as that corresponds to 
a p-value of less than 0.05 (given that the correlation coefficient is computed by 
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comparing expression profiles which have 11 dimensions and on average each novel 
TAR, has approximately 19 known exons within 20 kb)1. Thus, we can associate 955 of 
the 6485 filtered novel TARs with a known GENCODE exon. From this analysis we can 
assign more than 13 percent of the original set of 6,988 novel TARs as part of new 
alternative isoforms of known transcripts. 
 
Step 3: Clustering Novel TARs into Novel Transcribed Loci 
 
Step 3A: Clusters based on Expression Profiles  
 
After assigning 955 of the novel TARs to known gene loci, we have 5,530 remaining. We 
cluster co-expressed novel TARs into groups, which we call novel transcribed loci. 
However, in the assignment of novel TARs to known genes we only assigned those that 
were highly correlated with exons of known genes. There are likely many more novel 
TARs in the remaining group of 5,530 that should be assigned to known gene loci but 
were not because their correlations were below the chosen threshold. In order to focus 
attention on novel TARs that have a low likelihood of being associated with known gene 
loci, we first select a subset of the 5,530 novel TARs which have at most a Pearson 
correlation of 0.1 with any GENCODE exons within 20 kb of the novel TAR. Using this 
criterion we select a subset of 1846 novel TARs, which we group into novel TAR clusters 
as described below. 
 
We construct a matrix of correlation coefficients between novel TARs in this set 
(correlations between novel TARs further than 20 kb apart are set to zero). We use k-
means clustering (Hartigan et al. 1979) with a k of 102, which meets the criterion set by 
Hartigan (1975) (see Methods for more details). With this value of k we obtain 96 
clusters that have three or more elements and are localized to one ENCODE region. The 
6 remaining clusters, which are not considered, correspond to small groups of only 2 
elements and one large group of novel TARs from multiple chromosomes, which is the 
set of remaining unclustered TARs. A summary of statistics for these novel TAR clusters 
is in table 3.  
 
Step 3B: Clusters based on Phylogenetic Profiles 
 
Following the preceding steps of the DART classification procedure (steps 1A, 1B, 2, and 
3A) we have 4,748 novel TARs unassigned. We first filter out the 3,122 novel TARs with 
below average array signal. We then cluster the remaining 1,626 novel TARs with above 
average signal in a similar manner to the previous step using the phylogenetic profiles for 
17 different species sequenced in the ENCODE regions instead of expression profiles 
(see Methods for more details). A correlation matrix is computed between phylogenetic 
profiles of novel TARs that are within 20 kb of each other. We then use k-means 
clustering on this matrix and find optimal clustering for a k of 111. This clustering yields 
100 clusters of 3 or more groups of TARs containing a total of 782 novel TARs, with a 
                                                
1 This estimation of a p-value of less than 0.05 takes into account the multiple testing of the expression 
profile of a novel TAR with on average 19 known exons within 20 kb. The p-value for obtaining a Pearson 
correlation of 0.9 for two 11 dimensional vectors is less than 10-3.  
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median cluster size of 7. Summary details of these clusters are also available in table 3. 
As with the k-means clustering using expression profiles the majority of the novel TARs 
are in one unclustered group.  
 
DART (Database for Active Regions with Tools) 
 
DART (DART.gersteinlab.org) has been developed to facilitate the flexible storage, 
visualization, and analysis of the growing number of experimentally defined sets of 
regions detected using genomic tiling microarrays. These are either sets of 
transcriptionally active regions (TARs) or sites of transcription factor binding called 
binding active regions (BARs) or more generally active regions (ARs). DART has been 
designed to address a number of challenging issues that arise when attempting to store 
and analyze this type of data.  These challenges will clearly grow in the future, as the 
ENCODE project expands from the analysis of 1% of the genome to the entire genome, 
and as more, increasingly diverse sets of ARs are experimentally determined.  The key 
aspects of DART include the following. 
 
1. Dealing with heterogeneous datasets: DART needs to be able to incorporate a 
rapidly growing number of sets of ARs which have been derived from a wide variety of 
experimental conditions. The current DART design is a first step towards allowing for 
multiple sets of ARs to be analyzed in a flexible fashion, including analyzing the unions 
and intersections of multiple sets and viewing the overlap among ARs in different AR 
sets. 
 
2. Flexibility for storing different AR attributes: DART allows the flexible storage 
of different types of attributes associated with ARs, such as sequence information and 
array fluorescent signal intensities, as well as the adjustable groupings of ARs into 
subsets or clusters (potentially forming novel transcribed loci for the case of TARs). To 
accommodate this diversity, we use the Entity-Attribute-Value (EAV) data storage 
technique (Nadkarni et al. 1998) to define the attributes of either individual active regions 
or sets of active regions without modifying the database structure or program. These 
attributes can be used to search for desired AR sets. 
 
3.  Accommodating new genome builds:  DART is designed to handle problems that 
occur as new builds (versions) of the human genome are defined and as the annotation 
associated with each AR set is updated to accommodate each new genome build.  DART 
can store multiple values for AR genome locations corresponding to different genome 
builds.  These coordinates are updated using the UCSC LiftOver tool, which maps 
between genome builds (Kent et al. 2002). 
 
4.  Integrated linking to other web resources for broader visualization and analysis:  
DART contains a number of capabilities designed to facilitate the integrated visualization 
and analysis of the data.  These include both the ability to pass selected AR sets to the 
Active Region Comparer (ARC) for comparative analysis and annotation and the ability 
to display overlap among the ARs of different sets.  Also, as described above, DART is 
integrated at several levels with the UCSC Genome Browser (Kent et al. 2002).    
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See figure 6a for an overview of the current implementation of DART’s functionality. 
More details of which are provided in the Methods section. 
 
Active Region Comparer Tool 
 
The Active Region Comparer (ARC) provides a web-based interface for comparing, 
filtering, and annotating multiple sets of genomic regions, such as sets of TARs.  The tool 
facilitates the analysis of ARs by determining how the regions in each set overlap those 
in other sets and by generating summary statistics to describe these relationships. 
ARC therefore allows the user to find regions that are common to multiple sets as well as 
regions that are specific to one set and not another. Additionally, by interfacing with a 
local EnsEMBL database (Birney et al. 2006) ARC can obtain a region’s genomic 
annotation, which includes the sequence of the region, overlapping or nearby annotated 
transcripts, and other details such as the lengths and coordinates of overlapping and 
nearby exons. ARC also has an interface for exporting and visualizing multiple data sets 
via the UCSC Genome Browser, which displays sets of ARs alongside sets of genomic 
annotation to provide a graphical overview of the selected region. A diagram of how 
ARC works and its connectivity with the main DART database is presented in figure 6b. 
ARC also has the functionality to view individual ARs together with surrounding 
transcription start sites, CpG islands, known transcription factor binding sites and a local 
G/C content map using TAR-Vis (supplementary figure 2). See Methods for further 
details about the inner workings of the ARC tool as well as the TAR-Vis visualizer 
connected to it.  
 
Observations Concerning Novel TARs 
 
Tandem Duplicated TARs 
 
While attempting to remove novel TARs that were likely caused by cross-hybridization 
we found that none of the 658 novel TARs that had a BLAST e-value of 10-5 or better had 
a corresponding blastTAR located in a different ENCODE region. A naïve expectation 
would be that, given that the ENCODE regions account for one percent of the human 
genome approximately one percent of the BLAST matches would be within the 
ENCODE regions. However, we find that there are 396 blastTARs located in the same 
ENCODE regions as their corresponding TARs. Of these TARs, 64 are located within 
1kb of the original TAR and 144 are located within 20kb. Of the 396 blastTARs, 249 of 
them are actually different novel TARs (this makes sense, for if they have similar 
sequences they would typically also be detected as transcribed by the tiling arrays). These 
tandem sets of matching TARs come from many of the ENCODE regions, with the 
following three regions being most overrepresented: ENm006 (chromosome X from 
152,635,144 to 153,973,591 with respect to human genome build NCBI Build 35), 
ENm007 (chromosome 19 from 59,023,584 to 60,024,460) and ENr233 (chromosome 15 
from 41,520,088 to 42,020,088). These three ENCODE regions have tandem arrays of 
paralogs likely arising from segmental duplications (e.g. the ENm007 has a family of 
immunoglobulin-like receptors). 
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These tandem sets of novel TARs might be caused by cross-hybridization. However, 
since they are located in regions arising from local segmental duplication, it is not clear 
that cross-hybridization is the cause. For this reason, we chose not to remove them from 
the set of novel TARs under investigation.  
 
Comparison of sets of novel TARs with RACE products 
 
We first compared the different sets of novel TARs against the so-called `RACEfrags’ or 
RACE (Rapid Amplification of cDNA Ends) fragments generated by hybridization of 
cloned 5’ RACE products off exons of known genes in the ENCODE regions (see 
[reference to ENCODE manuscript] for more details). The RACEfrags like transfrags or 
TARs, are identified as transcribed regions; however, they also indicate the connectivity 
of the extended 5’ RACE products to the indexed exon from which the primer was 
selected. Thus, all 5’ RACEfrags upstream of an annotated transcription start site 
correspond to a novel 5’ end. The RACE reactions were done using RNAs from 12 
tissues, different from the 11 cell lines and conditions that were used in mapping the 
TARs. We find that the set of all novel TARs has a 6 percent overlap with the 
RACEfrags while the set of novel TARs assigned to gene loci has a 12 percent overlap (a 
two-fold enrichment). By comparison the set of novel TARs grouped into novel TAR 
clusters only has a 0.4 percent overlap with the RACEfrags, as expected (see table 4). By 
comparison a randomly generated set of unannotated regions only has a 1.9 percent 
overlap with the RACEfrags (see Methods for further details). 
 
Structural RNAs 
 
We also investigated the differing potential for the various sets of TARs to form 
structural RNAs using RNAz (Washietl et al. 2005) (see Methods). The recently 
submitted ENCODE companion paper (Washietl et al. 2006) deals with a comprehensive 
analysis of structural RNAs in the ENCODE regions and discusses approaches for 
detection of structural RNAs using computational approaches and transcriptional 
evidence. Here we take a somewhat different focus, investigating what fraction of the 
classified sets of novel TARs have the potential to form structural RNAs. Using a 
relatively stringent threshold score from RNAz of 0.95, which corresponds to structural 
RNA of high confidence, we find that the set of novel TARs that can be associated with 
known gene loci has the largest fraction with significant scores. We also note that the set 
of novel TARs with unusual sequence composition has above average enrichment for 
structural RNAs. This finding most likely reflects the fact that this set of novel TARs 
tends to have higher G/C content, which can affect the prediction made by RNAz (again 
see table 4). 
 
Protein Homology 
 
By design the translated sequences of the initial set of 6,988 novel TARs do not have 
strong similarity to known protein sequences, since we filtered out those that have 
BLASTx matches to annotated genes in the genome (i.e. pseudogenes). However, there 
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may be some novel TARs that have distant homology to gene relics. Using the profile 
hidden Markov model software HMMER (Eddy et al. 1998), we find that only 6 of the 
translated novel TAR sequences have significant matches, all of which are located in 
intronic regions. 
 
Comparison of novel TAR clusters with TSSs and transcription factor binding sites 
 
To test the validity of the 96 novel transcribed loci generated using expression profiles, 
we compare these clusters of novel TARs with two other datasets that were generated in 
[reference to ENCODE manuscript], the set of CAGE tags and paired-end-tags (ditags). 
These datasets been combined to form a set of 1144 known and putative transcription 
start sites (TSSs). We find that 6 of the 96 novel TAR clusters have a TSS within 1 kb of 
either end (since the strandedness of a novel TAR cluster is undetermined). An example 
of one of these is shown in figure 7, where we see a novel TAR cluster comprising 4 
novel TARs with the rightmost TAR overlapping a putative transcription start site. This 
example is in a region of chromosome 2 (from 118175232 to 118198192, build NCBI 
Build 35) where there are no other annotated transcripts. Comparing the set of novel TAR 
clusters to the composite list of promoters identified in [reference to ENCODE 
manuscript], we find that 23 of the 96 novel TAR clusters have an end that is within 1 kb 
of a composite promoter2. When we compare the 100 novel TAR clusters grouped on the 
basis of similar phylogenetic profiles we find that 34 have an end within 1 kb of a TSS 
while 32 have an end within 1 kb of a composite promoter. We performed a simulation 
for random clusters of similar genomic extent to our novel TAR clusters, and found that 
only 9.2 out of 100 would have an end within 1 kb of a TSS while 17.5 out of 100 would 
have an end within 1 kb of a composite promoter (see Methods for details of the 
simulation). 
 
Testing connectivity of transcripts using RT-PCR and Sequencing 
 
As a small-scale follow-up experiment we selected 23 novel TARs that were assigned to 
known gene loci. These were selected such that the novel TAR and its associated exon 
are both expressed in Placental Poly(A)+ RNA. Using primer pairs generated from the 
novel TARs and their associated known exons, 23 RT-PCR reactions were performed. 
We found that 9 out of the 23 primer pairs (39%) yielded a PCR product on the gel (with 
no band in the absence of RT), which is evidence for a transcribed sequence spanning 
both the TAR and the known exon. In addition another 23 pairs of novel TARs that were 
grouped as being part of a novel TAR cluster were tested for connectivity by selecting a 
primer from each novel TAR sequence. Of these again 9 out of the 23 (39%) yielded a 
PCR product that provides experimental support for the connectivity of these novel TARs 
in a spliced RNA transcript. An additional two pairs of primers were selected as negative 
controls, neither of which showed any PCR product. The gel for some of these PCR 
products is presented in figure 8a. Supplementary table 1 lists all of the pairs of regions 

                                                
2 There are 828 putative composite promoters on the list from [reference to ENCODE manuscript] which is 
a set of both known and predicted promoters. Promoters were predicted using multiple ChIP-chip datasets 
for promoter specific transcription factors and modifications. This set of promoters is available at 
DART.gersteinlab.org. 
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tested for connectivity as well as the presence or absence of a RT-PCR product. When we 
see a PCR product generated from primers for a pair of novel TARs or for a novel TAR 
and an exon, it implies that both of the sequences are transcribed and that the product is 
likely a portion of a spliced transcript that utilizes and connects both of the sequences. 
 
In order to verify the PCR reactions, 5 PCR products were then directly sequenced using 
their respective forward and reverse primers. The five PCR products yielded sequences 
which align to the transcribed sequences tested for connectivity, only one of which could 
not be counted as confirmationed. This PCR product was probably caused by cross-
hybridization due to the sequence mapping better to another genomic location. Of the 
four PCR products which were confirmed by sequencing, one of them yielded a spliced 
sequence (see figures 8b and 8c) and three produced a sequence that was not spliced and 
included the intervening sequence between the two regions tested. These sequenced PCR 
products are shown in supplementary table 2. Even though not all the sequenced products 
were spliced, the results do confirm the RT-PCR products. Thus 4 of the 5 PCR products 
that were sequenced unambiguously confirm the connectivity of the associated pairs of 
sequences tested. 
 
DISCUSSION 
 
We have developed the DART system for the classification and categorization of the 
large quantities of novel transcribed regions that have been identified in the human 
genome. We can assign each novel TAR with reasonable confidence to one of the 
following sets: novel TARs that are likely caused by unusual sequence composition or 
cross-hybridization, novel TARs that can be assigned to known genes and novel TARs 
that can be clustered into novel transcribed loci. This last category of novel TARs 
possibly corresponds to entirely new transcripts.  
 
To encapsulate our classification we have constructed DART, a database and tool set 
designed for the storage and visualization of large quantities of TAR sets and all of their 
additional features. DART is also designed to have a flexible framework that can 
incorporate any information associated with sets of TARs. DART and its companion tool 
ARC facilitate the comparison and display of multiple sets of TARs (or a set of Active 
Regions such as transcription factor binding sites) either though its own custom interface 
or via the UCSC Genome Browser. 
 
We find that the set of novel TARs identified by the ENCODE Consortium has a number 
of interesting characteristics. There is enrichment in the potential for novel TARs to form 
structural RNAs compared to random sequences. This trend is especially prominent for 
the novel TARs that are associated with known gene loci. Some of these might 
correspond to structural RNAs that are coregulated with genes. We also find a significant 
overlap between the ends of clusters of novel TARs (novel transcribed loci) derived from 
either expression or phylogenetic profiles with both transcription start sites and 
promoters. There is also a significant enrichment among the novel TARs assigned to 
known gene loci for overlap with the 5’ RACE extensions (or RACEfrags) of known 
genes identified in [reference to ENCODE manuscript]. 



 15 

 
We followed up our classification procedure by experimentally testing the connectivity of 
novel TARs that were assigned to known genes. Using RT-PCR, we found that 39% of 
the 23 novel TARs tested could be identified as part of a transcript that utilized the 
sequence of the novel TAR and at least one exon of the known gene. In principle, not all 
novel TARs that are assigned to known genes must be part of alternative isoforms of 
known transcripts. Some might correspond to other RNAs that are co-regulated with 
transcripts from the locus. In addition we tested the connectivity of identified clusters of 
novel TARs using RT-PCR. Again, we found that 39% of the 23 pairs of novel TARs 
yielded a PCR product, which is evidence of both the transcription and connectivity of 
the novel TARs within a single transcript. When a RT-PCR product is obtained from 
pairs of primers sourced from separated genomic regions (either two novel TARs or a 
novel TAR and an exon) this confirms that both regions are transcribed and utilized as 
part of a single spliced transcript (of which the PCR product is a piece). Of the 5 PCR 
products sequenced, 4 of the sequences match uniquely to the correct genomic location 
and further verify the results obtain by RT-PCR. 
 
The datasets that were employed in the analysis presented in this paper were from the 
transcript maps derived from 11 different cell lines and conditions for the ~1% of the 
human genome included in the ENCODE regions. The statistical power of this procedure 
will increase non-linearly as the number and size of the data sets increases: as the number 
of data sets increases, so will the accuracy with which novel TARs can be associated with 
known genes. In addition, when transcript maps cover the entire genome, we will be able 
to more confidently remove novel TARs that are caused by cross-hybridization. In the 
next phase of the ENCODE project, there will be many more data sets generated that will 
span the entire genome. The methods developed here can be employed to initially classify 
the large amount of novel transcription that will be identified. This classification 
followed by medium-scale experiments will lead to a better understanding of the function 
of the multitude of RNAs that are transcribed in human cells. This iterative approach, 
consisting of analysis followed by more detailed experiments that feed back to improve 
the analytical methods, will lead to a more complete understanding of the diversity of 
transcripts of the human genome. 
 
MATERIALS & METHODS 
 
Experimental Testing of Connectivity of Genomic Regions by RT-PCT and 

Sequencing 

Primer pairs were selected for 23 novel TARs that are expressed in placental RNA and 
are assigned to known gene loci. The primer sequences were selected from each novel 
TAR as well as from the exon of the gene with which the novel TAR had the strongest 
correlation. An additional 23 primer pairs were selected from pairs of different novel 
TARs that are present in placental RNA and could be clustered together using their 
expression profiles. An additional 2 pairs of primers were selected as negative controls 
from novel TARs that are located on different chromosomes. The regions selected and 
the corresponding primer sequences are available in supplementary table 1. 1µg of 
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Human placenta poly(A)+ RNA was used in a final volume of 20µl Reverse 
Transcription (RT) reaction (50ng/µl).  RT reactions were primed by Oligo dT using 
Superscript™ II reverse transcriptase 200U in 20µl reactions (Invitrogen, CA, USA).  In 
parallel, reactions without reverse transcriptase (RTase minus) were also performed as 
the negative controls for genomic contamination.  RT was followed by PCR 
amplification using the Advantage™ 2 PCR Enzyme System (Clontech, CA, USA).  The 
2µl RT reaction and the 2µl RTase minus negative control from the above were used side 
by side in 50µl PCR reactions.  The PCR program was started at 95°C for 30 seconds, 
followed by 35 cycles of 95°C for 15 seconds, 68°C for 1 minute, and concluded by an 
extension cycle of 72°C for 3 minutes.  The PCR products were visualized on a 1% 
agarose gel. Five of the PCR products were then sequenced using both the forward and 
reverse primers. 
 
Expression Profiles for Sets of Novel TARs and Known Exons 

For each of the 11 different cell lines and conditions, a transcript map corresponds to  
fluorescent intensities for 755,457 25mer oligonucleotide probes tiling the non-repetitive 
sequence of one strand of the ENCODE regions. The array hybridizations in [reference to 
ENCODE manuscript] were done using double stranded cDNA, thus the signal maps 
correspond to the signals from both strands.  The 11 cells lines and conditions are: 
GM06990 Poly(A)+ RNA, HeLa Poly(A)+ RNA, HL60 Poly(A)+ RNA (0 hour after 
treatment with retinoic acid, 2 hour after treatment with RA, 8 hour after treatment with 
RA, 32 hour after treatment with RA), Placental Poly(A)+ RNA, Neutrophil Total RNA, 
NB4 Total RNA (untreated, treated with RA, treated with TPA). The transcript maps are 
first scaled to each other using quantile normalization (Bolstad et al. 2003). An 
expression profile is then calculated for each novel TAR as well as for each known 
GENCODE exon by computing the median fluorescent signal from all the 
oligonucleotide probes contained within the boundaries of the TAR or exon. Exons that 
are not in the tile path of the Affymetrix ENCODE array are excluded. 
 
Phylogenetic Profiles for Sets of Novel TARs 
 
Phylogenetic profiles were generated using data derived from multi-species sequence 
alignment constructed by the ENCODE-MSA group ([reference to ENCODE 
manuscript]). In this analysis, we surveyed the presence/absence of novel TARs in the 
orthologous genomic regions of other species.  Sixteen mammals (chimp, baboon, 
macaque, marmoset, galago, rat, mouse, rabbit, cow, dog, rfbat, shrew, armadillo, 
elephant, tenrec,  monodelphis) were selected for this study, since they had received 
better sequence coverage than the other species used by the MSA group. A TAR was 
considered as "present" (given a value of 1 and otherwise 0) in a species if >1/3 of its 
content was detected in the MSA alignment from that species.  We used the alignments 
constructed by the program TBA (Threaded Blockset Aligner) (Blanchette et al. 2004). 
 
K-Means Clustering of Novel TARs 
 
We use k-means clustering to form groups of nearby novel TARs. The k-means 
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clustering is done using the R statistical package with the default Hartigan et al. (1979) 
algorithm. We choose an appropriate value of k for optimal clustering using the rule of 
thumb of Hartigan (1975), where we find a k such that the weighted ratio of the sum of 
squares is significantly greater than 10 for (k-1) compared with k. 
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Where SS is the sum of squares and n is the number of novel TARs being clustered. We 
find the ratio is 143.4 for k=102 when clustering with expression profiles and the ratio is 
78.3 for k=111 when clustering with phylogenetic profiles.  
 
Implementation of DART (Database of Active Regions and Tools) 
 
DART includes a relational database implemented in MySQL on a Linux server. There 
are tables for recording basic active region information such as chromosome, location, 
strand, sequence, and genome build number. Other tables and relations define higher-
level objects such as sets of active regions, classes of sets, and attributes describing sets. 
In figure 6a we provide an overview of the DART’s current functionality.   
 
At the most general level, the user is presented with a listing of sets of ARs.  These AR 
sets may be searched and selected in various ways and then passed to the ARC (AR 
Comparer) tool for further analysis. Alternatively, data about a single AR set may be 
viewed at successive levels of detail, e.g., 1) a summary of the AR locations by 
chromosome, 2) a summary of the AR locations by chromosomal segment, 3) a list of 
ARs found within a selected chromosomal segment, and finally 4) detailed information 
about a single AR, including a graphical indication of its overlap with ARs in other AR 
sets.  From various DART screens, data can be passed to custom tracks in the UCSC 
Genome Browser (Kent et al. 2002) so that the DART data can be viewed in a broader 
context. 
 
Software and Web pages access the DART database through library routines written in 
Perl.  These library routines have a convenient object oriented structure. They support 
functions such as defining a genome build number, reannotating active regions for a new 
genome build, inserting active regions, defining sets and their attributes, and defining 
classes of sets.  As objects are entered into DART, the library routines assign a unique 
accession number to each object created or inserted.  Public domain Perl libraries are 
used to construct and display graphs on certain DART web pages. URLs are constructed 
to allow DART data to be sent to public browsers such as the UCSC Genome Browser 
(Kent et al. 2002).  
 
The current implementation of DART represents a first step in confronting the challenges 
involved in manipulating and displaying heterogeneous AR datasets. As the amount of 
data, as well as the heterogeneity of that data, grows rapidly in the future, we will clearly 
need to extend and augment DART’s capabilities to keep pace with the new challenges 
that arise. The code base for DART is downloadable from the DART website. All the 
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TAR data sets from [reference to ENCODE manuscript] as well as the results of this 
paper are available from DART (http://DART.gersteinlab.org). 
 
Active Region Comparer Tool 
 
The ARC site features four pages (see figure 6b), the first of which is the ARC Home 
page.  ARC Home accepts formatted files3 and DART datasets for upload, and it offers 
options for regulating the AR analysis.  These options include filtering ARs on length, 
adding flanking sequences to each AR, grouping ARs by strand identifier, and mapping 
datasets from one build to another using a local copy of the UCSC liftOver tool. 
 
ARC initiates AR analysis by flattening each file’s genomic intervals onto a single 
coordinate axis such that any overlapping regions are combined to form a single region.  
ARC then performs combinatorial operations on these datasets using an algorithm that 
achieves high efficiency through a hierarchical series of unions and pairwise 
intersections.  These operations may be used to perform one of two types of analysis.  
The first procedure determines which nucleotides are common to at least k out of n files, 
where k is a number between 1 and n, while the second procedure determines which 
nucleotides are common to exactly k out of n files.  For each permutation, ARC generates 
a new dataset containing the corresponding genomic intervals.  ARC also performs 
standard subtraction operations on two files, for which it generates new datasets as well.   
  
The combinatorial algorithm described above minimizes run time by reducing the 
number of intersection operations that ARC must perform.  It first takes the union of the 
genomic intervals in all n datasets to create a file that contains each region present in at 
least one of the original datasets (a.k.a. all regions).  It then calculates all unique pairwise 
intersections among the original n datasets to create n choose 2 new datasets.  The union 
of these datasets yields a file that contains each region present in at least two of the n 
original datasets.  The next iteration of the procedure produces n choose 3 new datasets 
whose union produces a file containing regions in at least 3 of the n original datasets.  
When carried to completion, the algorithm creates n files (one for each iteration of n 
choose k).  To ensure good performance time, every new group of datasets is clustered as 
shown in supplementary figure 3 so that the fewest possible intersection operations are 
performed.  In the case where a user wishes to see one specific permutation only, instead 
of all n, ARC uses the algorithm described at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vstechart/html/mth_lexicograp.asp. This method requires fewer intersection 
operations when applied to a single permutation. 
 
To present the results of the above computations, ARC displays summary statistics for 
each dataset in the ARC Results page (see figure 6b).  ARC also creates new sets for the 
ARs in each chromosome of each full dataset, and it provides summary statistics for these 

                                                
3 ARC accepts files in BED format and files containing inclusive intervals.  The Browser Extensible Data 
(BED) format uses a 0-based, half-open coordinate system.  It was developed for the UCSC Genome 
Browser and is described fully at http://genome.ucsc.edu/FAQ/FAQformat#format1.  The inclusive 
intervals option accepts 1-based, closed coordinates as used by Ensembl. 
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subgroups.  All sets may be downloaded directly, or they may be further analyzed by the 
ARC Annotations page and the UCSC Display page. 
 
The ARC Annotations page (see figure 6b) annotates and filters AR datasets using a local 
Ensembl database (Birney et al. 2006).  Its options include grabbing features of the 
interval itself (sequence, G/C content, etc.), identifying overlapping transcripts and 
exons, and finding neighboring transcripts.  The page also filters on AR length, G/C 
content, and classification (exon, intron, or intergenic).  Processed datasets can be 
downloaded or exported to the UCSC Display page (see figure 6b). 
 
The UCSC Display page facilitates the visualization of datasets by exporting them to the 
UCSC Genome Browser.  Each dataset received by the Display page is loaded as a 
custom UCSC track in an in-frame version of the Genome Browser.  These tracks can be 
viewed in the Genome Browser using either UCSC navigation tools or ARC hyperlinks.   
The tracks can also be analyzed with the UCSC tools.  The UCSC Display page retains a 
history of exported datasets, and selecting multiple datasets from the history loads each 
one as a custom track in the UCSC browser, allowing for their direct comparison.  These 
features provide a graphical interface for an otherwise abstract set of data points. 
 
TAR-Vis 
 
TAR-Vis is a collection of Perl scripts and modules that uses the open-source Bioperl 
modules (Stajich et al. 2002) and Ensembl's Perl API to automatically retrieve, analyze, 
and display sequences of genomic DNA containing a specific TAR or set of TARs. Given 
a chromosomal region and a genome build, TAR-Vis fetches the sequence region 
(including at least 1,000bp upstream and downstream in order to avoid boundary 
conditions on the subsequent calculations) from Ensembl's main databases and copies it 
to the local machine. From there, various calculations are run on the selected region, 
including Eponine transcription start site detection (Down et al. 2002), Cluster-Buster 
(Frith et. al 2003) transcription factor binding site detection (using the JASPAR TFBS 
database), CpG island detection, and G/C content graphing. Finally, all surrounding gene 
annotations are collected from Ensembl's annotation server. The resulting calculations 
and gene annotations are stored in a GFF3 file and visually presented using the 
Bio::Graphics module of Bioperl. 
 
Generation of Randomized Sets of Novel TARs and Novel TAR Clusters 
 
In order to assess the significance of the overlap of the different sets of novel TARs with 
the set of RACEfrags, a set of 7,000 random TARs were generated (comparable in size to 
the set of all novel TARs). This set of random TARs was selected so as to avoid 
intersecting any annotated GENCODE exon, to include only non-repetitive DNA 
sequence and to have the same length distribution as the set of all novel TARs detected 
on the ENCODE tiling arrays.  
 
In order to compare the overlap of the ends of the novel TAR clusters within 1Kb of 
putative TSSs or composite promoters from [reference to ENCODE manuscript], we 
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created a random set of 1,000 novel TAR clusters whose length distribution was the same 
as that for the novel TAR clusters generated using either expression or phylogenetic 
profiles. 
 
Accessing Structural RNA Potential of Novel TARs using RNAz 
 
We used the following approach to predict structural non-coding RNAs (ncRNAs) with 
conserved and thus potentially functional secondary structures using the RNAz tool 
(Washietl et al. 2005): TARs were first collected and extended by 50 nucleotides on 
either side (this ensures detection of tightly structured ncRNAs, which may hybridize 
more poorly to microarrays than unstructured RNAs). All sequences were mapped to 
their corresponding TBA multiple sequence alignment blocks (23-way) constructed for 
the ENCODE regions. In each case, the human sequence together with the five most 
distant sequences, each sharing an overall sequence identity of at least 70% with the 
human sequence, were kept and analyzed using RNAz. Alignment blocks of 120 bp were 
subjected to analysis by RNAz, using an offset of 40 and considering both DNA strands 
independently (smaller alignment blocks of a minimum size of 50bp were analyzed 
without offset). When comparing different TAR sets, maximum RNAz scores were 
calculated for each TAR (the RNAz score, from 0 to 1, denotes the probability for a DNA 
sequence to encode a structural RNA, calculated based on support vector machine 
classification, Washietl et al. 2005). 
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TABLE LEGENDS AND FIGURE CAPTIONS 
 
Table 1: The sizes and percentages of coverage of the GENCODE exonic, pseudogenic 
(exons only) and unannotated regions are shown. The number and percentage of all TARs 
are shown for each of these partitionings. Unannotated regions are segmented into 
proximal intronic regions (closer than 5 kb to an exon), distal intronic regions, proximal 
intergenic regions, distal intergenic regions and regions corresponding to other ESTs that 
are not annotated as exons of GENCODE genes (also see figure 1a). Coverage and 
percentage is displayed for the number of novel TARs in each of these partitions. We 
observe that the number of novel TARs is significantly overrepresented for the intronic 
proximal and EST categories compared to the percentage coverage of these partitionings.  
 
Table 2: Counts of the number of novel TARs in each of the classification sets: novel 
TARs with peculiar sequence composition, novel TARs associated with known genes, 
TARs caused by cross-hybridization and novel transcribed loci identified either using 
expression profiles or phylogenetic profiles (also see figure 1b). 
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Table 3: Summary statistics for the novel transcribed loci identified using either 
expression profiles of array signals or phylogenetic profiles. Genomic length is the 
genomic footprint of a cluster in the genomic sequence, while the putative transcript 
length corresponds to the sum of the lengths of the component novel TARs. 
 
Table 4: Overlap of the sets of novel TARs with the mapped 5’ RACE fragments 
(RACEfrags) and the fraction that are indicated by RNAz as potentially being a structural 
RNA at a score of 0.95. The set of novel TARs that are associated with known genes has 
the greatest enrichment for overlap with RACEfrags, while the set of novel TARs in 
novel transcribed loci has the least. We do not expect the novel TARs assigned to known 
genes to completely agree with the set of RACEfrags for a number of reasons. The 
RACEfrags are mostly 5’ extensions of known genes (a small fraction corresponds to 
internal novel exons), but the novel TARs associated with known genes are not 
necessarily alternative isoforms of the gene transcript – some may be part of distinct but 
co-regulated RNAs. The set of novel TARs associated with known genes has the largest 
fraction that potentially corresponds to structural RNAs. 
 
Figure 1a: Schema for the partitioning of TARs on the basis of location relative to 
GENCODE genes and pseudogenes (also see table 1). Proximal regions are located 
within 5 kb of the nearest GENCODE exon. 1b: Outline of the DART classification 
procedure of novel TARs. Novel TARs are first filtered on the basis of sequence 
composition (step 1), and then a fraction of the remaining novel TARs are associated 
with known genes (step 2). A portion of the remaining novel TARs are clustered in novel 
transcribed loci on the basis of expression profiles (EPs) and phylogenetic profiles (PPs) 
(step3). See table 2 for the numbers of novel TARs classified by each of these steps. The 
singlet and ambiguous TARs are what remains at the end of the classification procedure. 
 
Figure 2: Summary of the features that are associated with each novel TAR and that are 
utilized by the classification procedure. 
 
Figure 3: Plot of the distribution of GENCODE exons (blue line) and novel TARs (red 
line) against CC/GG di-nucleotide frequency. The distribution of novel TARs is skewed 
to high CC/GG di-nucleotide frequencies. A black arrow indicates the di-nucleotide 
frequency (0.155) above which only ~1% of the GENCODE exons are found. This 
threshold is used to filter novel TARs with peculiar sequence composition (CC/GG  di-
nucleotide frequency higher than 0.155). 
 
Figure 4: Illustration showing how novel TARs can be associated with known genes by 
identifying novel TARs that are co-expressed with exons of known genes. Co-expression 
is determined by computing the Pearson correlation of expression profiles of array signals 
between novel TARs and nearby (closer than 20 kb) exons. The sizes of the circles 
correspond to the fluorescent signal intensity measured on the tiling arrays for each of the 
11 different cell lines indicated by S1 through S11. 
 
Figure 5: Plot of sensitivity against false positive rate for the assignment of exons of 
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known genes to the correct gene on the basis of the exon being co-expressed with other 
exons. The blue curve is calculated where an exon is allowed to be assigned to any gene 
in the genome, while the red and green curves are where the assignment is limited to 
genes which have exons within 100 kb and 20 kb of the target exon respectively. 
Restricting assignment to exons of nearby genes reduces the false positive rate of the 
assignment. The Pearson correlation of the best possible assignment for each exon is the 
threshold which parameterizes each curve. 
 
Figure 6a: The current functionality of DART is displayed. At the top level one can 
access all the sets of ARs (either TARs or BARs) that are in the database. Upon selecting 
a collection of these sets one can either transfer sets to the ARC tool or inspect each set 
individually. At the individual set level, ARs can be viewed either at a complete set level, 
chromosomal level or a more local level. Individual ARs can be viewed with all their 
associated attributes. For an individual AR, DART also displays how it overlaps all other 
ARs in the database. Additionally at multiple levels these sets can be visualized via the 
UCSC Genome Browser. 6b: ARC Home accepts datasets from DART and from 
uploaded text files.  Submission of the ARC Home form leads to the ARC Results page, 
which displays summary statistics for uploaded and newly generated datasets.  From the 
ARC Results page, datasets may be downloaded, annotated in the ARC Annotations 
page, or visualized in the UCSC Display page.  The Annotations page formats its 
processed datasets for presentation in HTML tables, for download as text files, and for 
export to the ARC Display page.  Datasets sent to the UCSC Display page are loaded in 
the UCSC Genome Browser as custom tracks.  From the UCSC Display page, one can 
return to the ARC Results page to repeat these analyses for other datasets. 
 
Figure 7: Plot of a novel transcribed locus identified using the expression profile (the 
clustered TARs are shown in blue). Other novel TARs that are not part of this cluster are 
shown in red. In green we see the overlap of a putative transcription start site with the 
likely 5’ end of this cluster. There are no annotated transcripts in the region displayed 
(chromosome 2 from 118,175,232 to 118,198,192, NCBI Build 35). We also observe 
transcript maps for the 11 different cell lines and conditions (not all novel TARs are 
shown in this region). 
 
Figure 8a: Image of an agarose gel of RT-PCR products results from testing the 
connectivity between novel TARs and exons of known genes as well as between pairs of 
novel TARs clustered as a novel transcribed locus. Experiments were performed using 
Placental Poly(A)+ RNA, where “+” indicates the presence of reverse-transcriptase and 
“-”  indicates its absence. “L” indicates the molecular weight ladder. A table of regions 
tested and their corresponding ids and primer sequences is located in supplementary table 
1. 8b: Example of a pair of novel TARs (id B15) predicted to be associated with each 
other, potentially as part of a single transcript. This was confirmed by RT-PCR using 
placental RNA and was also successfully sequenced. The region displayed is on 
chromosome 21 from 34,270,568 to 34,270,998 (NCBI build 35). The sequence obtained 
from the PCR product is shown in red, the two connected novel TARs are in blue and the 
forward and reverse primers are in black. There are no annotated transcripts in the region 
displayed. 8c: Alignment of the sequenced PCR product against the genomic sequence 
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shows that the transcript which connects the two novel TARs is spliced. 
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Table 1 
Locations of all TARs

Exonic Pseudogenes Unannotated Regions
Size of ENCODE Regions (bp) 1,776,157 144,745 28,077,158
Percentage of all ENCODE 5.9% 0.5% 93.6%

Number of TARs 3,666 195 6,988
Percentage of all TARs 33.8% 1.8% 64.4%

Locations of Novel TARs
ESTs not in Exons Intronic Proximal Intronic Distal Intergenic Proximal Intergenic Distal

Size of Unannotated Regions (bp) 2,477,910 8,522,559 5,536,879 2,434,101 9,250,454
Percentage of Unannotated Regions 8.8% 30.2% 19.6% 8.6% 32.8%

Number of Novel TARs 1,194 3,006 864 772 1,300
Percentage of all Novel TARs 16.7% 42.1% 12.1% 10.8% 18.2%



Table 2: Sets of Classified Novel TARs 
Number Percentage

Total 6,988 100.0%

With peculiar sequence composition 503 7.2%
Assigned to known genes 955 13.7%
Caused by cross-hybridization  - -
In novel transcribed loci using expression profiles 681 9.7%
In novel transcribed loci using phylogenetic profiles 782 11.2%



Table 3

Summary Statistics for 96 Clusters of Novel TARs using Expression Profiles

Minimum Median Average Maximum

Number of TARs 3 6 7.1 21

Genomic Length (bp) 2315 21,819 23,225 76,683

Putative Transcript Length (bp) 213 533 786 3791

Summary Statistics for 100 Clusters of Novel TARs using Phylogenic Profiles

Minimum Median Average Maximum

Number of TARs 3 7 7.8 14

Genomic Length (bp) 1,354 22,594 24,331 39,810

Putative Transcript Length (bp) 208 664 894 2,159



Table 4: Features of Novel TAR Sets

Number Overlap with RACEfrags Percentage overlap with RACEfrags Overlap with RNAz Percentage overlap with RNAz

All Novel TARs 6988 434 6.2% 270 3.9%

TARs with peculiar sequence composition 503 30 6.0% 22 4.4%

TARs assigned to known genes 955 116 12.1% 55 5.8%

TARs in novel transcribed loci using expression profiles 681 3 0.4% 19 2.8%

Tandem repeat TARs 249 26 10.4% 5 2.0%



Figure 1a
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for Cross-Hybridization

S3A Cluster into Novel Transcribed 
Loci using Expression Profiles (EP)

Peculiar TARs

Cross-Hyb TARs

Novel EP Loci

Singlet or Ambiguous TARs

P D P D E

S2 Assign Novel TARs to 
Known Genes using
Expression Profiles

Gene Assoc. TARs

P D P D E

P D P D E

P D P D E

S3B Cluster into Novel Transcribed
Loci using Phylogenic Profiles (PP)

Novel PP Loci

P D P D E



• Sequence similarity to protein sequences (using HMMER)
• Potential for being a structural RNA (using RNAz)

Functional
Assignment

• Sequence composition of TARs
• Phylogenic profile of TARs

• Vicinity to TSSs from CAGE tags and ditags
• Overlap with TARs from other array experiments
• Vicinity to promoters identified by ChIP-chip/ChIP-PET

• Expression profile of array signals for 11 cell lines and conditions
• Genomic location relative to GENCODE/HAVANA genes

Sequence Features

Relationship to
Genomic Features

Key Features:

Characteristics of TARs

Figure 2



Figure 3

Th
re

sh
ol

d



Figure 4



Figure 5



Figure 6a



Figure 6b



Figure 7

Novel Transcribed Locus
Other Novel TARs
Transcription Start Site



Figure 8

0.5Kb

1Kb
1.5Kb
2Kb

+ - + - + - + - + - + - + - + - + - + - + - + -+ - + - LA)
A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 B1ID:



TAR 1

PCR Sequence    1 ttcttcggaaaagcacatgaactctttggagtctcctgttccacttggtaaatttcctat 60
                  |||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||
Chr21  34,270,569 ttcttcggaaaagcacatgaactcttcggagtctcctgttccacttggtaaatttcctat 34,270,628

PCR Sequence   61 agctccgcactgaaagtccctgctgccctccttcctctgagcttgtggggcccacagatc 120
                  |||  |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chr21  34,270,629 agccacgcactgaaagtccctgctgccctccttcctctgagcttgtggggcccacagatc 34,270,688

PCR Sequence  121 ccctgctccacttcctgcttcatttcagctgat 153
                  |||||||||||||||||||||||||||||||||
Chr21  34,270,689 ccctgctccacttcctgcttcatttcagctgat 34,270,721

TAR 2

PCR Sequence  154 ggatgacactccctcgttctaataccatctgaatgcctgagcaattacatcttacaacct 213
                  ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chr21  34,270,898 ggatgacactccctcgttctaataccatctgaatgcctgagcaattacatcttacaacct 34,270,957

                                                  
PCR Sequence  214 catgaaaaacacagcagcttgtcacgatgaatg 246
                  |||||||||||||||||||||||||||||||||
Chr21  34,270,958 catgaaaaacacagcagcttgtcacgatgaatg 34,270,990

Forward Primer

Reverse Primer
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